
1

November 2023

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd, 4th and 5th

eds), and on the lecture slides of David Patterson, John Kubiatowicz and
Yujia Jin at Berkeley

Advanced Computer Architecture

Chapter 10 – Multicore, parallel, and cache
coherency

Part 3:

Atomic operations, concurrency control primitives,
and memory consistency models

3

What you should get from this
Parallel systems architecture is a vast topic, and we can only scratch the
surface. The critical things I hope you will learn from this very brief
introduction are:

Why power considerations motivate multicore

Why is shared-memory parallel programming attractive?

How is dynamic load-balancing implemented?

Why is distributed-memory parallel programming harder but more
likely to yield robust performance?

What is the cache coherency problem

There is a design-space of “snooping” protocols based on
broadcasting invalidations and requests

How are atomic operations and locks implemented?

Eg load-linked, store conditional

What is sequential consistency?

Why might you prefer a memory model with weaker consistency?

For larger systems, some kind of “directory” is needed to avoid/reduce
the broadcasting

P
a
rt

 3

4

Synchronization and atomic operations
Why Synchronize?

We need to know when it is safe for different
processes to use shared data

Issues for Synchronization:

We need some kind of uninterruptable primitive to fetch
and update memory (atomic operation)

We can build user level synchronization operations using
this primitive (lock/unlock, barrier, fetch-and-add, etc)

Synchronization can be a bottleneck – we need:

Fast non-contended path

Efficient in the high-contention case

fair
Hennessy and

Patterson 6th ed

section 5.5 pp412

5

Uninterruptable operations to Fetch from and Update Memory

Historically there have been several different atomic primitives
directly implemented in hardware - eg

Test-and-set: tests a value and sets it if the value passes the
test

Fetch-and-increment: it returns the value of a memory location
and atomically increments it

0 => synchronization variable is free

Atomic exchange: interchange a value in a register for a value in
memory

For example you could use atomic exchange to implement a lock:

0 => synchronization variable is free

1 => synchronization variable is locked and unavailable

Set register to 1 & swap

New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)

1 if other processor had already claimed access

Key is that exchange operation is indivisible

6

Uninterruptable operations to Fetch from and Update Memory

Test-and-set

Fetch-and-increment

Atomic exchange

These operations all consist of a load
and a store, that must be executed
indivisibly

This is plausible in a single-core
machine

This is plausible if implemented in the
memory

• Eg in a GPU

But how can we do this efficiently in
a multicore processor with a cache
coherency protocol?

7

Atomics in GPUs

GPUs generally
have no cache
coherency
protocol for the
L1 caches

So atomic
operations on
global memory
have to be
handled in the L2
cache controllers

Understanding and Using Atomic Memory Operations Lars Nyland & Stephen Jones, NVIDIA GTC 2013

https://on-demand.gputechconf.com/gtc/2013/presentations/S3101-Atomic-Memory-Operations.pdf

Accelerating Atomic Operations on GPGPUs Sean Franey and Mikko Lipasti

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1081.2165&rep=rep1&type=pdf

8

How can we implement an uninterruptable instruction to Fetch and
update memory in a cache-coherent multicore?

Hard to have read & write in one instruction - so use two instead

Load linked (or load locked) + store conditional

Load linked returns the initial value

Store conditional returns 1 if it succeeds

Succeeds if there has been no other store to the same memory
location since the preceding load) and 0 otherwise

Ie if no invalidation has been received

Example: using LL/SC to do atomic exchange:
 try: mov R3,R4 ; mov exchange value

 ll R2,0(R1) ; load linked
 sc R3,0(R1) ; store conditional
 beqz R3,try ; branch store fails (R3 = 0)
 mov R4,R2 ; put load value in R4

Example: fetch & increment:
 try: ll R2,0(R1) ; load linked

 addi R2,R2,#1 ; increment (OK if reg–reg)
 sc R2,0(R1) ; store conditional
 beqz R2,try ; branch store fails (R2 = 0)

LL and SC are used on RISCV, Alpha, ARM, MIPS, PowerPC

Eg see https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf pg 48

Implementation:

Check that no

invalidation for the

target line has

been received

This idea

generalises to

…transactions...

EXCH

Fetch-and-inc

Confusing to reuse

https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf

9

User level synchronization operations using exchange

Spin locks: processor continuously tries to acquire, spinning
around a loop trying to get the lock

 li R2,#1
 lockit: EXCH R2,0(R1) ;atomic exchange
 bnez R2,lockit ;already locked?

What about in a multicore processor with cache coherency?
Want to spin on a cache copy to avoid keeping the memory busy

Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all other
copies; this generates considerable bus traffic

Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):

 try: li R2,#1
 lockit: lw R3,0(R1) ;load var
 bnez R3,lockit ;not free=>spin
 EXCH R2,0(R1) ;atomic exchange
 bnez R2,try ;already locked?

What happens when a lock is released when many cores are spinning on the
lock?

How much data moves? Who wins?

10

ticketLock_init(int *next_ticket, int *now_serving)

{

 *now_serving = *next_ticket = 0;

}

ticketLock_acquire(int *next_ticket, int *now_serving)

{

 my_ticket = fetch_and_inc(next_ticket);

 while (*now_serving != my_ticket) {} // Spin

}

ticketLock_release(int *now_serving)

{

 ++*now_serving;

}

Fairness: ticket locks

Ticket lock: explicitly hand off access to the next in line

11Lock behaviour with high core
counts

Ticket locks are better but still behave really badly in bad cases.
For better answers, see:

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris and Nickolai Zeldovich, “Non-
Scalable Locks are Dangerous”, in Proceedings of Linux Symposium (OLS2012):121-
132. https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf

“A scalable lock is one that generates a constant

number of cache misses per acquisition and

therefore avoids the collapse that non-scalable

locks exhibit. All of these locks maintain a queue

of waiters and each waiter spins on its own queue

entry.”

FOPS: creates a single file and starts one process on each
core. Each thread repeatedly opens and closes the file.

EXIM is a mail server. A single master process listens for
incoming SMTP connections via TCP and forks a new
process for each connection, which accepts the incoming
message.

For example:

• MCS lock maintains an explicit queue of qnode structures

• A core acquiring the lock adds itself with an atomic

instruction to the end of the list of waiters by having the

lock point to its qnode,

• and then sets the next pointer of the qnode of its

predecessor to point to its qnode

• If the core is not at the head of the queue, then it spins on

its qnode.

https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-locks.pdf

12

Memory Consistency Models
What is consistency? When must a processor see the new
value? e.g. consider:

 P1: A = 0; P2: B = 0;

 A = 1; B = 1;
 L1: if (B == 0) ... L2: if (A == 0) ...

 Impossible for both if statements L1 & L2 to be true?

What if write invalidate is delayed & processor continues?

Different processor families implement different memory
consistency models

Sequential consistency: result of any execution is the same
as if the accesses of each processor were kept in order and
the accesses among different processors were interleaved
=> assignments before ifs above

SC: delay all memory accesses until all invalidates done

Thread 1 Thread 2

Hennessy and

Patterson 6th ed

section 5.6 pp417

13Memory Consistency Models
Weak consistency can be faster than sequential consistency

Several processors provide fence instructions to enforce
sequential consistency when an instruction stream passes such a
point. Expensive!

Not really an issue for most programs if they are explicitly
synchronised

A program is synchronised if all access to shared data are ordered by
synchronisation operations

 write (x)
 ...
 release (s) {unlock}
 ...
 acquire (s) {lock}
 ...
 read(x)

Only those programs willing to be nondeterministic are not
synchronised: programs with “data races”

There are several variants of weak consistency, characterised by
attitude towards: RAR, WAR, RAW, WAW to different addresses

14

Summary and Conclusions
Shared memory parallel programs must synchronise

Synchronisation primitives can be executed either

at the memory (as seen in GPUs)

On in the CPU – but this leads to issues cache coherency traffic when spinning,
and when a contended lock is released

While older ISAs offer test&set, compare-and-swap and atomic exchange as
primitives, these are hard to implement

Load-linked, store-conditional provides a solution that is easy to implement on a
cache-coherent CPU

Key idea: operation only succeeds if no invalidation occurs in-between

Test-and-test-and-set reduces contention for cache line ownership when spinning

Ticket locks provide fairness

Scalable locks limit coherency traffic on lock release

Weak coherency results from not wanting to stall until invalidation is acknowledged

Weak memory consistency models mean processes cannot reliably observe ordering
of remote events unless explicit synchronisation takes place

	Default Section
	Slide 1
	Slide 3

	Untitled Section
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Untitled Section
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

