Imperial College
London

Advanced Computer Architecture
Chapter 9

Data-Level Parallel Architectures: GPUs

November 2023
Paul Kelly

Lisa Su, CEO of AMD, launching the rx6000 series Jensen Huang, CEO of NVIDIA, launching the RTX 30 Series GPUs

These lecture notes are partly based on:
« Contributions to the lecture slides from Luigi Nardi (postdoc at Imperial and Stanford, now

academic at Lund, Sweden), Fabio Luporini (Imperial PhD, postdoc, now CTO,
DevitoCodes), and Nicolai Stawinoga (Imperial PhD, postdoc, now researcher at TU Berlin)

* the course text, Hennessy and Patterson’s Computer Architecture (5" ed.)

Graphics Processors (GPUs)

* Much of our attention so far has been devoted to making a single core
run a single thread faster
 |f your workload consists of thousands of threads, everything looks
different:
— Never speculate: there is always another thread waiting with work you
know you have to do
— No speculative branch execution, perhaps even no branch prediction
— Can use FGMT or SMT to hide cache access latency, and maybe even main
memory latency

— Control is at a premium (Turing tax avoidance):
 How to launch >10,000 threads?
 What if they branch in different directions?
* What if they access random memory blocks/banks?

* This is the “manycore” world
* |nitially driven by the gaming market — but with many other applications

8

A first comparison with CPUs

0 T g g g g g g L 8 g

Corvtrol - |uu : i,

.H.l..ll.!.l.l..l

- n
.'.m“

CPU GPU
® “Simpler” cores

.nvidia.com/cuda/cuda-c-programming-guide/

e: http://docs

Sourc

® Many functional units (FUs) (implementing the SIMD model)

® Much less cache per core; just thousands of threads and
super-fast context switch

® Drop sophisticated branch prediction mechanisms

9

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

NVIDIA G80 (2006)

H o 124 H
Host CPU Bridge [System memory 16 cores, each with 8 “SP” units
16x8=128 threads execute in parallel
Sketchy (but you need a lot more threads to fill the machine)
information — '”tlerface | Each core issues instructions in
. Viewport/clip/
on graphics [input assembler setup/raster/zcull “warps” of 32
primitive | |
: Vertex work Pixel work Compute work | Each core up to 24-way FGMT
processing distribution distribution distribution)
I [I <
I I I I I I I I al
TPC TPC TPC TPC TPC TPC TPC TPC (f)
[Hl Hl Il 1{ |1 1|1 I i |)
[Hl Hl Il 1{ |1 1|1 I i | %\
SM SM SM SM SM SM S SM SM SM SM S SM SM SM SM t
| ||l (] ([t ||l I ||l 1| |]|l 1| [|IE Il NI Il (| [[L ||l I ||l | <
[||l (] ([l ||l I ||l || [||l 1| |IL Il 1ML Il (| [||l 1IN ||l | N
| ||l (] [[L ||l I ||l 1| | ||l 1| | ||E Il NI || (| [[L ||l 1IN ||l | o
SP || SP SP || SP SP || P SE | SF SP || SP SP || SP SP || SP SP 53| |SF‘ EFl |5F‘ SP SPSP Sk || SP SP || SP Sk || SP SP || SP sk || SP 8))
SP || SP SPI SP SP || SP SF || SP SP || SP SF || 5P SFP || SP sP 53| |5F‘ 5F| |EF' SP SP || SP SP| sP SP || SP SF || SP SP || 5P SE || SP 8
sp||se ||| sk || 5P skl sP ||l sP || sP sp||se|| |l sP || =P sP || s [|]] sP 5=| |SF‘ EFl |EF' SP sp||sP ||| s || sP se||se ||| 5P| 5P se||se ||| 5P || 5P 9
SP||SP SP|| SP SP || SP SP || SP SP||SP SP 1| SP SP || SP SP S:| |ﬁF‘ ‘”:Fl |EF' SP SP| SP SP| SP SP || SP SP || SP SP || SP SP 1| 5P D—
| (IESIE | =
Shared Shared Shared Shared Shared Shared Shared Shared | | Shared | | Shared Shared Shared Shared Shared Shared Shared -—
mermory memary MEmary MEMory mermory MEmory MEmory memaory MEmony memaory MEmory memary mermory Memory Emaory memaory E
Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit qv]
e || || = || || | | (| e e || || e L
I I I I | I I I I I I I | | I I p)

Interconnection network

| | | |
ROP * ROP ROP ROP

DRAM DRAM DRAM DRAM

—/

Ragter opelration processor (I?OP)

ROP ROP

DRAM DRAM

ROP performs colour and depth frame buffer
operations directly on memory

No L2 cache coherency problem, data can be in only one cache. Caches are small

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 10

Texture/Processor Cluster (TPC)

I I

WA S S S S

e SM: Streaming Multiprocessor\“\
e SP: Streaming Processor

Geometry controller

SMC
SM SM
| cache | cache
MT issue MT issue
C cache C cache
SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
SFU | | SFU SFU | | SFU
Shared Shared
memory memory

Texture unit

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

11

e SMC: Streaming
Multiprocessor controller

e MT issue: multithreaded
instruction fetch and issue
unit

e C cache: constant read-only
cache

e | cache: instruction cache

« Geometry controller:
directs all primitive and
vertex attribute and
topology flow in the TPC

e SFU: Special-Function Unit,
compute trascendental
functions (sin, cos, log X,
1/X)

e Shared memory: scratchpad
memory, i.e. user managed
cache

e Texture cache does
interpolation

NVIDIA’s Tesla micro-architecture

TPC

Geometry controller

SMC
SM SM
| cache | cache
MT issue MT issue
C cache C cache

SP || SP SP || SP

SP || sP SP || sP

SP || SP SP || SP

SP || SP SP || SP

SFU | | SFU SFU || SFU

Shared Shared
memory memory
Texture unit

Combines many of the ideas we have learned about:

 Many fetch-execute processor devices (16 “SMs”)

* Each one uses fine-grain multithreading (FGMT) to run 32 “warps” per SM
NVIDIA is confusing about terminology!
Warps on a GPU are like threads on a CPU
Threads on a GPU are like lanes on a SIMD CPU

 MT issue selects which “warp” to issue from in each cycle (FGMT)
* Each warp’s instructions are actually 32-wide SIMD instructions

e Executed in four steps, using 8 SPs (“vector pipelining”, Ch08)

* With lanewise predication (Ch08)

 Each SM has local, explicitly-programmed scratchpad memory
* Different warps on the same SM can share data in this “shared memory”

 SM'’s also have an L1 data cache (but no cache-coherency protocol)

* The chip has multiple DRAM channels, each of which includes an L2 cache
(but each data value can only be in one L2 location, so there’s no cache
coherency issue at the L2 level)

* There are also graphics-specific mechanisms, which we will not discuss
here (eg a special L1 “texture cache” that can interpolate a texture valuey

o e BTN [y oo [esla memo ry,
GPU °
| Host interface i I
| BT INterconnec
|In put assembler setup/r%ster/z%ull 4
[]
Vertex work Pixel work Compute work
distribution distribution distribution C O n t rO
[[I
[[| | | [[|
TRC TEC TPC TPC TEC T2C TEC TPC
[Il 111 11 (I 1| [1{ |1 a0 111 |
[1111 111 11 (I 1| L {1 1| |1 111 |
SM SM SM SM SM M SM SM SM M SM M SM SM SM Sk
1 1{Wl| 1 1111 (|1 1| |] 1| |1 1L 111 | 1({ 111 Il 11 Nl |
1 1[0 1 1111 1 1| | [(=——| |l 1L 111 I 1({ 111 I (1l Il]
|| || —
I I I o R [
1 T | () [| | | (O | [| | (D | | (T
SSSSSS B0 | | | |
| memory | | memory || |Lmemory | | memory | |Lmemory | ory memory | memory | | memory f| [Lmemory | | memory || |Lmemory | Lmemory || [Lmemory |
Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit
[Texii | |
I I [[| | | | | | | | [[[[
(Interconnection network)
[[| I [|
RoP * "oP * "oP * RoP * RoP * RoP *
DRAM DRAM DRAM DRAM DRAM DRAM

ISM’s ﬂl)so have an L1 data cache (but no cache-coherency protocol — flushed on kernel
aunc

The chip has multiple DRAM channels, each of which includes an L2 cache

but each data value can only be in one L2 location, so there’s no cache coherency issue
at the L2 level

Tesla has more features specific to graphics, which are not our focus here:
— Work distribution, load distribution
— Texture cache, pixel interpolation
— Z-buffering and alpha-blending (the ROP units, see diagram) 3

CUDA: using NVIDIA GPUs for general computation

TPC
Geometry controller * Designed to do rendering

SMC * Evolved to do general-purpose computing
SM SM (GPGPU)

| cache | cache

e —But to manage thousands of threads, a new
Soaore | ITCoaone programming model is needed, called CUDA
(Compute Unified Device Architecture)

—CUDA is proprietary, but the same model lies
behind OpenCL, an open standard with
implementations for multiple vendors” GPUs

SP || SP SP || SP

SP || SP SP || SP

SP || SP SP || SP

SP || SP SP || SP

srullsrul| |[srulfsrul| | © GPU evolved from hardware desighed specifically
Shared Shared around the OpenGL/DirectX rendering pipeline,
memory memaory . .
with separate vertex- and pixel-shader stages

- e “Unified” architecture arose from increased
sophistication of shader programs

We focus initially on NVIDIA architecture and terminology. AMD GPUs are quite similar, and

the OpenCL programming model is similar to CUDA. Mobile GPUs are somewnhat different

14

CUDA Execution Mode|

* CUDA is a C extension

— Serial CPU code C"”S = S
— Parallel GPU code (kernels) Code
* GPU kernel is a C function Grid 1
— Each thread executes kernel code He;nel' Block Block Block
— A group of threads form a thread (02 LD LB
block (1D, 2D or 3D) ki
— Thread blocks are organised into a Code D e ——
gl’ld (1D, 2D or 3D) ’_‘," Grid’ft
— Threads within the same thread Kemal |} |/
block can synchronise execution,]
and share access to local scratchpad Block (1, 1)
memory -

Key idea: hierarchy of parallelism, to handle thousands of
threads

Thread blocks are allocated (dynamically) to SMs, and run
to completion

Source: CUDA programming guide

Threads (warps) within a block run on the same SM, so can
share data and synchronise

Different blocks in a grid can’t interact with each other

~_global wvoid daxpy(int N,
double a,
double* x,
double* y) {

int i = blockIdx.x *
blockDim.x + CUDA
threadIdx.x; kernel

if (1 < N)
yl[i] = a*x[i] + y[i];

CPU code to launch
kernel on GPU

int main () {
// Kernel setup
int N = 1024;
int blockDim = 256;
int gridDim = N / blockDim;

// Invoke DAXPY :

C version for
daxpy(n, 2.0, x, y); comparison
// DAXPY in C

void daxpy (int n,
double a,
double* x,
double* y) {
for(int i=0; i < n; ++1i)
y[i] = a*x[1] + yl[1]~
} fully parallel loop

CUDA example: DAXPY

// These are the threads per block
// These are the number of blocks

daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y);, // Kernel invocation

N Kernel invocation (“<<<...>>>”’) corresponds to enclosing loop nest, managed b
P g P g y

hardware
» Explicitly split into 2-level hierarchy:

blocks (256 threads that can share ‘“‘shared” memory), and grid (N/256 blocks)
» Kernel commonly consists of just one iteration but could be a loop

» Multiple tuning parameters trade off regli6ster pressure, shared-memory capacity

and parallelism

PTX Example (SAXPY code) >

NVIDIA

cvt.u32.ulé6 Sblockid, $%ctaid.x; // Calculate i from thread/block IDs
cvt.n32 1116 Sblocksize; $ntid.x:;
et . 132 .ule St1d; Stid.%;
mad24.lo.u32 Si, Shlsockid, Sblocksize, Stid:
1d.param.u32 $n, [N]; // Nothing fodo if n< i
setp.le.u32 spl; $n, 5i; ~_global wvoid daxpy(int N,
@$pl bra $L_finish; double a,

double* x,
bl . Jo. w32 Soffset, $i, 4; // Load y[i] double* y)
ld.param.u32 syaddr, [Y]: int i = blockTdx . x *
add.u32 $ya§dr, Syaddr, Soffset; blockDim.x +
ld.global.f32 Sy i, [Syaddr+0]; - threadIdx.x:
ld.param.u32 Sxaddr; [X]:; // Load x[i] : :
add.u32 Sxaddr, S$xaddr, Soffset; it (2 ? N))]
ld.global.f32 $x i, [$xaddr+0]; ylal = a*x[i] + yl1l;
1d.param.£32 Salpha, [ALPHA]; // Compute and store alpha*x[i] + y[i]
mad.f32 S¥' 1, Salpha, Sx 37 Sy i;

st.global.f32 [Syaddr+0], Sy 1i;

ST, Finish- exit;

This is PTX: a pseudo-assembly code that is translated to proprietary ISA

Threads are scheduled in hardware

Each thread is provided with its position in the Grid through registers %ctaid, %ntid, %tid

p1is a predicate register to determine the outcome of the “if”

The conditional branch “@%$p1 bra $L_finish” may be (probably is) translated to predication in the target ISA

(Joy Lee and others, NVIDIA)

Runnlng DAXPY (N=1024) on a GPU

sl L L L L L L L L L N SN NN N ALY

Multithreaded SIMD Processor (SM)

BLOCK 1 BLOCK 4 BLOCK x
(DAXPY 0-255) f (DAXPY 768-1023) (...)

Multithreaded SIMD Processor (SM)

4l BLOCK2 | BLOCK Xx+1
4l (DAXPY 256-511) (...)

Multithreaded SIMD Processor (SM)

BLOCK 3 BLOCK x+2
4l (DAXPY 512-767) (...)

BEEEEEEEEEEEEEE NN NN NN NN NN,

SIMD + MIMD: blocks are the unit of |
allocation of work to SMs Host (via I/O bus, DMA)

DRAM

Runnlng DAXPY on a GPU

gl I I EEEAEEEEEEEEEEEEEEEEENRER

Multithreaded SIMD Processor

Multithreaded SIMD Processor

DRAM

EEELEEELEELEEEEEEEEEEEE

* Each warp executes 32 CUDA threads |n SIMD Ieck -step

 Each CUDA thread executes one instance of the kernel

 Each SM is shared by many warps (possibly from the same or
different blocks)

Runnlng DAXPY on a GPU

T

Multithreaded SIMD Processor

Shared
Registers memory

DRAM

Partitioned Partitioned
between between
blocks

EEEEEEEEEEEEEENEEENEEEEEEEE A

* Each warp executes 32 CUDA threads in SIMD Iock -step

 Each CUDA thread executes one instance of the kernel

 Each SM is shared by many warps (possibly from the same or
different blocks)

21

\

0 Vi

£
TSI

|

3
>

|
Y
b

SM multithreaded
instruction scheduler

Time

v

N [N (N Y N N N N N (NN NN N N |

Warp 8, instruction 11

VYVYYYVYVYVYVYVYVYVYVVVY
L1 1 L1 1

I VN N N NN N N O |

Warp 1, instruction 42

VYVVYVYVYYVYVYVYVVYVYVYYVY
L 11 L1

MY Y O (N RN S S

Warp 3, instruction 95

VYVYVYVYVVYVVVVYVVVY

| Y D i [I A N D . .

Warp 8, instruction 12

VYVYVYVYVYVYVVVVYVYVVY
L 1| L 1|

I N N N I N N N

Warp 3, instruction 96

VYVYYYVYVYVYVYVYVYVYVYVVY
I L 11

| N N N S N N S B |

Warp 1, instruction 43

VYVYYVYVVVYVYVYYVYVYVVY

Single-instruction, multiple-
thread (SIMT)

* A new parallel programming model: SIMT

The SM’s SIMT multithreaded instruction unit
creates, manages, schedules, and executes
threads in groups of warps

The term warp originates from weaving

Each SM manages a pool of 24 warps, 24 ways
FGMT (more on later devices)

Individual threads composing a SIMT warp
start together at the same program address,
but they are otherwise free to branch and
execute independently

At instruction issue time, select ready-to-run

warp and issue the next instruction to that
warp’s active threads

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 23
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Photo: Judy Schoonmaker

SM multithreaded
instruction scheduler

Time

N [N TN [N Y N N Y (N NN NN N N N |

Warp 8, instruction 11

YVYVYYYVYVYYVYVYVYVYVYVYVY
L1 | L1 |

| N N N N I N A |

Warp 1, instruction 42

VYVYYVYVYVYVYVYVYVYVYVYVVY
1 11 L1

M Y O (O Y NN SN S NN

Warp 3, instruction 95

YYVYVYVYVVYVVVYVYVYVVY

| O)) I [i () Y (N N O D

Warp 8, instruction 12

YYVYVYVYVYVYVVYVYVYVYVVYY
111 | 11

I N N N I N N N

Warp 3, instruction 96

YVYYYYVYVYVYVYVYVYVYVYVYVY
L 11 L1

| N VN N N I N N N |

Warp 1, instruction 43

YVYVYYVYVVVYVYVYVYYVYVVY

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Reflecting on SIMT

SIMT architecture is similar to SIMD design,
which applies one instruction to multiple data
lanes

The difference: SIMT applies one instruction to
multiple independent threads in parallel, not
just multiple data lanes. A SIMT instruction
controls the execution and branching
behaviour of one thread

For program correctness, programmers can
ignore SIMT executions; but, they can achieve
performance improvements if threads in a
warp don’t diverge

Correctness/performance analogous to the
role of cache lines in traditional architectures

The SIMT design shares the SM instruction
fetch and issue unit efficiently across 32
threads but requires a full warp of active
threads for full performance efficiency

24

26

Branch divergence

* |n awarp, threads all take the same path (good!) or diverge!

A warp serially executes each path, disabling some of the
threads
 When all paths complete, the threads reconverge
» Divergence only occurs within a warp - different warps execute
Independently

« Control-flow coherence: when all the threads in a warp goes the
same way we get good utilisation (a form of locality — spatial

branch locality)
Predicate bits: enable/disable each lane

—

SIMT vs SIMD — GPUs without the hype

* GPUs combine many * So basically a GPU core is
architectural techniques: a lot like the processor
— Multicore architectures we have
— Simultaneous studied!
multithreading (SMT) e Butthe SIMT
— Vector instructions programming model
— Predication makes it look different

» Overloading the same architectural concept doesn’t help GPU
beginners

» GPU learning curve is steep in part because of using terms such as
“Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor” for the SIMD Lane, and “Shared Memory”’ for Local

Memory - especially since Local Memory is not shared between SIMD
Processor

SIMT vs SIMD — GPUs without the hype

SIMT: SIMD:
* One thread per lane Each thread may include
e Adjacent threads SIMD vector instructions
(“warp”/”wavefront”) e SMT: a small number of
execute in lockstep threads run on the same
e SMT: multiple “warps” run core to hide memory
on the same core, to hide latency

memory latency

Which one is easier for the programmer?

29

SIMT vs SIMD — spatial locality & coalescing

SIMT:

Spatial locality = adjacent
threads access adjacent data

A load instruction can result in
a completely different address
being accessed by each lane

“Coalesced” loads, where
accesses are (almost) adjacent,
run much faster

SIMD:

30

Spatial locality = adjacent loop
iterations access adjacent data

A SIMD vector load usually has
to access adjacent locations

Some recent processors have
“gather” instructions which can
fetch from a different address
per lane

But performance is often
serialised

SIMT vs SIMD — spatial locality & coalescing

SIMD (on CPU): SIMT (on GPU):
void add (float *c, float *a, float *b) __global _ void add(int N,
{ double* a,
for (int i=0; i1 <= N; i++) double* b,
#pragma omp simd double* c) {
for (lnt j=0; J <= N; j'l"l‘) int i = blockIdx.x *
. blockDim.x +
= +b ;
c[i][J]=al1] [J] [1] []] threadIdx . x:
} Using OpenMP for (int j=0; j <= N; j++)

c[i][J] = al1][J] + b[i][]];

his example has good spatial
locality because it traverses the
data in layout order:

void add (float *c, float *a, float *Db) This example has terrible

}

(spatial locality because
for (int i=0; i <= N; i++) { adjacent threads access
__ml28* pa = (__ml28*) &a[i][0]; different columns
~ ml28* pb = (_ ml128*%) sb[i] [0];
T ml28* ic = (__ml28*) &c[i][0]; Row@ JReu ROt 2
for (int 1i=0; i <= N/4; i++) I?
*pc++ = mm _add ps (*pa++, *pb++) ; 1=0 1=1 =2

AT R Threads with adjacent thread ids access
} data in different cache lines

SIMT vs SIMD - spatial control locality

SIMT: SIMD:

* Branch coherence = adjacent * Branch predictability = each
threads in a warp all usually individual branch is mostly
branch the same way (spatial taken or not-taken (or is well-
locality for branches, across predicted by global history)

threads)

33

PCI Express 3.0 Host Interface

L1 Instruction Cache

Memory Controller

Memory Controller

PC TPC PC
s M s

FP64

FP64

i]

FP64

i9jjonuon Loway

FP64

FP64

FP64

FP64

J9jj08u0) Aiowap

FP64

LD/ LD/
§sT ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32 IR
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST

TENSOR TENSOR
CORE

FP64

FP64

FP64

FP64

FPG4

FP64

FP64

FP64

LD/ LD/
ST ST

L0 Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32 KDEH
INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST 8T ST ST ST

Memory Controller

J9)jo5u0) Kiowapyy

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

L0 Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

i

Memory Controller
19)j03u0) Loway

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE

Ey s ” Ea E— Ry 2 28
NVLink NVLink NVLink NVLink NVLink NVLink
FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

GV1 OO W|th 84 SMS FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/

SFU ST ST ST ST ST ST ST ST

SFU

128KB L1 Data Cache / Shared Memory

Tex Tex

GV100’s SM includes 8 tensor cores

concer) [F NN NARRATNANNY

and Stack (S)

FP16 or FP3?2
Tensor core computes matrix-matrix multiply on
FP16s with FP32 accumulation

FP16 or FP32

32 thread warp

Each CUDA thread has its own PC and stack, enabling
dynamic scheduling in hardware to heuristically enhance

e - R

ARCHITECTURE (Aug 2017) https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf

mmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmm

VUUULULULULUULUULULULUULULUULUULUUL UL
convergence L N R N T T T Y - N N - - Wy - Yy -y -y -y - Wy -y -

NVIDIA TESLA V100 GPU

32 thread warp with independent scheduling

t Is a heterogeneous worla

T.

\

8" GEFORCEGTX ©h..
e

g GTX 870M
4998 GFLOPS [2827 GFLOPS
< 400 W <100 W

eneetge

ODROID | Arndale
404 GELOPS 170 GFLOPS 87 GFLOPS
<20 W <10 W <5W »

M-Comp | 5lim555 355 : : y O Gu 5P

l - FRETE Sx HEi2E

Unknown
AS53 AS3

CClI-400

= J50KBLZ

ANANDTECH

Exynos 7420

Abstracted Floor Plan
S06, 2015 Andrei Frumusanu

11

S Shader

Core

Scaler Scaler

AS Scaler

5127KB L2

(b
FAL BHS i Shader Shader
Core Core
ISP + Cameras

(Largely unknown)

O
)
el
)
)
-
(@)
-
)
O
(0]
-
)
>
)

nd

e Shader Shader Shader
x i3 WG Core Core Lore

e C5

- Shader Shader -
MOHIa c . i L) I UniPFro
— DISP1 ore ore 4 UES 2.0

Pl DEIfDP

@,
@
0P
O
Q\
ﬁ_
N
)
O
C
=
>
LLI
@)
C
D
0P
&
qV]
0P
O
D
)
Q0]
£|2
=
nd
<C

Used in Samsung S6 mobile phone

http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2

spare slides for interest

ARM MALI GPU: Midgard microarchitecture

Shader Core Architecture

Thread Issue

Compute
Data and
Results

Arithmetic
Pipeline

Arithmetic
Pipeline

Load/Score
Pipeline

Texturing
Pipeline

h 4

Thread Completion

Compute
Thread
Creator

Thread Execution = “Tri Pipe”

Triangle
Rasterizer Setup
Unit
L
Early Z
-+
Z/Stencil
Buffer
Late Z
¥
| Blender Tile Buffers

memory management unit, L2 cache, etc.

Tiler Data
Structures

Textures

Frame
Buffer

* Variable number of Arithmetic Pipelines (uncommon feature
with respect to other GPUs)

* Fixed number of Load/Store and Texturing Pipelines
* |n-order scheduling

/ ./ k) * This diagram shows only the Shader Core, there is much more
- w supporting hardware to make a complete GPU, i.e. tiling unit,

Source: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

59

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

Midgard arithmetic Pipe

ARM Mali Midgard Arithmetic Pipe

V_MUL

e Simply fill the SIMD with as
many (identical) operations

vV _ADD
handle it

V_SFU

FP32 FP32 FP32 FP32

Source: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5

e ARM Midgard is a VLIW design with SIMD characteristics (power efficient)

*So, at a high level ARM is feeding multiple ALUs, including SIMD units, with a single
long word of instructions (ILP)

e Support a wide range of data types, integer and FP: 18, 116, 132, 164, FP16, FP32, FP64

* 17 SP GFLOPS per core at 500 MHz (if you count also the SFUs) 50

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5

61

Optimising for MALI GPUs

How to run optimally OpenCL code on Mali GPUs means mainly to
locate and remove optimisations for alternative compute devices:
eUse of local or private memory: Mali GPUs use caches instead of
local memories. There is therefore no performance advantage using
these memories on a Mali
eBarriers: data transfers to or from local or private memories are
typically synchronised with barriers. If you remove copy operations
to or from these memories, also remove the associated barriers
eUse of scalars: some GPUs work with scalars whereas Mali GPUs can
also use vectors. Do vectorise your code
e Optimisations for divergent threads: threads on a Mali are
independent and can diverge without any performance impact. If
your code contains optimisations for divergent threads in warps,
remove them
e Modifications for memory bank conflicts: some GPUs include per-
warp memory banks. If the code includes optimisations to avoid
conflicts in these memory banks, remove them
eNo host-device copies: Mali shares the same memory with the CPU

Source: http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUIO538F mali t600 opencl dg.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

i GPUs were built for rendering Texture cache

i Critical element:

®Mapping from a stored texture onto a
triangular mesh

Texture mapping

To render each triangle: - Format/
' Calculator Tex. Decomp.
®enumerate t.he pixels, ok
®»map each pixel to the texture and FIFO
interpolate |
Ta - h
m Texture cache - r?are Cache

®»Can be accessed with 2d float index

®(Cache includes dedicated hardware
to implement bilinear interpolation

®»Can be configured to
clamp, border, wrap or mirror at

texture boundary
Fig. 5. An overview of a texture cache architecture. The texture mapping
*Hardware SU pport to deCOm preSS unit provides texture coordinates for which a memory address is calculated.

. The address is sent to the tag compare to determine if the data is in the cache.
com pressed teXtU res on CaChe MISS If the data isn’t in the cache, a request is sent via the crossbar to the L2 cache.

Any state associated with the original request is sent into a FIFO to return
to the texture mapping unit with the texel data. Once the data arrives in the

*CUStOm hardwa re-S peCIﬁC Storage cache, or is already available in the cache, it is returned to the texture mapping
IayOUt (bIOCked/Morton) to explort 2d unit. If the data is compressed, it is decompressed and any formatting that is

I It required is done.
Oca I y For more details see Texture Caches, Michael

*Trlangle/plxel enumeratlon IS tlled for http://fileadmin.cs.Ith.se/cs/PersonaI/l\/Iichael_%ooggggeet&
|Ocal|ty /pubs/doggett12-tc.pdf

L1 Texture cache

Crossbar

Nested If-then-else execution

* Ret./Reconv. PC Next PC_ Active Mask
- G 1111
AT G F 0001
l_ TOS —» G B 17110
B/1110 (c) Initial State
l_ _l Ret./Reconv. PC ~ Next PC Active Mask
\ - G 1111
C/1000 D/0110 F/0001 G = 0007
|—* r' G E T110__| (i)
E D 0110 [(i)
E/1110 TOS —» E C 1000 |(iii)
(d) After Divergent Branch
> G111 |- Ret./Reconv. PC Next PC_ Active Mask
- G 1111
G F 0001
(a) Example Program TOS —» G E EEL
(e) After Reconvergence
A B C D E F G A
—i 1 —» | —>
co e 7 —1= | > P s e e e
—> =i - —>
— - = —

| - :> Time

(b) Re-convergence at Immediate Post-Dominator of B

Wilson W. L. Fung, lvan Sham, George Yuan, and Tor M. Aamodt. Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow (MICRO 2007)

	Slide 1
	Slide 8: Graphics Processors (GPUs)
	Slide 9: A first comparison with CPUs
	Slide 10
	Slide 11
	Slide 12: NVIDIA’s Tesla micro-architecture
	Slide 13: Tesla memory, interconnect, control
	Slide 14: CUDA: using NVIDIA GPUs for general computation
	Slide 15: CUDA Execution Model
	Slide 16: CUDA example: DAXPY
	Slide 17
	Slide 19: Running DAXPY (N=1024) on a GPU
	Slide 20: Running DAXPY on a GPU
	Slide 21: Running DAXPY on a GPU
	Slide 23: Single-instruction, multiple-thread (SIMT)
	Slide 24: Reflecting on SIMT
	Slide 26: Branch divergence
	Slide 28: SIMT vs SIMD – GPUs without the hype
	Slide 29: SIMT vs SIMD – GPUs without the hype
	Slide 30: SIMT vs SIMD – spatial locality & coalescing
	Slide 32: SIMT vs SIMD – spatial locality & coalescing
	Slide 33: SIMT vs SIMD – spatial control locality
	Slide 50: NVIDIA Volta GPU (2017)
	Slide 51: It is a heterogeneous world
	Slide 52
	Slide 56: spare slides for interest
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Texture cache
	Slide 63

