Advanced Computer Architecture
Chapter 7:

Multi-threading
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These lecture notes are partly based on the course text, Hennessy and
Patterson’ s Computer Architecture, a quantitative approach (3 and
4t eds), and on the lecture slides of David Patterson and John
Kubiatowicz’ s Berkeley course
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Superscalar leads to more performance, but lower utilization
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Adds to function unit utilization, but results are thrown away
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Limited utilization when only running one thread
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Simultaneous Multithreading
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Intra-thread dependencies still limit performance
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Maximum utilization of function units by independent operations

l» Compaq Alpha 21464 - http://research.ac.upc.es/pactOl/keynotes/emer.
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Reduced function unit utilization due to dependencies
Superscalar Issue
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Basic Out-of-order Pipeline
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Multiprogrammed workload
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Al Mechanical Design Analysis (linite element method)
This application is used for melal-forming, drop testing, and
crash simulation

A2 Genetics
A genetics application that correlates DNA samples from
multiple animals to better understand congenital diseases.

A3 Computational Chemistry
This application uses the self-consistent field method to
compute chemical properties of molecules such as new
harmacenticals

44 Mechanical Design Analysis
This application simulates the metal-stamping process

AS Mesoscale Weather Modeling
This application simulates and predicts mesoscale and
regional-scale atmospheric circulation

AG [Genetics
This application is designed to generate Expressed Sequence
Tags (EST) clusters, which are used to locate important
oenes

A7 Computational Fluid Dynamics
This application is used to model free-surface and confined
flows.

A8 Finite Element Analysis
This finite element application is specifically targeted toward
ocophysical engineering applications.

49 Finite Element Analysis

This explicit time-stepping application is used for crash test
studies and computational fluid dynamics




SMT in the Intel Atom

(Silverthorne)
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wEach thread runs slow? SMT iSSUGS8

» The point of Simultaneous Multithreading is that resources are
dynamically assigned, so if only one thread can run it can run faster
wSMT threads contend for resources
» Possibly symbiotically?
® One thread is memory-intensive, one arithmetic-intensive?
®» Possibly destructively
@ thrashing the cache? Other shared resources.... (TLB?)

wWhich resources should be partitioned per-thread, and
which should be shared on-demand?

wSMT threads need to be scheduled fairly
®» Can one thread monopolise the whole CPU?
® Denial of service risk
? _Slow thread that suffers lots of cache misses fills RUU and blocks
issue
w Side channels:

» one thread may be able observe another’s traffic and deduce what it’s
doing



SMT - latency-hiding

W SMT threads exploit memory-system parallelism

» Easy way to get lots of memory accesses in-flight
» “Latency hiding” — overlapping data access with compute

i \What limits the number of threads we can have?

W SMT threads need a lot of registers
» A lot of logical registers — but they share physical registers?

wIn a machine without register renaming

» \What about statically partitioning the register file based on the
number of registers each thread actually needs?

®» This is what many GPUs do

®» Leads to tradeoff: lots of lightweight threads to maximise latency
hiding? Or fewer heavyweight threads that benefit from lots of
registers?

» Nvidia and AMD call this “occupancy”



Mapping threads into the register file

w If each thread
needs few
registers, we can
have lots of them
co-existing in the
same physical
register file

W Alternatively, we
could have fewer,
fatter threads

W More
threads=higher
> “occupancy”

i Better latency
hiding
w Tricky tradeoff!
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Your chosen resource usage is indicated by the red triangle on the graphs. The other data
points represent the range of possible block sizes, register counts, and shared memory

allocation.
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C U DA OGCI.I pancy Calcu |a'tOI' Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA, visit hitp:/ideveloper.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs. The other data
points represent the range of possible block sizes, register counts, and shared memory
(Help) allocation.
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CUDA Occupancy Calculator
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Chapter summary
w»\We have explored:
®»Pipeline parallelism
®»Dynamic instruction scheduling
®» Static instruction scheduling
®» Multiple instructions per cycle
®»Very long instruction words (VLIW)
» Multi-threading
@ Coarse-grain
e Fine-grain
# Simultaneous multithreading (SMT)

@ Statically-partitioned multithreading
Vector instructions and SIMD — coming soon
SIMT and GPUs — coming soon
Multicore — coming soon
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Extra slides for interest/fun

Is the “minimum” operator associative?
min(min(X, Y), Z=min(X, min(Y, Z)) ?

wmin(X, Y) =if X<Y then X else Y

min(min(10, x), 100) = 100
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min(min(X, Y), Z=min(X, min(Y, Z)) ?
wmin(X, Y) =if X<Y then X else Y

All comparisons on NaNs always fail....
min(min(10, NaN), 100) = 100



Extra slides for interest/fun

Is the “minimum” operator associative?
min(min(X, Y), Z=min(X, min(Y, Z)) ?
wmin(X, Y) =if X<Y then X else Y

All comparisons on NaNs always fail....

wmin(X, NaN) = NaN
wmin(NaN, Y) =Y

rmin(min(X,NaN),Y) =min(NaN,Y)=Y
rmin(X,min(NaN,Y)) = min(X,Y)

min(min(10, NaN), 100) = 100
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