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Part 1

What you should get from this

Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things | hope you will learn from this very brief
Introduction are:

W Why power considerations motivate multicore
W Why is shared-memory parallel programming attractive?
W How is dynamic load-balancing implemented?

W Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

W What is the cache coherency problem

W There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

» How are atomic operations and locks implemented?
W Eg load-linked, store conditional
W What is sequential consistency?
 Why might you prefer a memory model with weaker consistency?

W For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting



Moore’s Law: The number of transistors on microchips doubles every two years [SHgWEIE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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50 Years of Microprocessor Trend Data
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B Dynamic power vs static leakage
B Dynamic: Power is consumed when signals change
B Static: Power is consumed when gates are powered-up

B “Dennard Scaling”: dynamic power gets smaller if we
make the transistors smaller

B “the end of Dennard Scaling”: static leakage starts to
dominate, especially at high voltage (that is needed for
high clock rate)

B Power vs clock rate
B Power increases sharply with clock rate because
B High static leakage due to high voltage
B High dynamic switching
B Clock vs parallelism: much more efficient to use
B Lots of parallel units, low clock rate, at low voltage



What can we do about power?

Compute fast then turn it off! (“race-to-sleep”)

B Compute just fast enough to meet deadline

Clock gating, power gating

B Turn units off when they’re not being used
B Functional units

E Whole cores...

Dynamic voltage, clock regulation

B Reduce clock rate dynamically

B Reduce supply voltage as well

B Eg when battery is low

E Eg when CPU is not the bottleneck (why?)

B Run on lots of cores, each running at a slow clock rate

Turbo mode
B Boost clock rate when onlv one core is active




How to program a parallel computer?

m» Shared memory makes parallel .
programming much easier: _ -
for(i=0; I<N; ++i)
par_for(j=0; |<M; ++j)
AlL] = (Ali-1,)] + Af1,)])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; |<M; ++))
B[] = (Al1,)-1] + A[1,)])*0.5;

 First loop operates on rows in parallel

W Second loop operates on columns in |
parallel Loop 2:

w With distributed memory we would
have to program message passing to
transpose the array in between

» With shared memory... no problem!
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Shared-memory parallel - OpenI\/IPZO

# OpenMP is a standard design for language extensions for
shared-memory parallel programming

w Language bindings exist for Fortran, C, C++ and to some
extent (eg research prototypes) for Java and C#

» Implementation requires compiler support — as found in
GCC, clang/llvm, Intel's compilers, Microsoft Visual Studio,
Apple Xcode

w Example:
for(i=0; I<N; ++i)
#pragma omp parallel for
for(j=0; j<M; ++))
Alijl = (AlI-1,]] + Al1,])*0.5;
#pragma omp parallel for
for(i=0; I<N; ++i)
for(j=0; j<M; ++))
Alijl = (All,-1] + AlL,])*0.5;

(OpenMP is just one tool
for shared-memory
parallel programming —
there are many more, but
it exposes the most
Important issues)



Implementing shared-memory parallel loop

for (i=0; i<N; i++) { | |if (myThreadld() == 0)
Cli] =A[] + BJi]; | =0; Barrier(): block
) barrier(); ======2>| until all threads
/l on each thread reach this point

while (true) {
local | = FetchAndAdd(&i);
if local_i >=N) break;
Cllocal_i] = 0.5*(A[local_i] + B[local _i]);

W “self-scheduling” loop

W FetchAndAdd() is atomic }
operation to get next un- barrier();
executed loop iteration: :

Int FetchAndAdd(int *i) { ——
lock(i): Optimisations:
L - Work in chunks
i___ l’_ _ - Avoid unnecessary barriers
=7, » Exploit “cache affinity” from loop to loop
unlock(i);
return(r); There are smarter ways to implement
) FetchAndAdd....




We could use locks:
Int FetchAndAdd(int *i) {

Implementing Fetch-and-add

I Using locks is rather expensive (and we should discuss

lock(i); how they would be implemented)
r=" I But on many processors there is support for atomic
=%+l increment
unlock(i): I So use the GCC built-in:
return(r); __sync_fetch_and_add(p, inc)
}
I Eg on x86 this is implemented using the “exchange and
add” instruction in combination with the “lock” prefix:
LOCK XADDL r1 r2
W The “lock” prefix ensures the exchange and increment
are executed on a cache line which is held exclusively
Combining:

® In a large system, using FetchAndAdd() for parallel loops will lead to

contention

I But FetchAndAdds can be combined in the network

W \When two FetchAndAdd(p,1) messages meet, combine them into one
FetchAndAdd(p,2) — and when it returns, pass the two values back.




More OpenMP

#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)

for (I=0; I < n; I++)
result = result + (afi] * bli]);

w default(shared) private(i): :
All variables except | are
shared by all threads.

w schedule(static,chunk):

Iterations of the parallel loop
will be distributed in equal
sized blocks to each thread in
the “team”

w reduction(+:result):

performs areduction on the
variables that appear in its
argument list

®» A private copy for each variable is
created for each thread. At the end
of the reduction, the reduction
operator is applied to all private
copies of the shared variable, and
the final result is written to the
global shared variable.

http://www.lInl.gov/computing/tutorials/openMP/#REDUCTION



Distributed-memory parallel - MPI
» MPI (“Message-passing Interface) is a standard API for parallel
programming using message passing
W Six basic calls:
» MPI_Init - Initialize MPI

®» MPI_Comm_size - Find out how many processes there are
®» MPI_Comm_rank - Find out which process | am

®» MPI_Send - Send a message (MPI is just one tool for distributed-
®» MPI_Recv - Receive a message memory parallel programming — there
®» MPI_Finalize - Terminate MPI are many more, but it exposes the

w Key idea: collective operations LMostimportantissues)

® MPI_Bcast - broadcast data from the process with rank "root" to all other processes of
the group

®» MPI_Reduce — combine values on all processes into a single value using the operation
defined by the parameter op (eg sum)

®» MPI_AlIReduce — MPI_Reduce and then broadcast so every process has the sum

W Essential advice: Single-Program, Multiple Data (SPMD)
i Each process has a share of the data,
b Every process shares the same control-flow



MPI Examp|e: stencil (“Stencils” arise in solving differential
equations, image filtering, and
w “stencil” example: each element convolutional neural networks. There
IS updated using a weighted are thousands of research papers on
sum of neighbour values efficient implementation of stencil
DO jzl, m problems!)
DO i=1, n
B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
END DO
END DO

% To do this in parallel we
could simply partition the
outer loop

% At the strip boundaries, we
need access to a column of
neighbour data values

®»In MPI we have to make this
communication explicit




Stencils in OpenMP

while (!converged) {

#pragma omp parallel for private(j) collapse(2)
for(i=0; ]<N; ++)

for(j=0; |<M; ++))

Bi]D]=0.25*(A[l-1]]+Al+]0]+ADID-1]+AL][+1]);

#pragma omp parallel for private(j) collapse(2)
for(i=0; |<M; ++))

for(j:O; j<M; ++j) First loop nest depends on A and

A[l][J] — B[l][_l], produces new values for A —-so we
} have to “double-buffer” into B, and
copy the new values back (after a
barrier synchronisation)

# (we have omitted code to determine whether convergence has
been reached)



MPI Examp|e: stencil (“Stencils” arise in solving differential
equations, image filtering, and
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I Compute number of processes and myrank 33

MP| Example: initialisation CALL MPI COMM_ SIZE(comm. p. ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)

w» SPMD |
I compute size of local block
% “Single Program, Multiple Data” m = n/p
®» Each processor executes the IF (myrank.LT.(n-p*m)) THEN
program m =m+1
®» First has to work out what part it is to END IF
play I Compute neighbors
IF (myrank.EQ.0) THEN
®» “myrank” is index of this CPU left = MPI_PROC_NULL
®» “comm” is MPI “communicator” — ELSE left = myrank - 1
abstract index space of p processors END IF
IF (myrank.EQ.p-1)THEN
® In this example, array is partitioned right = MPI_PROC_NULL
into slices ELSE right = myrank+1
END IF

I Allocate local arrays
ALLOCATE (A(0:n+1,0:m+1), B(n,m))

(Continues on next slide)




W Example: IMain Loop
Jacobi2D DO WHILE(.NOT.converged)

» Sweep over A
computing
moving
average of
neighbouring
four elements

» Compute new
array B from A,
then copy it
back into B

®» This version
tries to overlap
communication
with
computation

I compute boundary iterations so they’re ready to be sent right away
DO =1, n

B(i,1)=0.25*(A(i-1,))+A(i+1,)+A(i,0)+A(i,2))

B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1))
END DO
I Communicate
CALL MPI_ISEND(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr)
CALL MPI_ISEND(B(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr)
CALL MPI_IRECV(A(1,0),n, MPI_REAL, left, tag, comm, req(3), ierr)
CALL MPI_IRECV(A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr)
I Compute interior
DO j=2, m-1

DO i=1,n

B(i,j))=0.25*(A(i-1,))+A(i+1,))+A(i,j-1)+A(i,j+1))

END DO
END DO
DO j=1, m

DO =1, n

A(1,)) = B(i,))

END DO
END DO
I Complete communication
DO i=1, 4 /

CALL MPI_WAIT(req(i), status(1.i), ierr) B(1:n,1)  B(lin,m)
END DO

END DO

34



MPI vs OpenMP

w»Which is better — OpenMP or MPI?

35



MPI vs OpenMP
»\Which is better — OpenMP or MPI?

w» OpenMP Is easy!
wBut it hides the communication
» And unintended sharing can lead to tricky bugs
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MPI vs OpenMP *
»\Which is better — OpenMP or MPI?

W OpenMP is easy!
wBut it hides the communication
»And unintended sharing can lead to tricky bugs

»MPI is hard work
»You need to make data partitioning explicit
»No hidden communication
» Seems to require more copying of data

™ |t’s easier to see how to reduce communication and
synchronisation (?)

w Lots of research on better parallel programming
models...



Ch10 part 1 summary: ”
w»Why go multi-core?
mLimits of instruction-level parallelism
mLimits of SIMD parallelism
w Parallelism at low clock rate is energy-efficient
m»How to program a parallel machine?
m Explicitly-managed threads

w Parallel loops
i (many alternatives — dynamic thread pool, agents etc)

m Message-passing (“distributed memory”)
mWhere is the communication?
w»Where is the synchronisation?

w Design of programming models and software tools
for parallelism and locality is major research focus




Additional slides for interest and
context
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Sponsors  U.S. Department of Energy

Operators |IBM

Supercomputers: large distributed-memory machines with fast interconnect Architecture 9,216 POWER9 22-core CPUs
27,648 NVIDIA Tesla V100

Usually (always?) programmed with MPI (and OpenMP, CUDA within each node) GPUS”;]

Power 13 MW!
Man ag ed via batch queue Operating  Red Hat Enterprise Linux

system (RHEL)RI4]
Supported by parallel filesystem Storage 250 PB

) ) Speed 200 petaFLOPS (peak)

Image shows “Summit” —funded by US Dept of Energy. “Fastest computer in the Purpose  Scientific research
world” 2018-2020. Part of 2014 $325M contract with IBM, NVIDIA and Mellanox Website  www.olcf.oml.gov/olcf-resources

https:/iwww.olcf.ornl.gov/2020/08/10/take-a-virtual-tour-of-ornls-supercomputer-center/ R e



Rank

(g

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC922, IBM POWERY 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IEM POWER9S 22C 3.1GHz,

NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

https://www.top500.org/lists/top500/list/2020/11/

Cores

7,630,848

2,614,592

1,572,480

10,649,600

999,020

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

63,460.0

Rpeak
(TFlop/s)

937,212.0

200,794.9

125,712.0

79,215.0

Power
(kW)

29,899

10,096

7,438

15,371

2,646

TOP500 List (Nov
2020)

Rmax and Rpeak
values are in
Gflops

ranked by their
performance on
the

“to solve a dense
system of linear
equations. For
the TOP500, we
used that version
of the
benchmark that
allows the user
to scale the size
of the problem
and to optimize
the software in
order to achieve
the best
performance for
a given machine”


http://www.top500.org/about/linpack
http://www.top500.org/about/linpack

Rank

ol

System Cores
Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

7,630,848

Japan

Summit - IBM Power System AC922, IBM POWERY 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

2,414,592

Sierra - IBM Power System AC922, IBM POWER? 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

1,572,480

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.£5GHz, Sunway, NRCPC
National Supercomputing C

10,649,600

rin Wuxi

China

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

955,520

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
2.2GHz, TH Express-2, Matrix-2000, NUDT
National Super Computer

4,981,760

Center in Guangzhou

China

JUWELS Booster Module - Bull Sequana XH2000, AMD EPYC
7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR
InfiniBand/ParTec ParaStation ClusterSuite, Atos
Forschungszentrum Juelich (FZJ)

449,280

Germany

HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz,
NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC
Eni S.p.A.

Italy

669,760

Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz,
Mellanox InfiniBand HDR, Dell EMC

Texas Advanced Computing Center/Univ. of Texas
United States

448,448

Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, 672,520
NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE
Saudi Aramco

Saudi Arabia

Rmax
[TFlop/s)

4£2,010.0

148,600.0

94,640.0

93,0146

63,460.0

61,6445

44,1200

35,4500

23916.4

22,600.0

Rpeak
(TFlop/s)

537,212.0

200,794.9

125,435.9

79,215.0

100,678.7

70,980.0

51,7208

38,7459

55,623.6

Power
(kW)

29,899

10,096

7,438

15,371

2,646

18,482

1,764

2,252

Rank

20

System

Marconi-100 - IBM Power System AC922, IBM POWER? 16C
3GHz, Nvidia Volta V100, Dual-rail Mellanox EDR Infiniband,
IBM

CINECA

Italy

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries
interconnect , NVIDIA Tesla P100, Cray/HPE

Swiss National Supercomputing Centre (CSCS)
Switzerland

Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon
Phi 7250 68C 1.4GHz, Aries interconnect, Cray/HPE
DOE/NNSA/LANL/SNL

United States

Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570
M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2,
Infiniband EDR, Fujitsu

National Institute of Advanced Industrial Science and
Technology (AIST)

Japan

SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174
24C 3.1GHz, Intel Omni-Path, Lenovo

Leibniz Rechenzentrum

Germany

Hawk - Apollo 9000, AMD EPYC 7742 64C 2.25GHz, Mellanox
HDR Infiniband, HPE

HLRS - Héchstleistungsrechenzentrum Stuttgart

Germany

Lassen - IBM Power System AC922, IBM POWER? 22C
3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla
V100, IBM / NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

PANGEA III - IBM Power System AC922, IBM POWER9 18C
3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta
GV100, IBM

Total Exploration Production

France

TOKI-SORA - PRIMEHPC FX1000, A64FX 48C 2.2GHz, Tofu
interconnect D, Fujitsu

Japan Aerospace eXploration Agency

Japan

Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries
inter , Cray/HPE

DOE/SC/LBNL/NERSC

United States

Cores

347,776

387,872

979,072

391,680

305,856

698,880

288,288

291,024

276,480

622,336

Rmax
[TFlop/s)

21,640.0

21,230.0

20,198.7

19,880.0

19,476.6

19,334.0

18,200.0

17,860.0

16,592.0

14,0147

Rpeak
[TFlop/s)

29,3540

27,1563

325766

26,8739

25,159.7

23,047.2

19,464.2

27,880.7

Power
(kw)

1,476

2,384

7,578

1,649

3,906

1367

3,939

TOP500 List (Nov
2020)

Rmax and Rpeak
values are in
Gflops

ranked by Rmax
- performance on
the

“to solve a dense
system of linear
equations. For
the TOP500, we
used that version
of the
benchmark that
allows the user
to scale the size
of the problem
and to optimize
the software in
order to achieve
the best
performance for
a given machine”

https://www.top500.org/lists/top500/1ist/2020/11/
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Rank

System

United States

num 8480C 48C 2GHz,

Eagle - Mic

nd NDR, Microsoft

Finland

Leonardo - BullS
32 z, NVIDIA A100

d, EVIDEN

DOE, k Ridge National Laboratory
United States

MareNostrum 5 ACC - B

Eos NVIDIA DGX SuperPOD - NVIDIA DG
Platinum 8480C 56C 3.86Hz, NV

DIA H100, Infiniband

NVIDIA Co

United States

IBM / NVIDIA / Mellanox

United States

Cores

8,699,904

4,742,808

1,123,200

7,630,848

2,752,704

1,824,768

2,614,592

680,960

485,388

1,572,480

Rmax
(PFlop/s)

1,194.00

585.34

561.20

442.01

379.70

238.70

148.60

138.20

121.40

94.64

Rpeak
[PFlop/s)

1,679.82

1,059.33

846.84

531.21

23151

304.47

200.79

265.57

188.65

125.71

Power
(kw)

22,703

24,687

29,899

7,107

7,404

10,096

2,560

7,438

20

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Perlmutter - HPE Cray EX 235n, AMD EPYC 7763 64C
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-11, HPE
DOE/SC/LBNL/NERSC

United States

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2
12C 2.2GHz, TH Express-2, Matrix-2000, NUDT
National Super Computer Center in Guangzhou

China

Explorer-WUS3 - ND96_amsr_MI200_v4, AMD EPYC 7V12
48C 2.45GHz, AMD Instinct MI250X, Infiniband HDR,
Microsoft Azure

West US3

United States

ISEG - Gigabyte G593-SD0, Xeon Platinum 8468 48C
2.1GHz, NVIDIA H100 SXM5 80 GB, Infiniband NDR400,
Nebius Al

Nebius

Netherlands

Adastra - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

Grand Equipement National de Calcul Intensif - Centre
Informatique National de I'Enseignement Suprieur
[GENCI-CINES)

France

JUWELS Booster Module - Bull Sequana XH2000 , AMD
EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR
InfiniBand/ParTec ParaStation ClusterSuite, EVIDEN
Forschungszentrum Juelich (FZJ)

Germany

MareNostrum 5 GPP - ThinkSystem SD650 v3, Xeon
Platinum 03H-LC 56C 1.7GHz, Infiniband NDR200, Lenovo
EuroHPC/BSC

Spain

Shaheen Il - CPU - HPE Cray EX, AMD EPYC 9654 96C
2.4GHz, Slingshot-11, HPE

King Abdullah University of Science and Technology
Saudi Arabia

10,649,600

888,832

555,520

4,981,760

445,440

218,880

319,072

449,280

725,760

877,824

93.01

79.23

63.46

61.44

53.96

46.54

46.10

4412

40.10

35.66

125.44

113.00

79.22

100.68

86.99

86.79

61.61

70.98

46.37

39.61

- TOPS500 List (Nov

15,371 2023)
- Rmax and Rpeak
e values are in Gflops
- ranked by Rmax -
240 performance on the

- “to solve adense
system of linear
equations. For the
TOP500, we used
that version of the
benchmark that

1320 allows the user to

scale the size of the

problem and to
optimize the

921
software in order to
achieve the best
performance for a
given machine”

1,764

5,753

5,301

1p500.org/lists/top500/1ist/2020/11/
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Google datacentres https://datacenterfrontier.com/inside-a-google-data-center-2020-version/



What are parallel computers used for?
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Data Centers

http://www.coloandcloud.com/wp-content/uploads/2011/12/Quincy-Data-Center-Facilities-1024x634.jpg



Kolos datacentre, at Ballangen (Norway), inside the Arctic circle. Not yet built —
planned to expand to 600,000m? and 1,000MW, using cheapest electricity in Europe

https://kolos.com/




Cerebras CS-1

« 1.2 trillion transistors (cf largest GPUs,
FPGAs, Graphcore etc ca. 30 billion)

« (Ca.400,000 processor cores

- Ca.1l8GB SRAM

e TDP ca.l7KW

« SRAM-to-core bandwidth “9 petabytes/s”

 Claimed 0.86PFLOPS (partially reduced
precision floating point) on stencil CFD
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5
Student question: Cache misses due to successive parallel loops

How to program a parallel computer’

Q: you mention that the accesses to A[i,j-1] and A[i,j] in the last line of Shared mamory makes prael
the second loop will cause cache misses. Please could you elaborate on T oo
this? Do we get cache misses because of the data that was allocated

* First loop operates on rows in parallel

into the cache during the execution of the first loop? Secondloop perates oncolumnein |

* With distributed memory we would
have to program message passing to
transpose the array in between

* With shared memory... no problem!

« The first loop nest assigns to array A; the second one reads from it.

« Let's suppose that the first "par_for" loop runs on four cores - if M=100, then core0 might get
iterations j=0:24, corel: 25:49, core3: 50:74, core 3: 75:99.

« When core0 executes the store instructions for the assignment "A[i,j] = (A[i-1,j] + A[i,j1)*0.5;", it
acquires ownership of the cache line on which A[i,j] falls. In fact core0 is going to acquire all the
cache lines on which elements A[i,0:24] lie. Core1 will acquire A[i,24:49], etc.

« Now consider the second loop nest. This time we parallelise over i - so if N=10, core0 will get
iterations i=0:2, core1: 3:5, core2: 6:8, core3: 9:11.

« Now core0 is going to read all 100 elements of each of the rows of A that it needs - that is,

Ali,0:99]. Sois corel, ditto core2, core3. So core0 will broadcast read requests for the whole row,

and all the snooping cache controllers will be involved in providing this data.
« The same will happen with the other cores - there will be a storm of read requests.

Incidentally, if you were programming this with MPI, you could use an MPI_Broadcast() operation to achieve this effect much more

efficiently. You might wonder whether there is some way to achieve the effect of such a broadcast in a cache coherency protocol; see

Sarah Talbot's PhD work, Using proxies to reduce controller contention in large shared-memory multiprocessors

2



https://link.springer.com/content/pdf/10.1007/BFb0024734.pdf
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