Advanced Computer Architecture

Chapter 4. Caches and Memory Systems
Part 2: miss rate reduction using software

October 2023
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3, 4th.
5th and 6t eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Average memory access time:

AMAT = HitTime + MissRate X MissPenalty

There are three ways to improve AMAT:

1. Reo
2. Reo

3. Reo

ucet
ucet
ucet

he miss rate, _—

[

In software

ne miss penalty, or

ne time to hit in the cache

We now look at each of these In turn...

Reducing misses by software prefetching

- - R10KCBARRIER(O(ra))
¢] Spme processors have !n_struptlons to LOAD(t@, UNIT(8)(src), .L1 exc\@)
trigger prefetching explicitly, in LOAD(t1, UNIT(1)(src), .L1 exc_copy\@)
software LOAD(t2, UNIT(2)(src), .L1_exc_copy\@)
_ LOAD(t3, UNIT(3)(src), .L1 _exc_copy\@)
® AlImost never worth using on SUB len, len, 8*NBYTES
sophisticated processors with good LOAD(t4, UNIT(4)(src), .L1_exc_copy\@)

LOAD(t7, UNIT(5)(src), .L1_exc_copy\@)

hardware prefetching STORE(t@, UNIT(©)(dst), .Ls_exc p8u\@)

® May be useful on simpler processors — STORE(t1, UNIT(1)(dst), .Ls_exc_p7u\@)
_ LOAD(t@, UNIT(6)(src), .L1_exc_copy\@)
® Some care is needed to ensure LOAD(t1, UNIT(7)(src), .L1_exc_copy\@)
prefetch accesses don’t have L S, ShE, 8*HOHRES
. ADD dst, dst, S*NBYTES
unwanted side effects STORE(t2, UNIT(-6)(dst), .Ls_exc_p6u\@)

)) . STORE(t3, UNIT(-5)(dst), .Ls_exc_p5u\@)
® Eg memory-mapped i/o registers STORE(t4, UNIT(-4)(dst), .Ls_exc_p4u\@)

® (this is the function of the STORE(t7, UNIT(-3)(dst), .Ls_exc_p3u\@)

STORE(t@, UNIT(-2)(dst), .Ls exc_p2u\@)
R10KCBARRIER macro) STORE(t1, UNIT(-1)(dst), .Ls_exc_plu\@)

® Prefetch instructions may target EEEE;E 2: ZE;E:PE; ;
s 3
addresses that would cause a page bne len, rem, 1b
fault or protection violation nop
@ Prefetches of addresses that ® Example: MIPS “memcpy” library code — handwritten assembler —
) unrolled 12 times, manually scheduled, with prefetching to

would result in a page fault or initiate loading the source and destination cache lines into cache
exception are silently squashed (heavy use of macros)

® From https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

https://elixir.bootlin.com/linux/v5.9.2/source/arch/mips/lib/memcpy.S

Reducing instruction-cache misses

® McFarling [1989]*
reduced instruction
cache misses by 75%
on 8KB direct mapped
cache, 4 byte blocks in
software

@® Instructions

@ By choosing instruction
memory layout based on
callgraph, branch structure
and profile data

@ Reorder procedures in
memory so as to reduce
conflict misses

@ (actually this really needs the
whole program — a link-time
optimisation)

Call graph
L1 .2
Loop1 \

main

Loop2

L3
oop3

C

Packlng code for each functlon mto the I-cache

D

B

Loop1

Loop2 Loop3

A

Cache
Size

Function E is placed to avoid conflicts with B and C,
but can be placed in addresses that conflict with A

® Storage layout transformations

@ Merging Arrays: improve spatial locality by single array of
compound elements vs. 2 arrays

@ Permuting a multidimensional array: improve spatial locality by
matching array layout to traversal order

@ Improve spatial locality

@ lteration space transformations

@ Loop Interchange: change nesting of loops to access data in
order stored in memory

@ Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

@ Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows (wait for
Chapter 4)

@ Can also improve temporal locality

[* Before: 2 sequential arrays */ : _
int val[SIZE]; Array Merging - example

Int key[SIZE]; “Array of Structs” vs

[* After: 1 array of stuctures */ “Struct of Arrays”
struct merge {
int val (A0S vs SoA)
int key;
I

struct merge merged_array[SIZE];

Reducing conflicts between val & key (example?)
Improve spatial locality (counter-example?)

 whether this Is a good idea depends on access
pattern

(actually this Is a transpose: 2*SIZE -> SIZE*2)

Consider matrix-matrix multiply (tutorial ex)

® MM1.: ® MM2:

for (i=0;i<N;i++) for (i=0;i<N;i++)

for (j=0;j<N;j++) for (k=0;k<N;k++)
for (k=0;k<N;k++) for (j=0;j<N;j++)

COID] += ADl]k] * BLK]DI; CUID] += Al][k] * BLk][];

® Row-major storage layout (default for C):
011203 4l0l1]2[3 [4]0lil2]304 0lil2]3]4 0lil2]3]4
Row O Row 1 Row 2 Row 3 Row 4
® Column-major storage layout (default for Fortran):

0/112(314/0/1/2/314/0[1/2[3/4/0[1/2[3/4/0/1/2[34

Col O Col 1 Col 2 Col 3 Col 4

0.35

i EII ".N.elarycachesize_mMll_ESE_Bl?:E.dat“lusing 4 —+—
™ " Jvarycachesize MM2 256 8192.dat" using 4
0.3 AN ".Jvarycachesize_MM3_256_8192.dat" using 4 —%— -
“‘xx " varycachesize MM4 256 8192.dat" using 4 —=—
0.25 |- E& i
H“‘H-.x
*,
0.2 W _
015 MMI:ik S~ -
E _
0.1 MM3: tiled _
Ty ~—a-_but with
different——
0.05 MM2: ik] storage .
: layout
MM3: tiled ,
0 | | T e —
256 bytes 512B 1024B 2048B 4096B 8192B
32 doubles 64 128 256 512 1024

Problem size: 192 doubles, 1536 bytes per row

Performance in MFLOP/s

Permuting multidimensional arrays to improve spatial locality
MMikj on P4: Performance in MFLOP/s

1000
900
800
700
600
500
400
300
200
100

0

I I I I I I I I I
L Row-Major Default Alignment (a)
" i
Row major o 1 2 3
i mapping to _
linear address: 4 5 6 7
- 8 9 10 11 i
12 13 14 15 g
o 4 8 12
Column major: 1 > 9 B3
- 2 6 10 14
- 3 7 11 15 -
] |] |] |] |] 1

200 400 600 800 1000 1200 1400

Sauare Root of Datasize

® Matrix-matrix
multiply on
Pentium 4

“ikj” variant:
for i
for k
for |
Clij]+=A[iK]
*Blki]

1600 1800 2000

® Traverses B and C in row-major order
® Which is great if the data is stored in row-major order

® If data is actually in column-major order...

Performance in MFLOP/s

Permuting multidimensional arrays to improve spatial locality
MMikj on P4: Performance in MFLOP/s

1000 I I I I I I I
Row-Major Default Alignment (a)
900 M Column-Major Default Alignment (b)

| Z-Morton Page-Aligned Unrolled (E:) —
) - —
) -

A variant of
Morton-order
- layout is used

for texture

800 | ‘\Padded-SaP-Z-Morton Page-Aligned Unrolled (d Y E
§t0p—at—Page—Z—Morton Page-Aligned Unrolled (e g
700 - | - some GPUs
600 |- Using a blocked (“quadtree” or “Morton’) | |
H\x layout gives a compromise between row-major
500 and column-major |
400 e . wwel Z
300 -
| o 3 12 13
200 T \M
0L L | o, e | Morton-order mapping to

200 400 600 800 1000 1200 1400 1600 1800 2000 linear address

Square Root of Datasize _
® Blocked layout offers compromise between row-major and column-
major

® Some care is needed in optimising address calculation to make this
work (Jeyan Thiyagalingam’s Imperial PhD thesis)

Loop Interchange: example

/* Before */
for (k =0; k <100; k = k+1)
for =0;)<100;j=j+1)
for (I =0; 1 <5000; i =i1+1)
x[Ihl = 2> x[]il;
[* After */
for (k =0; k <100; k = k+1)
for (1=0;1<5000;i=i+l)
for (j =0;]<100; | =j+1)
x[Ihl = 2> x[]il;

Sequential accesses: instead of striding
through memory every 100 words;
Improved spatial locality

Loop Fusion: example

/* Before */
for (1 = 0; 1 < N; i = 1i+l)

for (j = 0; J < N; j = j+1)

S1: alilljl = 1/b[i]l[]J] * clil[]]l;
for (1 = 0; 1 < N; i = 1i+l)

for (j = 0; J < N; j = j+1)

S2: d[il[3] = alillj]l + clill3l>;

/* After fusion */
for (1 = 0; i < N; 1 = i+1)
for (J = 0; J < N; J = j+l)
{S1: alil[j]l = 1/b[il[j] * c[il[j];
S2: d[i]l[j] = a[il[]j] + c[il[3]1:}

2 misses per access to a & c vs.
ONe MISS per access; Improve
spatial locality

~
DD DD DD @

@jejeje)jble

/* After array contraction */

-for (i=0,’i<N,’i=i+1)

for (j = 0; J < N; jJ = j+1)

{ cv = c[i][]j];
Sl: a 1/b[i]l[j] * cv;
S2:d[i]l[j]l = a + cv;}

The real payoff comes if
fusion enables Array
Contraction: values
transferred in scalar
Instead of via array

Fusion Is not always so simple

B Dependences might not align nicely
B Example: one-dimensional convolution filters

SA AR K ALT
é><<¥><<¥><<¥><<¥><<¥><<¥><é>

« “Stencil” loops are not directly fusable

for (i=1; i<N: i++)
VIi] = (U[i-1] + U[i+1])/2

for (i=1; i<N; i++)
WIi] = (V[i-1] + V[i+1])/2

Loop fusion — code expansion

B We make them fusable by shifting:

SRR

CRRX
;3

PP

v
<

\
<&

V[1] = (U[O] + U[2])/2

for (I=2; I<N; 1++) {
V[i] = (U[i-1] + U[i+1])/2
WIi-1] = (V[i-2] + V[i])/2

}

WI[N-1] = (V[N-2] + V[N])/2

E The middle loop Is fusable
E We get lots of little edge bits

Loop fusion — code expansion This transformation

IS important in
image-processing

filters, finite
difference solvers,

E \We make them fusable by shifting: BEiEELIEITIIGES

neural networks

SESYSRRXRT V[1] = (U[0] + U[2])/2
for (1I=2; I<N; 1++) {
V[i%4] = (U[i-1] + U[i+1])/2
WIi-1] = (V[(I-2)%4] + V[i%4])/2
}
WI[N-1] = (V[(N-2)%4] + V[N%4])/2
2EIXELYLY o
E Contraction is trickier

E The middle loop is fusable ® We needthe lasttwo Vs

: .. E We need 3V locations
E We get lots of little edge bits .
B Quicker to round up to four

Summary

We can reduce the miss rate at the software level
® By using prefetch instructions

@If they work better than predictive prefetch hardware
® By transforming storage layout

®#Might help with spatial locality

®#Might help with associativity conflicts

@#Can’t help with temporal locality

® Storage layout optimisations are disruptive — they affect all the
code that might use that data

® Loop interchange, fusion, tiling
#®Can get really messy to implement by hand

®Can lead to a large space of possible schedules — it can be
hard to know what will work best

@®Loop fusion can be very powerful but often breaks
abstraction boundaries

Further reading

Algorithms and locality: cache-oblivious algorithms:
@® hitps://en.wikipedia.org/wiki/Cache-oblivious algorithm

Compilers that optimise for locality:

® Michael E. Wolf and Monica S. Lam. 1991. A data locality optimizing algorithm.
PLDIO].

® Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data
locality with loop transformations. ACM Trans. Program. Lang. Syst. 18, 4 (July
1996)

® Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
practical automatic polyhedral parallelizer and locality optimizer. PLDIOS

Programming Abstractions for Data Locality
® https://sites.google.com/a/lbl.gov/padal-workshop/

Optimisations for convolutional neural networks

® Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang.
Optimizing CNN model inference on CPUs. USENIX ATC’19.

https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://sites.google.com/a/lbl.gov/padal-workshop/

	Slide 1: Advanced Computer Architecture Chapter 4: Caches and Memory Systems Part 2: miss rate reduction using software
	Slide 2: There are three ways to improve AMAT:
	Slide 4: Reducing misses by software prefetching
	Slide 5: Reducing instruction-cache misses
	Slide 7
	Slide 8: Array Merging - example
	Slide 9: Consider matrix-matrix multiply (tutorial ex)
	Slide 10
	Slide 11: Permuting multidimensional arrays to improve spatial locality
	Slide 12: Permuting multidimensional arrays to improve spatial locality
	Slide 13: Loop Interchange: example
	Slide 14: Loop Fusion: example
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Summary
	Slide 19

