Advanced Computer Architecture
Chapter 7:

Multi-threading

Fine Grained Multithreading Simultaneous Multithreading

Time ———» Time ——»

H | N | (el | (NN

N e [(e e [
R e N N November 2023
EEENEEEY . | L [Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3 and
4t eds), and on the lecture slides of David Patterson and John
Kubiatowicz’ s Berkeley course

Instruction Issue

Time

v

Reduced function unit utilization due to dependencies
Superscalar Issue

Time

L J

Superscalar leads to more performance, but lower utilization
Predicated Issue

Time

]

Adds to function unit utilization, but results are thrown away

Chip Multiprocessor

Time

Limited utilization when only running one thread

Fine Grained Multithreading

Time

L]

Simultaneous Multithreading

Time

Intra-thread dependencies still limit performance

L 4

Maximum utilization of function units by independent operations

l» Compaq Alpha 21464 - http://research.ac.upc.es/pactOl/keynotes/emer.

http://research.ac.upc.es/pact01/keynotes/emer.pdf

Instruction Issue Chip Multiprocessor

Time £

Time

L 3

Reduced function unit utilization due to dependencies
Superscalar Issue

Different threads in Limited utilization when only running one thread
different cycles: Fine Grained Multithreading

“FGMT” Time

B B
B B
B

Y

Dynamic scheduling
of operations from a

@ nool of threads:
“SMT”

Intra-thread dependencies still limit performance

Simultaneous Multithreading

Time

Adds to function unit utilization, but results are thrown away Maximum utilization of function units by independent operations

it lower utilization

A A

i Compaq Alpha 21464 - http://research.ac.upc.es/pactOl/keynotes/emer.pdf

http://research.ac.upc.es/pact01/keynotes/emer.pdf

Basic Out-of-order Pipeline

Fetch Decode/ Queue Reg Execute Dcache/ Reg Retire
Map Read Store Write
Buffer
. Relaia!::er m _::ED - ____ -
11 Reg D_] Regs

Dcache

Icache :i

SMT Pipeline
i A| p h a 21464 Fetch Decode/ Queue Reg Execute
Map Read

i One CPU with
4 Thread

Processing

Units (TPUS)

» “6% area
overhead
over single-
thread 4-
issue CPU”

Dcache/
Store
Buffer

Reg
Write

Retire

wh

Regs

]

Dcache

W

Regs

=

Multiprogrammed workload

Mixed Int/FP

SMT

performance
w Alpha 21464

LOsSMP
B HyperThreading

O Serial

w Intel Pentium 4
with
hyperthreading:

Relative Speeduj

-
o
L
I

0.5 4+—

A AZ A3 A4 A5 AB

http://Iwww.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threadi App lication

ng_technology.pdf

AT

AB

A9

‘ode [Description

Al Mechanical Design Analysis (linite element method)
This application is used for melal-forming, drop testing, and
crash simulation

A2 Genetics
A genetics application that correlates DNA samples from
multiple animals to better understand congenital diseases.

A3 Computational Chemistry
This application uses the self-consistent field method to
compute chemical properties of molecules such as new
harmacenticals

44 Mechanical Design Analysis
This application simulates the metal-stamping process

AS Mesoscale Weather Modeling
This application simulates and predicts mesoscale and
regional-scale atmospheric circulation

AG [Genetics
This application is designed to generate Expressed Sequence
Tags (EST) clusters, which are used to locate important
oenes

A7 Computational Fluid Dynamics
This application is used to model free-surface and confined
flows.

A8 Finite Element Analysis
This finite element application is specifically targeted toward
ocophysical engineering applications.

49 Finite Element Analysis

This explicit time-stepping application is used for crash test
studies and computational fluid dynamics

SMT in the Intel Atom

(Silverthorne)

i+ Intel’s bid to
steal back
some of the
low-power

market for IA-

32 and
Windows

i In-order
W 2-way SMT

I 2 InStructions

per cycle

(from same or
different threads)

Front-End Cluster
Branch
UROM Prediction Unit i
£ Instruction
2.wide Inst 25 Cache |
Length | £
Decoder g A
i =
8

Per thread
FP
Register File

Shuffle

multiplier

multiplier

FP move
FP ROM

FP divider

©® »*—"}*
- z -
o C,‘ —

Memory Execution

CIuste}

Y

FPISIMD execution cluster

DL
prefetcher

L G T W)

Integer Execution Cluster

Bus Cluster

http://www.tomshardwar!.@b.u k/intel-atom-cpu,review-30931-5.html,

https://arstechnica.com/gadgets/2008/02/small-wonder-inside-intels-silverthorne-ultramobile-cpu/ ™

http://www.tomshardware.co.uk/intel-atom-cpu,review-30931-5.html
https://arstechnica.com/gadgets/2008/02/small-wonder-inside-intels-silverthorne-ultramobile-cpu/

wEach thread runs slow? SMT iSSUGS8

» The point of Simultaneous Multithreading is that resources are
dynamically assigned, so if only one thread can run it can run faster
wSMT threads contend for resources
» Possibly symbiotically?
® One thread is memory-intensive, one arithmetic-intensive?
®» Possibly destructively
@ thrashing the cache? Other shared resources.... (TLB?)

wWhich resources should be partitioned per-thread, and
which should be shared on-demand?

wSMT threads need to be scheduled fairly
®» Can one thread monopolise the whole CPU?
® Denial of service risk
? _Slow thread that suffers lots of cache misses fills RUU and blocks
issue
w Side channels:

» one thread may be able observe another’s traffic and deduce what it’s
doing

SMT - latency-hiding

W SMT threads exploit memory-system parallelism

» Easy way to get lots of memory accesses in-flight
» “Latency hiding” — overlapping data access with compute

i \What limits the number of threads we can have?

W SMT threads need a lot of registers
» A lot of logical registers — but they share physical registers?

wIn a machine without register renaming

» \What about statically partitioning the register file based on the
number of registers each thread actually needs?

®» This is what many GPUs do

®» Leads to tradeoff: lots of lightweight threads to maximise latency
hiding? Or fewer heavyweight threads that benefit from lots of
registers?

» Nvidia and AMD call this “occupancy”

Mapping threads into the register file

w If each thread
needs few
registers, we can
have lots of them
co-existing in the
same physical
register file

W Alternatively, we
could have fewer,
fatter threads

W More
threads=higher
> “occupancy”

i Better latency
hiding
w Tricky tradeoff!

{Don't edit anything below this line}

Your chosen resource usage is indicated by the red triangle on the graphs. The other data
points represent the range of possible block sizes, register counts, and shared memory

allocation.

(# warps)
8

Multiprocessor Warp Occupancy

Note: SM is an abbrewiaticn for [Streaming) Multiprocesser

Maximum Thread Blocks Per Multiprocessor

Blocks/SM__* Warps/Block = Warps/SM

Limited by Max or Max Blocks per Multi essor

Limited by Shared Mem M

&

Mot Ocoupancy miter i Shown in orange

Physical Max Warps/SM = 48
Occupancy = 16 / 48 = 33%

Impact of Varying Block Size

0 B4 128 192 256 320 384 448 512 576 640 704 T68 832 806 960 1024
Threads Per Block

#registers 24
per thread
[i]
g
-
§_
£
5324
= Allocatable z 16
Allocated Resources Per Block Limit Per SM Blocks Per SM
Warps (Threads Per Block / Threads Per Warp)] 48| 8| £
(Warp limit per SM due to per-warp reg count) 8 16 2| =
Shared) 2048 65536 32

B &

Impact of Varying Register Count Per Thread

882 8EE2g22528883RBEEE
Registers Per Thread

I

=
=3

18

C U DA OGCI.I pancy Calcu |a'tOI' Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA, visit hitp:/ideveloper.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs. The other data
points represent the range of possible block sizes, register counts, and shared memory
(Help) allocation.

Impact of Varying Block Size
:
(Don't edit anything below this line) Eg
) gx
#registers g
per thread
]
0 64 128 192 256 320 384 448 512 576 640 704 763 832 896 960 1024
Threads Per Block
Impact of Varying Register Count Per Thread
64
§ 56
& 48 4
i ol
e
353
85 24 1
= Allocatable g 16 1
Allocated Resources Per Block Limit Per SM_ Blocks Per SM 84
Warps (Threads Per Block / Threads Per Warp) 8 HI 5] g
Registers (Warp limit per SM due to per-warp reg count) 8 32 4 0 == - - - - - - -
|Shared Memory (Bytes) 2048 55536 32 ST ERRSASRIEBERINRRIREE 2 EEENEEEE
Mote: SM is an abbreviation for | Streaming) Multiprecessor Registers Per Thread
Maximum Thread Blocks Per Multiprocessor Blocks/SM_ * Warps/Block = Warps/SM
Limited by Max Warps or Max Blocks per M 6
Limited by Shared Memory per Multiprocessor 32
Mote: Occupancy limiter is shown in orange Physical Max Warps/SM = 48

Occupancy = 32/ 48 = 67%

CUDA Occupancy Calculator

ICKR FENE TOT Qeidlied INSLFUCions on now 1o SE INIS OCcUpdanch 3 a0

For more information on NVIDIA CUDA, visit http:iideveloper.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs. The other data
points represent the range of possible block sizes, register counts, and shared memory

{Help) allocation.
Impact of Varying Block Size
64
E 56 +
g 48
(Don't edit anything below this line) g' 'g 40 §
§ § %2
. 2 |
#registers g 241
16 +
per thread |z
=
1]
G4 128 192 256 320 384 448 512 576 G40 704 768 832 896 960 1024
Threads Per Block
Impact of Varying Register Count Per Thread
64
P oo
g a8
(]
a8
2 E 27
= 2
= Allocatable 16
Allocated Resources Per Block Limit Per SM_ Blocks Per SM 81
(Warps (Threads Per Block / Threads Per Warp) 8 48 8 | =
Registers (Warp limit per SM due to per-warp reg count) 8 &4 8| =
Shared Memory (Bytes) 2048 65536 32
Hote: SM is an abbrewaation for (Streaming) Multiprocessor
Maximum Thread Blocks Per Mul SS0r Blocks/SM * lock = Warps/SM
Limited by Registers per Multiprocessor j:]
Limited by Shared M Multl eS507 32

INote: Decupdncy heniled is Shown in arange

Physical Max Warps/SM = 48
Occupancy = 48 / 48 = 100%

20

Chapter summary
w»\We have explored:
®»Pipeline parallelism
®»Dynamic instruction scheduling
®» Static instruction scheduling
®» Multiple instructions per cycle
®»Very long instruction words (VLIW)
» Multi-threading
@ Coarse-grain
e Fine-grain
Simultaneous multithreading (SMT)

@ Statically-partitioned multithreading
Vector instructions and SIMD — coming soon
SIMT and GPUs — coming soon
Multicore — coming soon

21

Extra slides for interest/fun

Is the “minimum” operator associative?
min(min(X, Y), Z=min(X, min(Y, Z)) ?

wmin(X, Y) =if X<Y then X else Y

min(min(10, x), 100) = 100

Extra slides for interest/fun

Is the “minimum” operator associative?
min(min(X, Y), Z=min(X, min(Y, Z)) ?
wmin(X, Y) =if X<Y then X else Y

All comparisons on NaNs always fail....
min(min(10, NaN), 100) = 100

Extra slides for interest/fun

Is the “minimum” operator associative?
min(min(X, Y), Z=min(X, min(Y, Z)) ?
wmin(X, Y) =if X<Y then X else Y

All comparisons on NaNs always fail....

wmin(X, NaN) = NaN
wmin(NaN, Y) =Y

rmin(min(X,NaN),Y) =min(NaN,Y)=Y
rmin(X,min(NaN,Y)) = min(X,Y)

min(min(10, NaN), 100) = 100

	Slide 1: Advanced Computer Architecture Chapter 7: Multi-threading
	Slide 3
	Slide 4
	Slide 5: SMT
	Slide 6: SMT performance
	Slide 7: SMT in the Intel Atom (Silverthorne)
	Slide 8: SMT issues
	Slide 9: SMT – latency-hiding
	Slide 10: Mapping threads into the register file
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Chapter summary
	Slide 22: Extra slides for interest/fun
	Slide 23: Extra slides for interest/fun
	Slide 24: Extra slides for interest/fun

