Advanced Computer Architecture
Chapter 6

Static instruction scheduling, for instruction-level
parallelism

Software pipelining, VLIW, EPIC, instruction-set support

1 S.D O(R1l),F4 ; Stores MJ[i]

2 ADD.DF4,F0,F2 ; Adds to M[i-1]

3 L.D FO,-16(R1) ; Loads M[i-2] November 2023
4 DSUBUI R1,R1,#8

5 BNEZ R1,LOOP Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3 and
4t eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Overview

w» We have seen dynamic scheduling:

®»out-of-order (0-0-0): exploiting instruction-level
parallelism in hardware

w» How much of all this complexity can you shift into
the compiler?

w What if you can also change instruction set
architecture?

w VLIW (Very Long Instruction Word)
w EPIC (Explicitly Parallel Instruction Computer)

®» Intel’s (and HP’ s) multi-billion dollar gamble for the future of
computer architecture: Itanium, 1A-64

®» Started ca.1994...not dead yet — but has it turned a profit?

Recall example from ChO02 M

for (i=1000; i>=0; i=i-1)
x[i] = x[i] + s;

« Using MIPS code:

[For the sake of a simple example, we count down to location zero]

Loop: L.D FO,0(R1l) ;FO=vector element
ADD.D F4,F0,F2 ;add scalar from F2
S.D O(Rl) ,F4 ;store result

DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1l,Loop ;branch Rl!=zero
NOP ;delayed branch slot

Where are the stalls?

Showing Stalls ;

1 Loop: L.D FO,0(R1l) ;FO=vector element

2 stall

3 ADD.D ,FO0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D O(R1), ;store result

7 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1l,Loop ;branch Rl!=zero

9 stall ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

b O clocks: Rewrite code to minimize stalls?

Revised Loop Reducing Stalls

1 Loop: L.D FO,0(R1l)

2 stall

3 ADD.D F4,F0,F2

4 DSUBUI R1,R1,8

5 BNEZ Rl,Loop ;delayed branch

6 S.D 8(R1) ,F4 ;altered when moved past DSUBUI

Swap BNEZ and S.D by changing address of S.D

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

6 clocks, but just 3 for execution, 3 for loop overhead; How make faster?

* Four copies of the loop body
* One copy of increment and test

Unroll the loop four times

» Adjust register-indirect loads using offsets

1 Loop:L.D
2 ADD.D
3 S.D
4 L.D
5 ADD.D
6 S.D
7 L.D
8 ADD.D
9 S.D
10 L.D
11 ADD.D
12 S.D
13 DSUBUI
14 BNEZ
15 NOP

FO,0 (R1)
F4,F0,F2
0(R1) ,F4
FO, -8 (R1)
F4,F0,F2
-8 (R1) ,F4
FO,-16 (R1)
F4,F0,F2
-16 (R1) ,F4
FO,-24 (R1)
F4,F0,F2
-24 (R1) ,F4
R1,R1,#32
R1,LOOP

;drop DSUBUI & BNEZ

;drop DSUBUI & BNEZ

;drop DSUBUI & BNEZ

;alter to 4*8

- Re-use of registers creates WAR (“anti-dependences”)
« How can we remove them?

17

O 0o JdJo LIl & WNMNR

13
14
15

ADD.D
S.D
DSUBUI
BNEZ
NOP

The original

Loop unrolling...

FO,0(R1)

F4 ,F0,F2

0 (R1l) ,F4 ;drop DSUBUI & BNEZ
F6,-8(R1)

F8,F6,F2

-8 (R1) ,F8 ;drop DSUBUI & BNEZ
F10,-16(R1)

F12,F10,F2

-16(R1) ,F12 ;drop DSUBUI & BNEZ
Fl4,-24 (R1)

F16,F14,F2

-24(R1) ,F

R1,R1,#32 ;alter to 4*8
R1,LOOP

(11 - - ”
register renaming

19

Unrolled Loop That Minimizes Stalls

1 Loop:L.D
2 L.D
3 L.D
4 L.D
5 ADD.D
6 ADD.D
7 ADD.D
8 ADD.D
9 S.D
10 S.D
11 S.D
12 DSUBUI
13 BNEZ
14 S.D

F0,0 (R1)
F6,-8 (R1)
F10,-16 (R1)
F14,-24 (R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
Fl16,F14,F2
0(R1) ,F4

-8 (R1) ,F8
-16 (R1) ,F12
R1,R1, #32
R1,LOOP

8 (R1) ,F16 ;

W What assumptions made
when moved code?

®» OK to move store past
DSUBUI even though changes
register

®» OK to move loads before
stores: get right data?

» When is it safe for compiler to
make such changes?

-24

14 clock cycles, or 3.5 per iteration

0(R1) ,F4
F4,F0,F2
FO,-16 (R1)
R1,R1, #8
R1,LOOP

°
4
°
4

°
4

How about this?

Stores M[1]
Adds to M[i-1]
Loads M[1-2]

Software Pipelining Example

Before: Unrolled 3 times

1 L.D FO,0(R1) 1
2 ADD.DF4,F0,F2 2
3 S.D O(Rl),F4 3
4 L.D F6,-8(R1) 4
5 ADD.DF8,F6,F2 5
6 S.D -8(Rl),F8

7 L.D F10,-16(R1)

8 ADD.DF12,F10,F2

9 S.D -16(Rl),F12

10 DSUBUI R1,R1,#24

11 BNEZ R1,LOOP

- Symbolic Loop Unrolling

— Maximize result-use distance
— Less code space than unrolling

— Fill & drain pipe only once per loop

24

After: Software Pipelined

S.D O(R1l) ,F4 ; Stores MJ[i]
ADD.D F4,F0,F2 ; Adds to M[i-1]
L.D FO,-16(R1l) ; Loads M[i-2]
DSUBUI R1,R1,#8
BNEZ R1l,LOOP

% SW Pipeline

o

@

= llllll\

GJ - ——— ————— —————

=) Time

S Loop Unrolled

o

0

o

Time

vs. once per each unrolled iteration in loop unrolling

5 cycles per iteration

(3 iIf we can issue DSUBUI and BNEZ in parallel with other instrns)

25

1\ J - O~ ~ -
Y '

Pipeline fills Pipeline full Pipeline drains

26

Including fill and drain phases:

EL”ase -2L.D F1,-0(R1) ; Loads M[N]
-1L.D FO,-8(R1) ; Loads M[N-1]
O ADD.D F4,F1,F2 ; Adds to M[N]
LOOP: ; on entry, i=R1=N
Fully- 1 S.D O(R1l) ,F4 ; Stores M[1i]

Peaed 2 ADD.D F4,F0,F2 ; Adds to M[i-1]

phase
= 3 L.D FO,-16(R1l) ; Loads M[i-2]
E 4 DSUBUI R1,R1,#8

S BNEZ R1,LOOP

-

Drain 6 S D O(R1l) ,F4 ; Stores M[1-1]

phase

"' 7 ADD.D F4,F0,F2 ; Adds to M[i-2]
8 S.D -16 (R1) ,F4 ; Stores M[i-2]

Static overlapping of loop bodies:
“Software Pipelining”

W Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations

W Software pipelining: reorganizes loops so that each iteration
IS made from instructions chosen from different iterations of
the original loop (~ Tomasulo in software)

[teration

0 [teration

1 Iteration
2 Iteration
3 Iteration

H

Software-
pipelined
iteration

=
=
=
e
=
=
=
=
=
¥
i
Hi
Hil

27

What if We Can Change the Instruction Set?

W Superscalar processors decide on the fly how many
Instructions to issue in each clock cycle

» Have to check for dependences between all n pairs of instructions in a
potential parallel issue packet

» Hardware complexity of figuring out the number of instructions to issue
is O(n?)
® Entirely doable for smallish n, but tends to lead to multiple pipeline
stages between fetch and issue

w» Why not allow compiler to schedule instruction level
parallelism explicitly?

W Format the instructions into a potential issue packet so
that hardware need not check explicitly for dependences

VLIW: Very Large Instruction Word

W Each “instruction” has explicit coding for multiple
operatlons
®» In IA-64, grouping called a “packet”
®» In Transmeta, grouping called a “molecule” (with “atoms” as ops)

Program cache/program memaory

128 bit Molecule J2-bit addresses
FADD ADD LD BRCC
256-bit data TMS320C64x CPU
Program fetch
Instruction dispatch
Functional units: Instruction decode
= 6 ALUs
Fl_oatlng_ Integer Load/Store Bran_ch (L1, L2, §1, $2, D1, D2) Reglster file A Reglslerme B |
Point Unit ALU #0 Unit Unait 2 multiplers (M1. M2
multiplers (M1, M2) —P
’ 11| .s1 [.m1] o1 D:DM2| 52 | L2 |
Transmeta’s Crusoe ETEETE

Data cache/data memory
32-bit address
8-, 16-, 32-, 64- bit data

: _ _ Texas Instruments TMS320C64x
i All the operations the compiler puts in the long instruction word

are independent, so can be issued and can execute in parallel
W E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
b 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits Wide cagey aou detais)
i Need compiling technique that schedules across several branches

http://www.cs.uiuc.edu/homes/luddy/PROCESSORS/TransmetaCrusoe. pdf
http://www.cs.uiuc.edu/homes/luddy/PROCESSORS/TMS320C64x . pdf

http://www.cs.uiuc.edu/homes/luddy/PROCESSORS/TransmetaCrusoe.pdf

Recall: Unrolled Loop that Minimizes Stalls

for Scalar
1 Loop: L.D FO,0(R1) L.D to ADD.D: 1 Cycle
2 L.D F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)
4 L.D F14,-24 (R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,Fl1l4,F2
9 S.D 0 (R1) ,F4
10 S.0 -8(Rl),F8
11 S.D -16 (R1) ,F12
12 DSUBUI R1,R1, #32
13 BNEZ R1,LOOP
14 S.D 8 (R1) ,F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op.2 branch

LDFO,0(R1) L.DF6,-8(R1) 1
L.D FM\M_WF 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D FAFO’F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD, £10,F2 ADD.D F16,F14,F2 4

Ww,m ADD.D F24,F22,F2 5
S.D O(R1),F4 T-8(R1),F8 ADD.D F28,F26,F2 6
S.D-16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZRL,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6)

37

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op.2 branch

L.D FO,-48(R1) ST O(R1),F4 ADD.D F4,FO0,F2 1
L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUI R1,R1,#24 2
L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

W Software pipelined across 9 iterations of original loop
®» In each iteration of above loop, we:

® Store to m,m-8,m-16 (iterations 1-3,1-2,1-1)
® Compute for m-24,m-32,m-40 (iterations I,1+1,1+2)
® Load from m-48,m-56,m-64 (iterations [+3,1+4,1+5)

i O results in 9 cycles, or 1 clock per iteration
W Average: 3.67 (=11/3) instrs per clock, 73.3% utilisation (=11/15)

Note: Need fewer registers for software pipelining
(only using 7 registers here, was using 15)

Intel/HP |A-64 “Explicitly Parallel Instruction”
Computer (EPIC)”

i |A-64: Intel’s bid to create a new instruction set
architecture

»EPIC = “2nd generation VLIW”?

»|SA exposes parallelism (and many other issues) to
the compiler

»But Is binary-compatible across processor
Implementations

W ltanium™ first implementation (2001)
» 6-wide, 10-stage pipeline

W Itanium 2 (2002-2010)
» 6-wide, 8-stage pipeline

» http://www.intel.com/products/server/processors/server/itanium2/

wtanium 9500 (Poulson) (2012) (2017: Kittson “end of the

line”)

®» 12-wide, 11-stage pipeline

http://www.intel.com/products/server/processors/server/itanium2/

Instruction bundling in I1A-64

k Instruction group: a sequence of 7 87 86 4545 sl ol UL
consecutive instructions with no register [stehon @ | Tnmenon 1 | Tasimchon @ Istruction
data dependences NI B

®» All instructions in a group could be
executed in parallel, if sufficient

1

o3

o

hardware resources exist and if any ol gg;*;mg

dependences through memory are ack N +16 lnsteuction S

preserved o 432 e g

FIclio O

®» [nstruction group can be arbitrarily long, =&+ E““ﬁ'?‘_ g
. giruciion

but compiler must explicitly indicate e Sy
boundary between one instruction s -

group and another by placing a stop
between 2 instructions that belong to
different groups
i |A-64 Instructions are encoded in bundles, which are 128 bits wide.

» Each bundle consists of a 5-bit template field and 3 instructions, each 41 bits in
length

* One purpose of the template field is to mark where instructions in the bundle are
dependent or independent, and whether they can be issued in parallel with the
next bundle

Eg for Poulson, groups of up to 4 bundles can be issued in parallel
Smaller code size than old VLIW, larger than x86/RISC

http://Iwww.realworldtech.com/page.cfm?ArticlelD

T

Instruction bundling in I1A-64

w Instructions can be explicitly sequential:

addrl=r2,r3:;
subrd=r1,r2:;
shl r2=r4,r8

b Or not:
addrl=r2,r3

subrd =r11, r21
shlrl2=r14,6r8 :;

w The “;;” syntax sets the “stop” bit that marks the end of
a sequence of bundles that can be issued in parallel

45

Hardware Support for Exposing
More Parallelism at Compile-Time

To help trace scheduling and software pipelining, the ltanium
Instruction set includes several interesting mechanisms:

i Register stack

w Predicated execution

W Speculative, non-faulting Load instructions

w Rotating register frame

W Software-assisted branch prediction } Not covered in
W Software-assisted memory hierarchy lecture

»Job creation scheme for compiler engineers

»We will look at several of these in more detail

W General-purpose registers |A-64 register stack
are configured to help

accelerate procedure calls hysical
. . register
using a register stack 90) mapping

®» Registers 32-128 are used as a
register stack and each procedure is
allocated a set of registers (from 0 to
96)

®» The new register stack frame is
created for a called procedure by
renaming the registers in hardware; fcalls

oOMm—+~ OMm-—h

“windows”

. : g(d e f) overlap for
» a special register called the current e parameters
frame pointer (CFM) points to the set b and results

of registers to be used by a given
procedure

®» Registers 0-31 are always accessible
and addressed as 0-31 _
main calls

(Mechanism similar to that developed f(a,b,c)
in the Berkeley RISC-| processor and o
used in the SPARC architecture)

T O

N

Logical views Physical registers

w64 1-bit predicate registers

(pl) add rl =r2, r3
(p2) subrl=r2,r3;;
shlrl2=r1,r8

i Predication means

»Compiler can move
instructions across
conditional branches

»To pack parallel issue
groups

®»May also eliminate some
conditional branches
completely

®»Avoiding branch
prediction and
misprediction

A

B

/I executed If p1l
/I executed if p2

48

Predication...

/| executed always

BEQ Cond L

C

D

P=I!Cond

(P)C

(P)D

BEQPL

E
=
G
H
|
J

(P) E

(P) F

(P) G

Predication...

i Predication Parallel issue packets

m ean S BEQ Cond L
®»Compiler can a : = - - i
move
Instructions ; -
across . ¢
conditional G H
branches | . K L M N
»To pack
parallel issue When a branch would
groups break a parallel issue
»May also packet, move
eliminate instructions and
some predicate them
conditional v
branches S P) A (P) B (P) C (P)D BEQPL
completely - =
»Avoiding
branch
prediction and . :
misprediction 1P G 1P H 3 K]
M N

IA64 load instruction variants

i |[ABG4 has several different mechanisms to enable the
compiler to schedule loads

w |d.s — speculative, non-faulting
w |d.a — speculative, “advanced” — checks for aliasing stores

i Register values may be marked “NaT” — not a thing
®»If speculation was invalid

W Advanced Load Address Table (ALAT) tracks stores to
addresses of “advanced” loads

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

|A64: Speculative, Non-Faulting Load

Id.s r1=[a]
inst 1
inst 2

br

chksr1f |4 r1=[a]
use=r
w |d.s fetches speculatively from memory

®i.e. any exception due to |d.s Is suppressed

w If Id.s r did not cause an exception then chk.s r is an NOP,
else a branch is taken to some compensation code

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

|A64: Speculative, Non-Faulting Load

Id.s r1=[a]
inst 1
inst 2
unsafe B
use=r1
code
motion
-y

chk.s use{ Idri=[a]
use=r1i

i Speculatively-loaded data can be consumed prior to check
i “speculation” status is propagated with speculated data via NaT

i Any instruction that uses a speculative result also becomes speculative
®» (i.e. suppressed exceptions)

i chk.s checks the entire dataflow sequence for exceptions

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

|A64: Speculative “Advanced” Load
[d.a r1=[x] |~—

potential
aliasing

[d.c r1=[x] |—
use=r1

56
Allocate x
into Advance
Load Address
Table (ALAT)

When a store
IS executed,
remove any
matching
entry from the
ALAT

Check x is
still in the
ALAT

w |d.a starts the monitoring of any store to the same address

as the advanced load
w If no aliasing has occurred since Id.a, |d.c is a NOP
w If aliasing has occurred, |d.c re-loads from memory

IA-64 Registers

wBoth the integer and floating point registers
support register rotation for registers 32-128.

wRegister rotation iIs designed to ease the task
of register allocation in software pipelined
loops

w»\When combined with predication, possible to
avoid the need for unrolling and for separate
prologue and epilogue code for a software
pipelined loop

» makes software pipelining usable for loops with smaller
numbers of iterations, where the overheads would
traditionally negate many of the advantages

0

How Register Rotation Helps Software
Pipelining

Consider this loop for copying data:

L1: |d4 r35=1[r4d],4 /[post-increment by 4
st4 [r5] =r37,4 /[post-increment by 4
br.ctop L1 ;;

° ° . .
_ o One issue packet
The br.ctop instruction in the example rotates

the general registers (actually br.ctop does more as we shall see)

Therefore the value stored into r35 is read in r37 two
iterations (and two rotations) later.

The register rotation eliminated a dependence between
the load and the store instructions, and allowed the loop to
execute in one cycle.

w The logical-to-physical register mapping is shifted by 1 each
time the branch (“br.ctop”) is executed

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF-HWSupSoftPipeline/sld023.htm

1

e

Software Pipelining Example in the 1A-6

mov pr.rot =0 // Clear all rotating predicate registers
cmp.eq p16,p0 = r0,r0 // Set p16=1

mov ar.lc =4 // Set loop counter to n-1

mov ar.ec =3 /| Set epilog counter to 3

loop: One issue packet

(p16) Idl r32 =([r12],1 /] Stage 1: load x , ©

(p17) addr34 =1,r33 /] Stage 2: y=x+1
(p18) sti[r13] =1r35,1 // Stage 3: storey
br.ctop loop // Branch back

i Predicate mechanism activates successive stages of the software pipeline,
to fill on start-up and drain when the loop terminates

i The software pipeline branch “br.ctop” rotates the predicate registers, and
Injects a 1 into p16

i Thus enabling one stage at a time, for execution of prologue

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF-HWSupSoftPipeline/sld027.htm

i When loop trip count is reached, “br.ctop” injects O into p16, disabling one
stage at a time, then finally falls-through

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF-HWSupSoftPipeline/

Software Pipelining Example in the A-64

loop:

(p17)
(p18)

idl r32 =1[r12], 1
addr34 =1,r33
stl [r13] =r35,1
br.ctop loop

Memory

wse®
““
.
.
.

> x1

x1
X2
x3
x4
x5

General Registers (Physical)
32 33 34 35 36 37 38 39

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

1 0|0
16 17 18

LC EC

4] 3

RRB

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF - HW SupSoftPipeline/

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
idl r32 =1[r12],1 1
gpi;) a::d rf; 315;313 32 33 34 35 36 37 38 39
p18) stllri3] =r35, General Registers (Logical)
br.ctop loop
Memory Predicate Registers
1 00
16 17 18
x1
X2 LC EC
x3 . 3
x4
= RRB
0

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF - HW SupSoftPipeline/

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

idl 132 =1([r12],1 x1
(p1l7) addr34 =1,r33

32 33 34 35 36 37 38 39

(p18) stilri3] =r35,1 G General Registers (Logical)
br.ctop loop
Memory Predicate Registers
1 0|0
16 17 18
x1
x2 LC EC
x3 . 3
x4
= RRB
0

Software Pipelining Example in the A-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

idl 132 =1([r12],1 x1
(p1l7) addr34 =1,r33
_ 33 34 35 36 37 38 39 32
(p18) sti[r13] =r35,1 General Registers (Logical)
br.ctop loop <=
Memory Predicate Registers
@—l1 0|0
16 17 18
x1
X2 LC EC
x3 . 3
x4
X5 RRB
-1

Software Pipelining Example in the A-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) il r32 =1r12],1 x1
(p17) addr34 =1,r33
(p18) sti[r13] =1r35,1

33 34 35 36 37 38 39 32
General Registers (Logical)

br.ctop loop <=
Memory Predicate Registers

- 0

x1 16 17 18

x2 LC EC

x3 . 3

x4

= RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1 <= x1 X2
(p17) addr34 =1,r33

33 34 35 36 37 38 39

(p18) sti[r13] =r35,1 General Registers (Logical)

br.ctop loop .
Memory Predicate Registers“‘,»’
0.
1 16,1718
x ---
X2 @ peee LC EC
X3 3 3
x4
& RRB

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl ¥32 =[r12], 1 1
vl X2
(p17) addr34 =1,r33 <
_ 33 34 35 36 37 38 39 32
(p18) sbtl c[:::g:lo;prg’s’l General Registers (Logical)
Memory Predicate Registers
[l o
1 16 17 18
= LC EC
x3 . 3
x4
X5 RRB

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 = [r12], 1 x1 y1 x2
(p17) addr34 =1,r33
_ 33 34 35 36 37 38 39 32
(p18) sti[r13] =r35,1 < General Registers (Logical)
br.ctop loop
Memory Predicate Registers
a1l o
16 17 18
x1
X2 LC EC
x3 . 3
x4
X RRB

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p17) addr34 =1,r33 :3 ;4 35 36 37 38 39 :2
(p18) sti[ri3] =r35,1 General Registers (Logical)
br.ctop loop _ g g
Memory Predicate Registers
(1o
- 16 17 18
= LC EC
x3 . 3
x4
£ RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) Idl r32 =1[r12],1 x1
= vl X2
(p17) addr34 =1,r33 34 35 36 37 38 39 32 33

(p18) stl[r13] =r35,1 General Registers (Logical)

br.ctop loop <=
Predicate Registers

i 11
1 16 17 18

X2 LC EC
x3 . 3
x4

xS RRB

Software Pipelining Example in the A-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) Idl r32 =[r12],1 <4=mm x1|y1 x3 |x2
(p17) addr34 =1,r33 34 35 36 37 38 39 32 33
(p18) sti[ri3] =r351 General Registers (Logical)

br.ctop loop .
Memory Predicate Registers
x2 16 17 18 .- '
3) PR PRI LLL LG.--""*" EC
x3 teshsssmsssssnfUErEessssnannt . 3
x4
= RRB

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl ¥r32 =[r12], 1
y2 |yl X3 [x2
(p17) addr34 =1,r33 <
_ 34 35 36 37 38 39 32 33
(p18) sbtl c[:::g:lo;prBSII General Registers (Logical)
Memory Predicate Registers
1 16 17 18
2 LC EC
x3 . 3
x4
X5 RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p1i6) il r32 =1r12],1 2| v1 x3 [x2
(pl7) addr34 =1,r33 §4 :5 36 37 38 39 32 33
(p18) Sbtl'lc[:::gllo:pr:;s’l Genefal Registers (Logical)

Memory Predicate Registers

— {16 17 18

= i EC

x3 yl PN Bl . 3

x4

X3 RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) Idl r32 =1[r12],1
= y2|yl X3 | x2
(p17) addr34 =1,r33 34 35 36 37 38 39 32 33

(p18) stl[r13] =r35,1 General Registers (Logical)

br.ctop loop <=
Memory Predicate Registers
x1 16 17 18
x2 LC EC
x3 yl 2] 3
x4
= RRB

85

Execution continues...

w In the central phase all stages of the software pipeline
are active — all predicate bits are set

W We continue with start of pipeline drain phase

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p17) addr34 =1,r33 ZG :7 38 39 32 33 :4 Z
(p18) sti[r13] =r351 General Registers (Lo ical)5
br.ctop loop <= g g
Memory Predicate Registers
1 16 17 18
= LC EC
x3 yl . 3
x4 yz
= y3 RRB

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12], 1 Y RBIk] v y3
(p17) addr34 =1,r33 §7 ;s 39 32 33 34 ?Y ZG
(p18) sti[r13] =r351 General Registers (Lo iEc':aI)
br.ctop loop <= g g
Memory Predicate Registers
(0— o [}
- 16 17 18
= LC EC
x3 yl . 2
x4 yz
= y3 RRB

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[ri12],1 2 [v1 e
(p17) addr34 =1,r33 yely .y5 yay
stl [r13] = 35,1 36 37 38 39 32 33 34 35
br.ctop loop ! PR General Registers (Logical)
Memory Predicate Registers
(0|00 1
x1 16 17 18
X2 LC EC
x3 yl 0 1
x4 v2
= y3 RRB
y4 6

Software Pipelining Example in the A-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12], 1 s il
(p17) addr34 =1,r33 ‘:;7 :8 39 32 !;/45 : §6
(p18) sti[ri3] =r351 General Registers (Lo ii:al)
br.ctop loop <= g g
Memory Predicate Registers
(00|00
v 16 17 18
= LC EC
x3 yl . 0
x4 yz
= y3 RRB
y4 -
y5 4

108

Comments on ltanium

w Compare Itanium Il

/ PG / er /ROT//EXP / REN / WD / REG / exe / oET / WRe /

INST POINTER FETCH ROTATE EXECUTE EXCEPTION WRITE-BACK
GENERATION DETECT

i With IBM Power 4:

Branch Redirects Out-of-Order Processing

woln

LD/ST

HHHHHHHHHHHHJ

e oo o vl

D0 iy 01 gy D2 g D3 pictory GO

Instruction Crack &
Group Formation

g Infarrupts & Flushes

http://ixbtlabs.com/articles/ibmpower4/

Top 20 SPEC systems

= B e U E PRI SR

e et e e =]
Oyt e e b = D

b ek ek
K= e R |

[]
=

MHz

3000 Xeon 51xx

2666 Core 2 Duo

2660 Xeon 30xx
3000 Opteron

2800 Athlon 64 FX
2800 Opteron AM2
2300 POWERS+
3733 Pentium 4 E
3800 Pentium 4 Xeon

2260 Pentium M
3600 Pentium D
2167 Core Duo
3600 Pentium 4

3466 Pentium 4 EE
2700 PowerPC 970MP

2600 Athlon 64

2000 Pentium 4 Xeon LV
2160 SPARC64 WV

1600 Itanmum 2

Processor
2933 Core 2 Duo EE

Top 20 SPECint2000

int peak int base Full results MHz

3119 3108 HTML
3102 3089 HTML
2848 2844 HTML
2835 2826 HTIML
2119 1942 HTML
2061 1923 HTML
1960 1749 HTML
1900 1820 HTML
1872 1870 HTML
1856 1854 HTML
1839 1812 HTML
1814 1810 HTML
1804 1796 HTML
1774 1772 HTML
1772 1701 HTML
1706 1623 HTML
1706 1612 HTML
1668 1663 HTML
1620 1501 HTML
1590 1590 HTML

Top 20 SPEC£p2000

Processor
2300 POWERS+
1600 DC Itanium 2
3000 Xeon 51xx
2933 Core 2 Duo EE
26060 Xeon 30xx
1600 Itanium 2

2667 Core 2 Duo
1900 POWERS
3000 Opteron

2800 Opteron AM2
3733 Pentium 4 E
2800 Athlon 64 FX
2700 PowerPC 970MP
2160 SPARCH4 V
3730 Pentium 4 Xeon
3600 Pentium D
3600 Pentium 4
2600 Athlon 64
1700 POWERA4+
3466 Pentium 4 EE

fp peak fp base Full results

3642
3008
3056
3050
3044
3017
2850
2796
2497
2462

3369
3098
2811
3048
2763
3017
2847
2585
2260
2230
2280
2086
2060
2094
2063
2073
2009
1700
1642
1719

HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML

With Auto-parallelisation

I P R

Top 20 SPECint2000

MHz Processor int peak int base Full results MHz
2100 POWERS+
3000 Opteron
2600 Opteron AM2
1200 UltraSPARC III Cu

Top 20 SPECfp2000

Processor

4051
3538
3338
1344

fp peak fp base

3210
2851
2711
1074

112

Aces Hardware
analysis of SPEC
benchmark data
http://www.aces
hardware.com/S
PECmine/top.jsp
(ca.2007)

http://lwww.spec.org/cpu200
6/results/cpu2006.html

http://www.aceshardware.com/SPECmine/top.jsp
http://www.aceshardware.com/SPECmine/top.jsp
http://www.aceshardware.com/SPECmine/top.jsp

Summary#1: Hardware versus Software
Speculation Mechanisms

W To speculate extensively, must be able to disambiguate
memory references
®» Much easier in HW than in SW for code with pointers

w HW-based speculation works better when control flow
IS unpredictable, and when HW-based branch
prediction is superior to SW-based branch prediction
done at compile time

®» Mispredictions mean wasted speculation

W HW-based speculation maintains precise exception
model even for speculated instructions

W HW-based speculation does not require compensation
or bookkeeping code

3

114

Summary#2. Hardware versus Software
Speculation Mechanisms cont’ d

W Compiler-based approaches may benefit from the ability
to see further in the code sequence, resulting in better
code scheduling

w» HW-based speculation with dynamic scheduling does
not require different code sequences to achieve good
performance for different implementations of an
architecture

®» may be the most important in the long run?

w» Example: ARM’s “big.LITTLE” architecture

» Multicore processor with a mixture of large out-of-order cores
(A15) and small in-order cores (A7) (eg Exynos 5 Octain
Samsung Galaxy S4)

®» Compiler is configured to schedule for in-order, assuming the
out-of-order processor is less sensitive to instruction scheduling

Extra slides for interest/fun

117

Associativity In floating point
w (atb)+c = a+(b+c) ?

w Example: Consider 3-digit base-10 floating-point

1+1+1+1+1+1+14+1+, A1+ 1+ 111 H1+14+1 41414141000

~~
1000 ones

1000+1+1+1+1+1+1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+1+1+1+1+1

~~
1000 ones

Consequence: many compilers use loop unrolling and
reassociation to enhance parallelism in summations

And results are different!
But you can tell the compiler not to, eqg:
“—fp-model precise” with Intel’s compilers

w» (What’s the right way to sum an array? See
» http://en.wikipedia.org/wiki/Kahan_summation_algorithm)

» In the example processor that can only execute one instruction per cycle, unrolling is important because the loop control instructions

become the critical factor.

i+ In machines that can issue multiple instructions per cycle, this is likely not the case - there are opportunities to issue some
instructions "for free" if you can schedule them into unused issue slots.

I+ In that case, software pipelining should lead to better performance than unrolling, though the difference might be small with a
sufficiently-high unroll factor.

i You might also consider the energy cost: unrolling means we cache and store more instructions. But software pipelining without
unrolling means we execute more loop-control instructions.

» Obviously if loop unrolling were to lead to instruction-cache misses, that'd be bad.
l» So actually, the optimum strategy is likely to be a hybrid.

l» This is actually only the beginning. You can sometimes do better by unrolling an *outer* loop - this is called "unroll and jam",
because we unroll the outer loop to produce two copies of the inner loop, then we jam them together. Consider matrix-matrix
multiply (again!):

for(i=0; i<4; i++)
for(j=0; j<4; j++) {
c[i]{i] = 0;
for(k=0; k<4; k++)
c[i]{i] = alijik]*bIKk]fI+cliil;
}

l» This has limited parallelism due to the (loop-carried dependence involved in the) summation into CJi][j]. After unroll-and-jam of the j-

loop by 1, we have:

o201 Unrolling versus

for(j=0; j<4; j+=2) {

1o software pipelining,

for(k=0; k<4; k++) {

[=alilik*bIKIGHhll; d _ d ~1
bt ana unro I I an J am

H

= Now the inner loop has two summations to do, which are independent from one another. So it's more likely that you can fill the
schedule more tightly.

l» This example is taken from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9319&rep=repl&type=pdf

118

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.9319&rep=rep1&type=pdf

VLIW example: Transmeta Crusoe

i Transmeta’s

Cru soe was a | [Shadow Register | Debug Reg {|Shadow Registers
5—| ssue VL IW 64 General o Alias Hdw 32 Floating
Purpaose Point
p rocessor Registers > TLB Registers
I Instructions : : T-Bit Buffer T
L J L 4 W L
were . ALUD ALU1 Load/Store Branch FPU
dynamically — r
translated Gated Store
from x86 in —
fi rmware Lacal Data ¥ ¥]T::_',[C:ll PI‘D%E]BH
Memory SKB |4 +] Data Flow & + > Memory SK
“COde [;1:1 C.‘?:h e Instruction
MOrphing” Data Cache [Control Cache Controll, * Data Cache
64KB ry 64KB
i
128 bit Molecule
FADD ADD D BRCC Secondary Instruction/Data Cache 256 KB

L 4

Bus Interface Unit

Floating Integer Load/Store Branch
Point Unit ALU #0 Unit Unit

Note hardware support for speculation
Instruction encoding

	Slide 1: Advanced Computer Architecture Chapter 6 Static instruction scheduling, for instruction-level parallelism Software pipelining, VLIW, EPIC, instruction-set support
	Slide 2: Overview
	Slide 14: Recall example from Ch02
	Slide 15: Showing Stalls
	Slide 16: Revised Loop Reducing Stalls
	Slide 17: Unroll the loop four times
	Slide 18: Loop unrolling…
	Slide 19: Unrolled Loop That Minimizes Stalls
	Slide 23: How about this?
	Slide 24: Software Pipelining Example
	Slide 25
	Slide 26: Including fill and drain phases:
	Slide 27: Static overlapping of loop bodies: “Software Pipelining”
	Slide 31: What if We Can Change the Instruction Set?
	Slide 32: VLIW: Very Large Instruction Word
	Slide 33: Recall: Unrolled Loop that Minimizes Stalls for Scalar
	Slide 34: Loop Unrolling in VLIW
	Slide 37: Software Pipelining with Loop Unrolling in VLIW
	Slide 42: Intel/HP IA-64 “Explicitly Parallel Instruction Computer (EPIC)”
	Slide 43: Instruction bundling in IA-64
	Slide 44: Instruction bundling in IA-64
	Slide 45: Hardware Support for Exposing More Parallelism at Compile-Time
	Slide 46: IA-64 register stack
	Slide 48: Predication…
	Slide 50: Predication…
	Slide 53: IA64 load instruction variants
	Slide 54: IA64: Speculative, Non-Faulting Load
	Slide 55: IA64: Speculative, Non-Faulting Load
	Slide 56: IA64: Speculative “Advanced” Load
	Slide 59: IA-64 Registers
	Slide 60: How Register Rotation Helps Software Pipelining
	Slide 61: Software Pipelining Example in the IA-64
	Slide 62: Software Pipelining Example in the IA-64
	Slide 63: Software Pipelining Example in the IA-64
	Slide 64: Software Pipelining Example in the IA-64
	Slide 65: Software Pipelining Example in the IA-64
	Slide 66: Software Pipelining Example in the IA-64
	Slide 67: Software Pipelining Example in the IA-64
	Slide 68: Software Pipelining Example in the IA-64
	Slide 69: Software Pipelining Example in the IA-64
	Slide 70: Software Pipelining Example in the IA-64
	Slide 71: Software Pipelining Example in the IA-64
	Slide 72: Software Pipelining Example in the IA-64
	Slide 73: Software Pipelining Example in the IA-64
	Slide 74: Software Pipelining Example in the IA-64
	Slide 75: Software Pipelining Example in the IA-64
	Slide 85: Execution continues…
	Slide 86: Software Pipelining Example in the IA-64
	Slide 87: Software Pipelining Example in the IA-64
	Slide 93: Software Pipelining Example in the IA-64
	Slide 99: Software Pipelining Example in the IA-64
	Slide 108: Comments on Itanium
	Slide 112: Aces Hardware analysis of SPEC benchmark data http://www.aceshardware.com/SPECmine/top.jsp (ca.2007) http://www.spec.org/cpu2006/results/cpu2006.html
	Slide 113: Summary#1: Hardware versus Software Speculation Mechanisms
	Slide 114: Summary#2: Hardware versus Software Speculation Mechanisms cont’d
	Slide 116: Extra slides for interest/fun
	Slide 117: Associativity in floating point
	Slide 118: Unrolling versus software pipelining, and unroll-and-jam
	Slide 120: VLIW example: Transmeta Crusoe

