Advanced Computer Architecture |

Department of Computing, Imperial College London

Chapter 4: Caches and Memory Systems
Part 5: DRAM and memory parallelism

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (39, 4t

5th and 6t eds), and on the lecture slides of David Patterson and John

M 1k e O o 6 B 55, e e e o e 4085 Kubiatowicz’s Berkeley course

https:/len.wikipedia.org/wiki/Dynamic_random-access_memory#/media/File:Square_array_of_mosfet_cells_read.png

wordlines T T T 1 . ’
222 DRAM array design
4 L] 1| <
T T T 1
1 7 "+ @Square array of cells
1] 1] 1| L eAddress splitinto Row
T | T T 1 address ar_1d Column
T% T% T% T% Address bits
- - ~ - + - - - ® Row address selects row
Fatratrat o of cells to be activated
11 1] 1| L e@cellsdischarge

bitlines ® Cell state latched by per-
column sense amplifiers

® Column address selects
data for output

@® Data must be written back
to selected row
® Wordlines activate transistors along a row
® Charge flows from each capacitor in the row along the bitlines

https:/len.wikipedia.org/wiki/Dynamic_random-access_memory#/media/File:Square_array_of_mosfet_cells_read.png

Row
address
bits

Column

e

ROW ADDR. DEMUX: SELECTS ROW

ﬁ% DRAM array design
.

+~— @ Square array of cells
1 @ Address split into Row

L address and Column
J% Address bits

® Row address selects row

-

}1 of cells to be activated
< @ Cells discharge

® Cell state latched by per-
column sense amplifiers

SENSE
AMPLIFIER
[COMPARATOR

® Column address selects
data for output

T T T
— 17 1 L
A
T T T
Yo Lt L
| 4| <
T T T
Y 17 .1
| 4| <
T T T
Y O L
L L 1
WV W V. W
A LATCH]
£ ¥ &

address 7

COL.
ADDR.
LATCH

= ® Data must be written back

DATA SELECTOR (4 TO 1 MUX)

to selected row

bits

Data out

® Current flow is detected and latched
@® Data from selected column is routed to output

https:/len.wikipedia.org/wiki/Dynamic_random-access_memory#/media/File:Square_array_of_mosfet_cells_read.png

z[T T T 1 - 5
2 ~— o1 DRAMarray design
5 1L i L L
Row % i = i = i = L =
acdress % 7+ 7 7 @Square array of cells
2 +| 1 £ £ eAddress splitinto Row
oL [L [L [ZL address and Column
S .
s I% I% I% I% Address bits
s . - - i ® Row address selects row
2k a 1 ' - of cells to be activated
~ 7 Lt T ot L
L1 L] L| L @cellsdischarge
RAS—**o.hm:g..'\1ASH|=1o.."\.1 o] (2pzry @ Cell state latched by per-
column sense amplifiers
V % \ V| |ametees
® Column address selects
data for output
Column < JUATCHL ® Data must be written back
address 7 #6s 1 DATA SELECTOR (4 TO 1 MUX) to selected row
bits | ® Sensed and latched data is written back
Data out

® To all the capacitors in the row

I..l'

WLH
Bitline
Wordline {row)
FU;LL Wordlines
Transistor
Fy Cell node ;
Cell node
I_.-"
i BE
Bitline +
{colummn) angt Node dielectric
— g
0 LIZ-LLII ~
a4 - Cell plate
SLOrage
capacitor Y
Cell plate

SEM photomicrograph of (.25-pm trench DRAM cell suitable for
Schematic of a one-transistor DRAM cell [1]. The array devicescaling to 0.15um and below. Reprinted with permission from [17]:
(transistor) is addressed by switching the wordline voltage from® 1995 IEEE.
Vit [u-'{ardlije—lnluf} to Vo f“-‘ﬂrdline—hig_h}, enabling the bitline : | -
and the capacitor to exchange charge. In this example, a data state ® Si ngle transistor

of either a “0” (0 V) or a “17 (¥ ;) 1s written from the bitline to @ Capacitor stores charge
the storage capacitor. b, 1s the electrical bias appled to the p-well.) i
® Decays with time

http://www.research.ibm.com/journal/rd/462/mandelman.html . DeStrU Ct|Ve I’ead -0 Ut

http://www.research.ibm.com/journal/rd/462/mandelman.html

https:/len.wikipedia.org/wiki/Dynamic_random-access_memory#/media/File:Square_array_of_mosfet_cells_read.png

s T T T 1
o L L[L[L
o L L L L
Refresh L} + = T = v = 1 =
periodically & ‘
cycles x T 1t 1Y 1Lt L
through all E ; l g ;
rows oL T T 1
2T LT LT LT L
S| T T| T| T
S = = = =
T T T 1
~ 7 Lt T ot L
| T T| T
RAS—0. %1 o%1 ol ol Eﬂg%
v v v V| |,
A
Column ~ ¥ rLATCHr ¥
address bk | DATA SELECTOR (4 TO 1 MUX)

bits

DRAM refresh

® After a while the charge leaks —
and the data cannot be reliably
read

® So we must refresh every cell
periodically

® Eg every 64ms

® Usually managed by a
microcontroller on the DRAM
chip

® DRAM is unavailable during
refresh — so every few
microseconds a transaction may
be delayed

® Refresh may be triggered more
frequently if device is hot

® Refresh is a significant energy
cost —and we could think about
how to reduce it

DRAM timing characteristics

® Once arow has been selected, the whole row is latched

® So different elements of the row (ie from different
columns) can be accessed with lower latency

® For example: a 60 ns (i;,-) DRAM can
@ perform arow access only every 110 ns (tx.)

@ perform column access (t-,c) In 15 ns, but time between column
accesses is at least 35 ns (tp.).

® In practice, external address delays and turning around buses make
it 40 to 50 ns

® Excluding memory controller overhead!

® Row access cycle time is longer than row access time
@Because data needs to be written back after it is read

http://www-inst.eecs.berkeley.edu/~cs150/fal2/agenda/

12

Putting It all together...

CKE
control| ——-
- _ \ Bank 0
logic l TTTTT1 : Bank'l
s pram JHEH
address| | Array - i ',' Bank 2
WE 2 latch & | I -
casd | E 3 decoder l i '-" Bank 3
£ & .
RA g 3 refresh ‘ y ﬂ ‘
mode counter ‘
register
‘ data out
addr register
bus bank
address read data latch
Lt register - control write drivers
——{ address .
counter - gglcuunagr

® Architecture of SDRAM chip (based on Micron MT48LC32M4A2
data sheet)

® From David Taiwei Tang’s PhD thesis (https://www.ece.umd.edu/~blj/papers/thesis-PhD-wang--
DRAM.pdf)

@® Motivation: Error COI’FEC’[iOﬂw

@ Failures/time proportional to number of bits!
& As DRAM cells shrink, more vulnerable

@ Various causes
@ Interference from neighbouring cells

@ radiation — such as high-energy cosmic rays (“single-event upsets”,
SEUS)

® Basic idea: add redundancy through parity/ECC bits
& Common configuration: Random error correction

@ SEC-DED (single error correct, double error detect)
« A Hamming code — see https://en.wikipedia.org/wiki/Hamming_code

® One example: 64 data bits + 8 parity bits (11% overhead)

® Substantial space overhead, and hardware to check and
correct

@ Really want to handle failures of whole chips, not just upset bits
® Organization is multiple DRAMs/SIMM, multiple SIMMs
® Want to recover from failed DRAM and failed SIMM!
® Cf RAID (https://en.wikipedia.org/wiki/RAID)

https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/RAID

® Can we cause memory upsets? Rowhammer

& Suppose we write a program that
repeatedly writes the yellow rows

& Can we flip bits in the purple row?

@ This is how you test a DRAM!

& But common DRAMs can still be flipped
despite passing manufacturing tests

& With determination and many writes

& This may enable a program to change
data that belongs to another process, or

the OS
Such as the page table ® Mitigations
& And gain access to private data @ ECC provides some protection
@ March 2015: successful attack revealed @ Adaptive refresh “target row refresh”
by security team at Google (TRR) — count accesses and refresh

potential victim rows early

& Some evidence that both ECC and TRR
can be overcome

19

rg/wiki/Row_hammer

https://en.wikipedia.o

20

DRAM topics we don’t have time for... FU rt h er tO p | CS

DRAM energy optimisations
Stacking, eg Micron’s Hybrid Memory Cube (HMC)

Processing-in-memory, near-memory processing
Bulk copy and zeroing (easy intra subarray, trickier inter) — Rowclone.

Non-volatile memory (NVM), storage-class memory (SCM), Phase-change
memory (PCM), Flash, Crosspoint, Optane

Why NVM isn'’t a filesystem

More cache topics:

Energy optimisations in the memory hierarchy

@ Sparsh Mittal; A survey of architectural techniques for improving cache power
efficiency, Sustainable Computing: Informatics and Systems, Volume 4, Issue 1, 2014,

Content locality, upper bit content locality

® Compressed skewed caches

@ Somayeh Sardashti, André Seznec, and David A. Wood. Skewed Compressed
Caches. MICRO 2014

51 Main Memory Organizations

L1 ey L3

Cache Cache Cache
Bus i Bus Bus
Memory Memory Memory || Memory [| Memory [| Memory
Bank O Bank 1 Bank 2 Bank 3
® Simple: ® Wide: ® Interleaved.:
® CPU, Cache, & Parallel data transfer @ Parallel addressing
Bus, Memory ® Same address in @ Different address in
same width all banks each bank

(32 or 64 bits) @ Parallel data transfer

@ Bank selection strategy?

Main Memory Summary
® DRAM arrays have separate row address latency

® DRAM reads are destructive — needs to be written back
® DRAM needs periodic refresh

® Memory parallelism:

& DRAM packages typically include multiple DRAM arrays, which
can be row-addressed in parallel

& Wider Memory — increase transfer bandwidth to transfer up to a
whole row (or more?) in a single transaction

& Interleaved Memory: allowing multiple addresses to be accessed
in parallel

® Bank conflicts occur when two different rows in the
same DRAM array are required at the same time

@ Hardware strategies, software strategies...
® Need error correction (which costs in space and time)
® Non-volatile memory technologies — fast-moving field

@ Flash — requires block erasure, suffers burnout
@ Phase-change — slow writes, bitwise addressable

27

Extra material for interest

® FLASH Storage Technologies: dense, non-volatilé
& Mosfet cell with two NAND design: sequential read, high density

Bit Line

[}
gates | T *Contact
7] . ” o—
& One “floating |
@ To program, charge o
tunnels via <7nm Joorsz =g
dielectric o— |
@ Cells can only be |
erased (reset to 0) in o]
b | OCkS Common Source
4
ms Time calculation for updating 160KB file]
300 1 263(ms) 260(ms) - :
32 word lines .
200 . [¢ x 1024 blocks
140(ms) 119(ms) - Erase time = :
[\.]
100 | Program time 8 ! |
LG et e Bl ST {| & |16896 bit lines
Page size 256Byte 256Byte 512Byte 512Byte v \ 4
Block size 4KByte 4KByte 8KByte 16K Byte
Read/page 10us 10us 10/Tus 10us 11 7mm
Program/page 250us 250us 250/200us 200us y
Eraselblock 2ms 2ms 2ms 2ms L Gbit NAND Flash memory

bwrc.eecs.berkeley.edu/Classes/ICDesign/ EE241 s02/Lectures/lecture28-Flash.pdf

o rray DIVErse non-volatile memory technologies

@ Perovskite ferroelectric crystal forms dielectric in
capacitor, stores bit via phase change

& 100ns read, 100ns write
& Very low write energy (ca.1nJ)

©:Pb {):0 ©:Zr/Ti

[PZT Crystal Structure]

Bit Line ._Metal3
etal TEL Conventional Metalization
s e
Word Line FRAM Process
LI—IA

Conventional CMOS Bulk

® Fully integrated with
Additional FRAM process logic fab process
between conventional CMOS bulk and metalization ® Currently used in

Q Smartcards/RFID

Compatible with conventional CMOS technology ¢ Eloag?rgo overtake

and existing CMOS cell libraries ® See also phase
http://www.fma.fujitsu.com/fram/framDocs01.asp?grOut=Documentationdsec=Documentation ~change RAM

31

X Drivers

¢ 66 ¢

il 60660 -
e | r
. Y I / 5, } i
I/]/Z Current @ @ @__ v
® The first real “random-access memory” | | =
technology was based on magnetic r
‘cores” —tiny ferrite rings threaded with __ s
copper wires
® That’s why people talk about * Out of-
Core”, “In-Core,” “Core Dump”
® Non-volatile, magnetic Pulse on sense line if any core flips its
® Lost out when 4 Kbit DRAM became magnetisation state
available
® Access time 750 ns, cycle time 1500-3000 it e payehtceyl sk aupdp-Llicore

ns

http://www.faqs.org/docs/electric/Digital/DIGI_15.html
http://www.psych.usyd.edu.au/pdp-11/core.html

v vy
J’}

il 4 -
£ . é f o 3 a —
o & - . o : y R s
§ : 2 K X &Y & =
4 $ Y 1 i S A 3
2 - :
= 2 T ! Tl
“ " F; - =
& 3 3 7 P
" 4 e 3 3 y . > —
= ¢ : y , RS
v ¥ 3 v - |] A -
= O : i A Y
& > e

t

B

A 78 %, TR 5 gt Shik s Sl

s e ‘I & { :l i i i 1 J (3% itk ! v 3
hs [k g LK I x '”E indl UM :

AR b AN R s g 38 i il 21 L3

® The first magnetic core memory, from
the IBM 405 Alphabetical Accounting
Machine. The photo shows the single
drive lines through the cores in the
long direction and fifty turns in the
short direction. The cores are 150 mil
inside diameter, 240 mil outside, 45
mil high. This experimental system
was tested successfully in April 1952.

http://www-03.ibm.com/ibm/history/exhibits/space/space 2361.html

http://www.columbia.edu/acis/history/core.html

Sources:

Figure 10. IBM 2361 Core Storage

® 524,000 36-bit words and atotal
cycle time of eight microseconds in
each memory (1964 — for the
IBM7094)

http://www.columbia.edu/acis/history/405.html
http://www.columbia.edu/acis/history/405.html
http://www-03.ibm.com/ibm/history/exhibits/space/space_2361.html
http://www.columbia.edu/acis/history/core.html

First was at
University of
Manchester

University of
London had
the second

one

Commissione
d May 1964

Shut down
Sept 1972

34

Pipelined instruction processing in Atlas

A= AxS (modified)
INDEXING INSTRUCTION B 5.*4_9 -- E: —
—> RN)
THREE FURTHER INSTRUCTIONS ——> N
— C
-
T~

10 MICROSECONDS >

KEY EXTRACT INSTRUCTION FROM SLAVE STORE

=5 DECODE INSTRUCTION
== MODIFICATION OF OPERAND ADDRESS, OR INDEXING OPERATION
EXTRACT OPERAND FROM CORE STORE 2} MICROSECOND CYCLE

FLOATING POINT ARITHMETIC
http://www.chilton-computing.org.uk/acl/technology/atlas/overview.htm

® Atlas is most famous for pioneering virtual memory

® Also
@ Pipelined execution
@& Cache memory (“slave store”) — 32 words
@ Floating point arithmetic hardware

	Slide 1: Advanced Computer Architecture Department of Computing, Imperial College London Chapter 4: Caches and Memory Systems Part 5: DRAM and memory parallelism
	Slide 3: DRAM array design
	Slide 4: DRAM array design
	Slide 5: DRAM array design
	Slide 7: DRAM cell design
	Slide 8: DRAM refresh
	Slide 12: DRAM timing characteristics
	Slide 17: Putting it all together…
	Slide 18: Error correction
	Slide 19: Rowhammer
	Slide 20: Further topics
	Slide 21: Main Memory Organizations
	Slide 27: Main Memory Summary
	Slide 28: Extra material for interest
	Slide 29: Storage Technologies: dense, non-volatile
	Slide 30: Diverse non-volatile memory technologies
	Slide 31: Main Memory Deep Background
	Slide 32
	Slide 33
	Slide 34: Pipelined instruction processing in Atlas

