332
Advanced Computer Architecture

Chapter 3: Caches and Memory Systems
Part 1. miss rate reduction using hardware

(the first of five shorter lectures on caches, address
translation and the memory system)

October 2023
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3, 4th.
5th and 6t eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Average memory access time: -

AMAT = HitTime + MissRate X MissPenalty

There are three ways to improve AMAT-
1. Reduce the miss rate e

- oTtware

2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

Over the next few lectures we look at each
of these in turn...

Reducing Misses
® Classifying Misses: 3 Cs

@Compulsory—rthe first access to a block is not in the cache, so the block

must be brought into the cache. Also called cold start misses or first
reference misses.
(Misses in even an Infinite Cache)

@ Capacity—If the cache cannot contain all the blocks needed during

execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

@ Conflict—If block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory & capacity misses) will occur
because a block can be discarded and later retrieved if too many blocks map
to its set. Also called collision misses or interference misses.

(Misses in w-way Associative, Size X Cache)

® Maybe four: 4th “C”:

@Coherence - Misses caused by cache coherence: data may have been
invalidated by another processor or I/O device

3Cs Absolute Miss Rate (SPEC92)

0.14 1-way
012 Conflict
2-way
Miss rate 01
4-w ay
0.08
8-way
0.06 :
Capacity
0.04 - misses in fully-associative cache
0.02
0
—
_ Cache Size (KB) Compulsory
Compulsory misses are - misses in infinite cache

often vanishingly
Few (unless??)

3Cs Relative Miss Rate

100%

80% Conflict

60% d

40%

20%

0%
— (Q\| <t 00 Jo) o\ < 0

— o™ O N
Compulsory

Same data, shown as
proportion of total

Cache Size (KB)

& bitps:/jwwwspec.org ~ ® We will make

heavy use of
simulation

Benchmarks ~ Tools - Results ~ Contact Site Map Search Help Stu d i es based O n

Cloud
@ CPU

Graphics/Workstations

ACCEL/MPI/OMP
Java Client/Server
Mail Servers

Storage

Power

Virtualization

Web Servers

Results Search

Submitting Results
Cloud/CPU/Java/Power
SFS/Virtualization
ACCEL/MPI/OMP

SPECapc/SPECviewperfiISPECwpc

Tools

SERT
PTDaemon
Chauffeur WDK

Order Benchmarks

Current Benchmarks
Retired Benchmarks

About SPEC
30 Years
GWPG
HPG
0SG
RG
Membership
Member organizations
Awards
Press Releases
Trademarks
@ Fair Use Policy
Upcoming Events
Contact

FTP/HTTP

benchmark suites

SPEC's Benchmarks

Cloud

« SPEC Cloud laa$S 2018 . M h f h
[benchmark info] [published results] [order benchmark] u C O t e
SPEC Cloud IaaS 2018 builds on the original 2016 release, updates metrics, and workloads and adds easier setup. The

benchmark stresses the provisioning, compute, storage, and network resources of infrastructure-as-a-service (laaS) public and p u b I IS h ed
private cloud platforms with multiple multi-instance workloads. SPEC selected the social media NoSQL database transaction

and K-Means clustering using Cassandra and Hadoop as two significant and representative workload types within cloud researc h re I I eS

computing. For use by cloud providers, cloud consumers, hardware vendors, virtualization software vendors, application th S P E C
software vendors, and academic researchers. O n e

CPU benchmarks
[Retired]

CPU

® The suite has
[benchmark info] [published results] [support] [order benchmark] be e n revi Se d

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different .

computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, Seve ral tl m eS
SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes

an optional metric for measuring energy consumption.

» SPEC CPU 2006

[Reired] ® Extended ,

+ SPEC CPU 2000

[Retired] refi n ed y
. spec cpu s broadened

[Retired]

« SPEC CPU 92
[Retired]

O @

B https

Q13. What are the benchmarks?

www.spec.org

SPEC CPU 2017 has 43 benchmarks, organized into 4 suites:

SPECrate®2017 | SPECspeed®2017
Integer Integer

500.perlbench_r
502.gcc_T
505.mef r
520.omnetpp_r
523.xalanchmk_r
525.X204_T1
531.deepsjeng_r
541.leela_r
548.exchange2_r

557.XZ_T

SPECrate®2017 | SPECspeed®2017
Floating Point Floating Point

503.bwaves_r
507.cactuBSSN_r
508.namd_r
510.parest_r
5l1l.povray_r
519.lbm_r
5o1.wrf_r
526.blender r

527.camd_r

538.imagick_r
544.nab_r
549.fotoniksd_r

554.roms_r

600.perlbench_s
602.gcc_s
6o5.mef s
620.omnetpp_s
623.xalancbmk_s
625.x204_s
631.deepsjeng_s
641.leela_s
648.exchange2_s

057.XZ_S

603.bwaves_s
607.cactuBSSN_s

619.1bm_s
621.wrf_s

627.cam4_s
628.pop2_s
038.imagick_s
644.nab_s
649.fotoniksd_s

654.roms_s

Language[1] KLOC 2]
362

1,304

3

C++ 134
C++ 520

C 96

C++ 1e
C++ 21
Fortran 1
C 33
Language[1] KLOC 2]
Fortran 1
C++, C, Fortran 257
C++ 8
C++ 427
C++, C 170

C 1
Fortran, C 991
C++, C 1,577
Fortran, C 407
Fortran, C 338
C 259

C 24
Fortran 14
Fortran 210

Application Area

Perl interpreter

GNU C compiler

Route planning

Discrete Event simulation - computer network

XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)

General data compression

Application Area

Explosion modeling

Physics: relativity

Molecular dynamics

Biomedical imaging: optical tomography with finite elements
Ray tracing

Fluid dynamics

Weather forecasting

3D rendering and animation

Atmosphere modeling

Wide-scale ocean modeling (climate level)
Image manipulation

Molecular dynamics

Computational Electromagnetics

Regional ocean modeling

[1] For multi-language benchmarks, the first one listed determines library and link options (detailst?)

[2] KLOC = line count (including comments/whitespace) for source files used in a build / 1000

SPEC CPU
concerns CPU-
intensive
applications
(no OS, no 1/0)

Integer
benchmarks
tend to make
more intensive
use of pointers
and hard-to-
predict
branches

® Hard to
parallelise

Floating point
benchmarks
may benefit
more from
automatic
parallelisation

Speed.:
execution time
for one run of
the program
(possibly using
multiple cores)

Rate:
maximum
throughput of
completed
jobs/second

CPU2017 integer speeds (normalised to performance of 2006 SunFire V490 (2100MHz UltraSPARC IV+)

Processor Results Energy

Base

Test Sponsor System Name Parallel Threads E(];abled Enabled Threads/\p. | paal Base Peak
ores | Chips Core
ASUSTeK Computer Inc. ASUS RS500A-E10(KRPA-U16) Server System 2.25 GHz, AMD EPYC 7742 Ves 64 64 1 ol g8l 927

HTML | CSV | Text | PDF | PS | Config
ASUS ESC8000 G4(Z11PG-D24) Server System (2.40 GHz, Intel Xeon Platinum
ASUSTeK Computer Inc. 8260M) Yes 48 48 2 1/10.8| 11.0 -- |-

HTML | CSV | Text | PDF | PS | Config
ASUS ESC8000 G4(Z11PG-D24) Server System (2.60 GHz, Intel Xeon Gold 6240M)

HTML | CSV | Text | PDF | PS | Config
ASUS ESC8000 G4(Z11PG-D24) Server System (2.10 GHz, Intel Xeon Gold 6252)

ASUSTeK Computer Inc. Yes 36 36 2 1/10.6 | 10.8 - |-

ASUSTeK Computer Inc. HTML | CSV | Text| PDE | PS | Config Yes 48 48 2 1/10.3| 10.5 - |-
ASUS ESC8000 G4(Z11PG-D24) Server System (3.80 GHz, Intel Xeon Platinum
ASUSTeK Computer Inc. 8256) Yes 16 8 2 2110.1 10.3 |-- -
HTML | CSV | Text | PDF | PS | Config
.. PRIMERGY TX1320 M4, Intel Xeon E-2288G, 3.70 GHz Not Not
Fujitsu HTML | CSV | Text| PDE | PS | Config Yes 16 8 1 2|112.1 Run 219 Run
. Sun Fire V490 Not
Oracle Corporation HTML | CSV | Text | PDE | PS | Config Yes 1 8 4 1/ 1.00 Run 1.00 |--

CPU2017 floating point rates (normalised to performance of 2006 SunFire V490 (2100MHz UltraSPARC IV+)

Processor Resll]ts Energy
Test Sponsor System Name C Enabled|Enabled | Threads!/|
01’“?s ase Base
Cores | Chips Core

ASUS RS700-E9(Z11PP-D24) Server System (2.70 GHz, Intel Xeon Gold

ASUSTeK Computer Inc. 6150) 36 21 199 | 201 |- -
HTML | CSV | Text | PDF | PS | Config

ASUSTeK Computer Inc. 8176) 112 56 2 2| 233 | 237 |- |--

ASUS RS700-E9(Z11PP-D24) Server System (2.10 GHz, Intel Xeon Platinum ‘
HTML | CSV | Text | PDF | PS | Config

.PowerEdge R7425 (AMD EPYC 7601, 2.20 GHz)

Dell Inc. SIML | G5V | Text | PDE |25 | Couie 128‘ 64‘ 2‘ 2‘ 257 ‘ 259 ‘ ‘ ‘
Fujitsu LT IE M LA HIML |GV | Text | DF | 25 |Contigd 08 96 8 8 663 | 796 |- |-
Fujitsu Fujitsu SPARC M12-25 HTML | CSV | Text | PDF | PS | Config 1536/ 192 16 81250 [1520 |-- |--
Il Corporation IBM Power S924 (3.4 - 3.9 GHz, 24 core, SLES) P ——— 144 24 5 8 213 | 277 |- .
IBM Corporation IBM Power E950 (3.4 - 3.8 GHz, 40 core, SLES)HTML R 320 40 4 3 392 | 475 | |

Arbitrarily selected - see https://www.spec.org/cpu2017/results/cpu2017.html for full results, including integer
rates and floating-point speeds, and many more details.

https://www.spec.org/cpu2017/results/cpu2017.html

spec’

SPEC CPU®2017 Integer Speed Result

Copyright 2017-2019 Standard Performance Evaluation Corporation

ASUSTeK Computer Inc.

ASUS ESC8000 G4(Z11PG-D24) Server System
(2.40 GHz, Intel Xeon Platinum 8260M)

SPECspeed®2017 int base = 10.8
SPECspeed®2017 int peak =11.0

CPU2017 License: 9016

Test Date: Aug-2019

Test Sponsor: ASUSTeK Computer Inc. Hardware Availability: Apr-2019
Tested by: ASUSTeK Computer Inc. Software Availability: May-2019
Threads [0 200 400 600 800 100 120 140 160 180 200 220 240 260
7.04
600.perlbench s 48 [.
8.19
10.6
602.gec s 48 [oo oo
1109
: 13.4
60Smef s 48 oo o i
13.5
9.43
620.omnetpp_s 48 [-]
9.67
12.7
623.xalancbmk s 48 [T)
12.7
14.7
625.x264.s 48[-
147
5.69
631.deepsjeng s 48 [)
5.68
4.88
641.deela_s 48 [
ks
17.1
648.exchange2 s 48 [. . '
A
25.1
657.xz s A8 [T T T e .
25.2
—— SPECspeed©2017_int_base (10.8y --—---- SPECspeed*2017_int_peak (11.0)
Hardware Software
CPU Name: Intel Xeon Platinum 8260M OS: SUSE Linux Enterprise Server 15
Max MHz: 3900 Kernel 4.12.14-23-default
Nominal: 2400 Compiler: C/C++: Version 19.0.4.227 of Intel C/C++
Enabled: 48 cores, 2 chips Compiler Build 20190416 for Linux;
Orderable: 1,2 chips Fortran: Version 19.0.4.227 of Intel Fortran
Cache L1: 32KBI+ 32KB D on chip per core Compiler Build 20190416 for Linux
L2: 1 MB I+D on chip per core Parallel: Yes
L3: 35.75 MB I+D on chip per chip Firmware: Version 5102 released Feb-2019
Other: None File System: xfs
Memory 768 GB (24 x 32 GB 2Rx4 PC4-2933Y-R) System State: Run level 3 (multi-user)
Storage 1 x1TB SATA SSD Base Pointers: 64-bit
Other None Peak Pointers: 64-bit
Other: jemalloc: jemalloc memory allocator library
V5.0.1
Power Management: --

® Each reported
benchmark result
Includes elaborate
detalls of hardware
and software
configuration

® Including details of
compiler optimisation
flags

® For base, same
compiler flags for all
benchmark programs

® For peak, per-
benchmark tuning of
compiler flags

@ All compiler flags
are recorded in the
benchmark report

spec'

SPEC CPU®2017 Integer Speed Result

Copyright 2017-2019 Standard Performance Evaluation Corporation

ASUSTeK Computer Inc.

ASUS RS500A-E10(KRPA-U16) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017 int_base = 8.98
SPECspeed®2017 int peak =9.27

CPU2017 License: 9016

Test Date: Aug-2019

Test Sponsor: ASUSTeK Computer Inc. Hardware Availability: Aug-2019
Tested by: ASUSTeK Computer Inc. Software Availability: Aug-2019
Threads [0 .00 2.00 3.00 400 500 600 7.00 800 9.00 100 11.0 120 130 140 150 160 170 180 190 200 220
64 4.78 '
600.perlbench_s [T -
532 5
602.gcc s 64 : 9':95
: 15.5
605.mcef s O e —— o
1 ; 4.5
620.omnetpp_s 64 5':16
64 9.35
623.xalancbmk_s e
1 10.3
64 12.8
625x264s T —_—)
1 - ii2
64 5.00
631.deepsjeng s [|
1 5.06
641.leela_s 64 4'?4
648.exchange2 s 64 16:'5
20.9
657.X2 s 04 | n
21.0
—— SPECspeed®2017_int_base (898 - SPECspeed®2017_int_peak (9.27)
Hardware Software
CPU Name: AMD EPYC 7742 0OS: SUSE Linux Enterprise Server 15 SP1 (x86_64)
Max MHz: 3400 Kernel 4.12.14-195-default
Nominal: 2250 Compiler: C/C++/Fortran: Version 2.0.0 of AOCC
Enabled: 64 cores, 1 chip, 2 threads/core Parallel: Yes
Orderable: 1 chip Firmware: Version 0302 released Aug-2019
Cache L1: 32 KB I+ 32 KB D on chip per core File System: xfs _
L2: 512 KB I+D on chip per core System State: Run level 3 (multi-user)
L3: 256 MB I+D on chip per chip, Base Pointers: 64-bit
16 MB shared / 4 cores Peak Pointers: 32/64-bit
Other: None Other: jemalloc: jemalloc memory allocator library v5.1.0
Memory: 256 GB (8 x 32 GB 2Rx4 PC4-3200AA-R) Power Management: --
Storage: 1x1TBSATA SSD
Other: None

® Different systems

achieve different
relative performance
on different programs
In the benchmark
suite

® Performance is

averaged across the
suite to produce the
overall speed result

® The geometric mean

Is used (not the
arithmetic mean)

& See
https://en.wikipedia.org/wiki/
Geometric mean

® Devising appropriate

summary statistics Is
a subtle problem

® What are the criteria

for good benchmark
suite design?

https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Geometric_mean

How We Can Reduce Misses?

® 3 Cs: Compulsory, Capacity, Conflict
® In all cases, assume total cache size not changed.:
® What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

We will look at each of these in turn...

Valid Cache Tag Cache Data Cache Index

Cache Block G ® Recall: direct-mapped
cache
I <+
Adr Ta v
Compar
Hit Cache Block
Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block (Cache Block 0
Adr Ta v v v v
Compar, > N\seinl Mux OSelg/_C_ omparg+——

—(OR
Hit l ‘

® Recall: 2-way set-associative cache

| Cache Block

Valid Cache Tag Cache Data Cache Index @ Cache anatomy:
Cache Block (® cache block/cache line: unit of
allocation
) = @ Tag: memory address of cached
block
> I 4 /

Adr Ta v

Compar

Hit Cache Block
Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block (Cache Block 0

Adr Ta v v v v

Compar, > N\seinl Mux OSelg/_C_ omparg+——

—(OR
Hit l ‘

® Recall: 2-way set-associative cache

| Cache Block

Cache Index ® Cache anatomy:

Cache Index
Cache Data

cache block/cache line: unit of
allocation

Tag: memory address of cached
block

Set: set of cache blocks indexed
by a given cache index

Way: set of alternative locations
for a stored block in a given set

Cache Tag Valid

Cache Block O

v

y

Valid Cache Tag Cache Data
Cache Block (
Adr Ta v
Compar
Valid Cache Tag Cache Data
Cache Block (
<
Adr Ta v
Compar

)_XSelll Mux OSeIQ/_C_

omparg+———

—\OR

it |

N

| Cache Block

® Recall: 2-way set-associative cache

Valid Cache Tag Cache Data Cache Index @ Cache anatomy:
Cache Block (& cache block/cache line: unit of
allocation
. @ Tag: memory address of cached
<& i / block
< « & Set: set of cache blocks indexed

by a given cache index
@ Way: set of alternative locations

«

Adr Ta Y

Compar, for a stored block in a given set
Comparator: check tag matches
address
Selector: picks the data from the
way with the matching tag (if any)

Cache Index
Valid Cache Tag Cache Data Cache Tag Valid
Cache Block (
/ J
< < > ‘\
Adr Ta v 4 v
Compar, > N\seitl Mux O Selg/_C_ omparg+——

—(OR
Hit l ‘

® Recall: 2-way set-associative cache

| Cache Block

Reduce misses via larger block size

1K

4K

16K

64K

256K

LT 16KB | —=—
————
0% 1 : = 3 5
= & S X e
i (Q\

Block Size (bytes)

Bigger blocks allow us to exploit more spatial locality — but...

Fixed total cache capacity

Reduce misses via larger block size

Initially miss rate is improved due to spatial locality

— = 16K

— o 64K

— * 256K

Fixed total cache capacity

With very large lines,
when the cache is small,
miss rate deteriorates
Block Size (bytes) because space is wasted
on speculatively-loaded
data

Note that we are looking only at miss rate — large blocks will

take longer to load (ie a higher miss penalty)
Later we will see

« Better ways to exploit spatial locality, such as prefetching
« Ways to reduce the miss penalty, eg critical word first and sectoring

Associativity: Average Memory Access Time vs. miss rate

@®Beware: Execution time is
all that really matters
@ Will Clock Cycle time increase?

® For example because the Cache Size Associativity
cache’s selector logic is deeper

® Example: suppose clock cycle
time (CCT) =

@ 1.10 for 2-way,
@1.12 for 4-way,
@ 1.14 for 8-way
@vs. CCT = 1.0 for direct

(KB) 1l-way 2-way 4-way 8-way

1 [233 215 207 201
2 | 198 18 176 1.68
4 | 172 167 161 153
8 | 146 148 147 1.43

mapped 16 1.29 1.32 1.32 1.32

® Although miss rate is improved 32 1.20 1.24 1.25 1.27
by increasing associativity, the

cache hit time is increased 64 1.14 1.20 1.21 1.23

slightly 128 | 110 117 118 1.20

Average memory access time (cycles)
(Red means A.M.A.T. not improved by more

® lllustrative benchmark study. Real associativity)

clock cycle cost likely smaller

Associativity: Average Memory Access Time vs. miss rate

®Beware: Execution time is ®Solution?
all that really matters @ Way prediction
& Will Clock Cycle time increase? @ See H&P6ed p98
& For example because the Cache Size Associativity

cache’s selector logic is deeper

® Example: suppose clock cycle
time (CCT) =

@ 1.10 for 2-way,
@1.12 for 4-way,
@ 1.14 for 8-way
@vs. CCT = 1.0 for direct

(KB) 1l-way 2-way 4-way 8-way

1 [233 215 207 201
2 | 198 18 176 1.68
4 | 172 167 161 153
8 | 146 148 147 1.43

mapped 16 1.29 1.32 1.32 1.32

® Although miss rate is improved 32 1.20 1.24 1.25 1.27
by increasing associativity, the

cache hit time is increased 64 1.14 1.20 1.21 1.23

slightly 128 | 110 117 118 1.20

Average memory access time (cycles)
(Red means A.M.A.T. not improved by more

® lllustrative benchmark study. Real associativity)

clock cycle cost likely smaller

Another way to reduce associativity conflict
misses: “Victim Cache”

® How to combine fast hit time of
direct mapped
yet still avoid conflict misses? TAGS DATA

® Add buffer to place data discarded
from cache

® On miss, allocate into direct-mapped ﬂ
cache

® On replacement, allocate into victim
cache

® On access, check both Tag and Comparator | One Cache line of Data U

® On victim cache, re-allocate into Tag and Comparator | One Cache line of Data
direct-mapped cache

Tag and Comparator | One Cache line of Data

Tag and Comparator | One Cache line of Data

To Next Lower Level In
Hierarchy

Rarely used for L1 but commonly used for
last-level caches

HP-Felow

Pale-Alte
Distinguished Hardware Engineer
at Google

Jouppi, N. P. 1998. Improving direct-mapped cache performance by the addition of a small fully-associative cache prefetch buffers. In 25 Years of the
international Symposia on Computer Architecture (Selected Papers) (Barcelona, Spain, June 27 - July 02, 1998). G. S. Sohi, Ed. ISCA '98. ACM, New
York, NY, 388-397. DOI= http://doi.acm.org/10.1145/285930.285998

(A digression: competitive algorithms
@®Given two strategies

@Each strategy Is good for some cases but disastrous for
others (eg direct mapped vs fully-associative)

@Can we combine the two to create a good composite

strategy?
@What price do we have to pay? rNOC;teeO?'SO the
@Example: skirental problem randomisation

(https://en.wikipedia.org/wiki/Ski_rental problem)
@Example: spinlocks vs context-switching
@Example: paging (should | stay or should | go)

®Related: the Secretary problem (actually best understood as
dating)

®!| hope you will demand a course in competitive algorithms and
apply them to diverse computer systems problems

®See http://wwwl4.in.tum.de/personen/albers/papers/brics.pdf)

https://en.wikipedia.org/wiki/Ski_rental_problem
http://www14.in.tum.de/personen/albers/papers/brics.pdf

® How to timetable all of DoC and
EEE’s 3'd-year, 4th-year and MSc
courses

® With limited number of rooms and
times in the week

® There must be some clashes

® Suppose you want to take two
courses, “ACA” and “DNNs”

® If you’re lucky they are scheduled
on different slots

® If not, they clash every week!

Week 1

Week 2

Week 3

Week 4

Mon@?2

Tue@?2

Wed @2

Thu@2

Mon@2

Tue@?2

Wed @2

Thu@2

Mon@2

Tue@?2

Wed @2

Thu@2

Mon@2

Tue@?2

Wed @2

Thu@2

ACA

ACA

ACA

ACA

DNNSs

DNNSs

DNNSs

DNNSs

® How to timetable all of DoC and
EEE’s 3'd-year, 4th-year and MSc
courses

® With limited number of rooms and
times in the week

® There must be some clashes

® Suppose you want to take two
courses, “ACA” and “DNNs”

® If you’re lucky they are scheduled
on different slots

® If not, they clash every week!

® Let’s rehash every week....

Week 1

Week 2

Week 3

Week 4

Mon@?2

Tue@?2

Wed @2

Thu@2

Mon@2

Tue@?2

Wed @2

Thu@2

Mon@2

Tue@?2

Wed @2

Thu@2

Mon@2

Tue@?2

Wed @2

Thu@2

ACA

ACA
ACA

ACA

DNNs

DNNSs

DNNs

DNNs

Skewed-assoclative caches

Cache Index + some tag bits

Valid Cache Tag Cache Data
Cache Block 0

Cache Data Cache Tag Valid
Cache Block 0

Hit + Cache Block
® In a conventional w-way set-associative cache, we get conflicts when n+1
blocks have the same address index bits
® Idea: reduce conflict misses by using different indices in each cache way
& We introduce simple hash function,

® Eg XOR some index bits with tag bits and reorder index bits

data tag data tag

HA) = (B} = 1(C) | Conventional
: [two-way set-
i associative
® Suppose addresses A, B and C map to the
same set
ABC
data tag data tag

\\ /y—'—\; Skewed
two-way set-
S e Sy =

£0 (A) =£0 (B} =£0 (C) associlative
£1 NN X

® A, B and C might conflict in the left way
® But the right way has a different mapping

ABC

Skewed-
associlative
Il caches:
loops and
arrays
Alil, BIi], C[i]

® Suppose we are traversing three arrays A, B and C:
@ Suppose we are unlucky:

fo(All)=fo(BlI)=£o(Cli]) and fi(All])=f(B[i])=£1(C[I])
we get a conflict — only two of the three values can be in the
cache at the same time

@ But since f, and f; are pseudo-random, it’s unlikely that
fo(Ali+ 1=, (Bli+1D)=1(,(C[i+11) and fi(Ali+11)=f (Bli+11)=f; (C[i+11)

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In Proceedings of the 5th international PARLE Conference on Parallel Architectures and Languages
Europe (June 14 - 17, 1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes In Computer Science, vol. 694. Springer-Verlag, London, 304-316.

In contrast 2-
way set-
associlative
cache

f:lower k bits

Ali], B[], CIi]
® Suppose we are traversing three arrays A, B and C:
@ We can easily be unlucky, eg due to power-of-2 alignment:

f(AL)=£(Bli])=f(CIi])
So we get an associativity conflict — only two of the three values
can be in the cache at the same time

@ And if that happens, we definitely get a conflict on next iteration:
f(Ali+11)=F (Bli+11)=f (C[i+11)

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In Proceedings of the 5th international PARLE Conference on Parallel Architectures and Languages
Europe (June 14 - 17, 1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes In Computer Science, vol. 694. Springer-Verlag, London, 304-316.

Ali], BIi], C[i]
® We may be able to reduce associativity
® We have more predictable average performance
® It's hard to write a program that is free of associativity conflicts

® Costs?
& One address decoder per way
& Latency of hash function (?)
@ difficulty of implementing LRU
@ index hash uses translated bits [see later].

P. Michaud. 2003. A statistical model of skewed-associativity. In Proceedings of the 2003 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS '03).

Reducing Misses by Hardware Prefetching of

® Extra block placed Instructions & Data
in “stream buffer” From processor TWD/FW
® After a cache miss,
stream buffer
Initiates fetch for tags data Direct-mapped
next block - cache
® But it is not
allocated into cache |
— to avoid L)l\
“pollution” tag and
stream buffer in |29 : one cacheinedfdata | Stream bufter
_ tag a one cache line of data (FIFO Queue)
parallel with cache g " oe cache ine of ata | Tall entry
@® relies on having L I
+1 \l/ /|\

extra memory To next lower cache From next iower cache

bandwidth

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

Multi-way stream-buffer

From processor To proceasar
| T
® We can extend this
Idea to track multiple
lags data o
access streams — " mappad cache
simultaneously: |
& One stream is good for -
instruction-cache misses L L L
& Multiple streams often
important for data “_?,h' ') % ’} f‘l"jl [i:
® Eg traversing multiple = : “”: _z_ : “": ’Z ,;_ cala h?g _; a
arrays &l dafa fag 8] dala | (T35 |a| da@ g & dala |
al dala &g | & a1 Tag 1a| dala | <@g |8
_ N 7
@®[[Q: would it be o K
better to prefetch NP
n+k instead of n+17?]] 2 g i
Many (many) modern CPUs have hardware : 1
prefetching \'T/ me.m..-.d_
« Often more elaborate/sophisticated To next lower cache

* Initiated at L1, or perhaps initiated on L2 misses?

Beyond prefetch: decoupled access-execute

® |dea: separate the Memory

Instructions that

B S . .
generate addresses Wl or E-instructions
from the instructions il a
that use memory t] d iA—instr'uctions

_Y
results L AE
*\ :_ _.d..a-.t_@. ’ sl

® Let the address- "
generation side of the Yaata | mT Execute
machine run ahead wag | “--==-- 1« -l:— Processor

Access EAQ
Processor AEBQ

From James E. Smith. 1982. Decoupled access/execute computer — —ﬂ

architectures. In Proceedings of the 9th annual sympo;ium on A x

Computer Architecture (ISCA '82). IEEE Computer Society Press, Lo .

Alamitos, CA, USA, 112-119 reg1. ster L(— & register

See also ACRI supercomputer project, f1] e EABQ f1] e

http://www.paralogos.com/DeadSuper/ACRI/

And Scout threads in Sun’s Rock:
https://ieeexplore.ieee.org/document/4523067

http://www.paralogos.com/DeadSuper/ACRI/
https://ieeexplore.ieee.org/document/4523067

Summary

We can reduce the miss rate through hardware.....
® With a bigger cache (Capacity)
@#But a bigger cache will be slower, or will have to be pipelined
® With larger blocks (aka cachelines)
@#But if that increases the miss penalty, you lose
® With higher associativity (Conflicts)
@#But direct-mapped caches are (a bit) faster

® We can reduce the miss rate due to associativity conflicts by
adding a victim cache

® We can reduce the miss rate due to associativity conflicts using
a skewed-associative cache (reduce... on average?)

® We can reduce miss delays by prefetching using a prefetch
predictor and a stream buffer

® We can reduce miss delays by issuing loads early enough, for
example in a decoupled architecture

Further reading

We have not discussed replacement policy
® Some theory eg

® Pierre Michaud. Some mathematical facts about optimal cache replacement. ACM
Transactions on Architecture and Code Optimization, Association for Computing
Machinery, 2016, 13 (4), ff10.1145/3017992ff. ffhal-01411156v2f

® Fast cheap hardware for approximating LRU:
® Pseudo-LRU https://en.wikipedia.org/wiki/Pseudo-LRU

& What does the pessimal replacement policy look like?
@ See https://link.springer.com/chapter/10.1007/978-3-540-72914-3 13

® From the wonderful Fun with Algorithms conference series
® https://sites.google.com/view/fun2020/home
® And entirely unrelated: http://www.toroidalsnark.net/mathknit.html

https://en.wikipedia.org/wiki/Pseudo-LRU
https://link.springer.com/chapter/10.1007/978-3-540-72914-3_13
https://sites.google.com/view/fun2020/home
http://www.toroidalsnark.net/mathknit.html

Piazza question: stride and depth in prefetching

"Stride" is the size of the pointer increment on each access, eg in

double A[], B[]; // 8-byte per word
for (int i=0; i<N; ++i)
B[i] = A[3*];

the load has stride 24bytes, while the store has stride 8bytes.
"Depth" concerns how many iterations ahead we prefetch. Eg
for (int i=0; i<N; ++i)

prefetch(&A[i+D];

B[i] = A[i]+s;
D is the prefetch depth. It's often a good idea for D to be bigger

than one, in order to get multiple accesses in flight and to cover
the memory access latency.

	Slide 1: 332 Advanced Computer Architecture Chapter 3: Caches and Memory Systems Part 1: miss rate reduction using hardware (the first of five shorter lectures on caches, address translation and the memory system)
	Slide 2: There are three ways to improve AMAT:
	Slide 3: Reducing Misses
	Slide 4: 3Cs Absolute Miss Rate (SPEC92)
	Slide 6: 3Cs Relative Miss Rate
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: How We Can Reduce Misses?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Reduce misses via larger block size
	Slide 18: Reduce misses via larger block size
	Slide 19: Associativity: Average Memory Access Time vs. miss rate
	Slide 20: Associativity: Average Memory Access Time vs. miss rate
	Slide 22: Another way to reduce associativity conflict misses: “Victim Cache”
	Slide 23: (A digression: competitive algorithms
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Reducing Misses by Hardware Prefetching of Instructions & Data
	Slide 34: Multi-way stream-buffer
	Slide 35: Beyond prefetch: decoupled access-execute
	Slide 36: Summary
	Slide 37
	Slide 38

