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A little bit about my research

A little bit of history

A bit about how our algorithms textbooks are wrong/misguided

A bit about how our architecture textbooks are wrong/misguided

A bit about how our compilers textbooks are wrong/misguided

The book I should be writing

It’s all about skiing

“Turing Tariff” Reduction: architectures, compilers 

and languages to break the universality barrier

This is not a 
research talk

It’s a polemic 

Whose purpose 
is to provoke 
discussion







Firedrake is 
used in:

Thetis: 
unstructured 
grid coastal 
modelling 
framework

What is it used for?  By whom?



• Estuary of the River Severn: huge tidal energy 
opportunity

• Significant causes for concern over ecological impact

• Should we do it?  How?  Where? How much energy? 
How much impact?

•https://doi.org/10.1016/j.apenergy.2009.11.024

https://doi.org/10.1016/j.apenergy.2009.11.024
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• Should we do it?  How?  Where? How much energy? 
How much impact?

•https://doi.org/10.1016/j.apenergy.2009.11.024

Tidal barrage simulation using Thetis (https://thetisproject.org/)

https://doi.org/10.1016/j.apenergy.2009.11.024
https://thetisproject.org/


Firedrake is 
used in:

Gusto: 
atmospheric 
modelling 
framework 
being used 
to prototype 
the next 
generation 
of weather 
and climate 
simulations 
for the UK 
Met Office

Three-dimensional simulation of a thermal rising through 
a saturated atmosphere. From A Compatible Finite 
Element Discretisation for the Moist Compressible Euler 
Equations (Bendall et al, 
https://arxiv.org/pdf/1910.01857.pdf)

What is it used for?  By whom?

https://arxiv.org/pdf/1910.01857.pdf


Firedrake is 
used in:

Icepack: a 
framework 
for modeling
the flow of 
glaciers and 
ice sheets, 
developed at 
the Polar 
Science 
Center at the 
University of 
Washington 

Larsen ice shelf model, from the Icepack tutorial 
by Daniel Shapero
(https://icepack.github.io/icepack.demo.02-
larsen-ice-shelf.html)

What is it used for?  By whom?

https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html


Firedrake: a finite-
element framework

Automates the finite 
element method for 
solving PDEs

Alternative 
implementation of 
FEniCS language, 100% 
Python using runtime 
code generation

PyOP2: stencil DSL for 
unstructured-mesh

Explicit access descriptors
characterise access footprint of 
kernels

UFL specifies the (weak form of 
the) partial differential equation 
and how it is to be discretised

Compiler generates PyOP2 
kernels and access descriptors

PyOP2

Non-FE loops 
over the mesh

UFL “Two-
stage” Form 

Compiler

Unified Form 
Language

Multicore
Manycore

/GPU

Future/

other

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016

In 
production

In 
development

Some prototyping

Loo.py loop transformations

GEM: tensor 
contractions

GEM: abstract representation 
supports efficient flop-reduction 
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2 
implementation 

Loo.py representation

https://www.firedrakeproject.org/

https://www.firedrakeproject.org/


Firedrake’s sibling 
project “Devito” 
automates the 
finite difference
method

Architecture and performance of Devito, a system for 
automated stencil computation.  Fabio Luporini, Michael 
Lange, Mathias Louboutin, Navjot Kukreja, Jan 
Hückelheim, Charles Yount, Philipp Witte, Paul H. J. 
Kelly, Felix J. Herrmann, Gerard J. Gorman.  ACM TOMS 
(accepted). https://arxiv.org/abs/1807.03032https://www.devitoproject.org/

2D diffusion operator from tutorial https://www.devitoproject.org/

https://arxiv.org/search/cs?searchtype=author&query=Luporini%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Louboutin%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Kukreja%2C+N
https://arxiv.org/search/cs?searchtype=author&query=H%C3%BCckelheim%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Yount%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Witte%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Kelly%2C+P+H+J
https://arxiv.org/search/cs?searchtype=author&query=Herrmann%2C+F+J
https://arxiv.org/search/cs?searchtype=author&query=Gorman%2C+G+J
https://arxiv.org/abs/1807.03032
https://www.devitoproject.org/
https://www.devitoproject.org/


PyOP2/OP2

Unstructured-mesh stencils

GiMMiK

Small-matrix multiplication

Firedrake

Finite-element

SLAMBench2

Dense SLAM – 3D vision

PRAgMaTIc

Dynamic mesh adaptation

TINTL

Fourier interpolation 
Unsteady 
CFD - higher-
order flux-
reconstruction

Finite-volume 
CFD

Real-time 3D 
scene 
understanding

Adaptive-
mesh CFD

Ab-initio 
computational 
chemistry 
(ONETEP)

Finite-element

Formula-1, 
UAVs

Aeroengine
turbo-
machinery

Domestic 
robotics, 
augmented 
reality

Tidal turbine 
placement

Solar energy, 
drug design

Weather and 
climate

Software productsContexts Application domains

Generalised
common sub-
expressions

Vectorisation, 
parametric 
polyhedral tiling

Lazy, data-
driven compute-
communicate

Multicore graph 
worklists

Optimisation of 
composite FFT 
operations

Tiling for 
unstructured-
mesh stencils

Technologies

Domain-

specific 

optimisation 

Targetting MPI, 

OpenMP, 

OpenCL, 

Dataflow/

FPGA, from 

HPC to mobile, 

embedded and 

wearable

Runtime code 
generation

Finite-
difference

Devito: finite difference

Glaciers

Hypermapper:

design optimisation

Urban 
masterplanning

Flowsheets

SuperEight

Octtree adaptive mesh for 
dense SLAM



Feynmann: plenty of room at the bottom
…..

December 1959(1959, talk at the American Physical Society)
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>60 years of exponential progress since then

We’re much closer to such limits

Much debate about where they really lie

What is clear is that we’re a lot closer

We are confronted more and more with fundamental physical 
concerns

Particularly wrt communication latency, bandwidth and energy. 



Cf Moore’s Law: 
“circuit density 
doubles every 18 
months”

60 years 
=40x18months 

So Moore’s Law 
would predict 240= 
1012 increase 

25

So where we 
had one vacuum 
tube/valve in 
1959, we might 
expect 10^12 
transistors now Ferranti Computer Systems Ltd Pegasus valve computer circuit board, c. 1964

https://blog.sciencemuseum.org.uk/the-pegasus-computer/

Cerebras co-founder Sean Lie holding the Wafer Scale Engine. 
Image: Cerebras Systems

Ferranti Pegasus (1956-59) Cerebras CS-1 (2020)

1.2 trillion 
transistors

400k cores

18GB 
SRAM

20KW

https://blog.sciencemuseum.org.uk/the-pegasus-computer/
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Algorithmic complexity and scheduling

We teach that access to a hash table is O(1), ie
independent of the size of the hash table

And that it doesn’t matter how you want to 
access your hash table, it’s still O(1)

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
algorithms?



27

Algorithmic complexity and scheduling

We teach that access to a hash table is O(1), ie
independent of the size of the hash table

But the hash table is implemented using a RAM 
distributed 3D space

So wire length increases with RAM size

And caching doesn’t help since access is randomised

Column address decoder

R
o
w

 a
d

d
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s
s
 d

e
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o

d
e
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Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
algorithms?
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Algorithmic complexity and scheduling

We know that matrix-matrix multiply is O(n3)

But in a deep memory hierarchy, access time depends 
on reuse distance

So naïve “for i for j for k” loop nest suffers reuse access 
latency that grows with N

Anecdotally, execution time ~O(n5)

+= ×
i

j

k

k

C A B
for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j]+=A[i][k]*B[k][j]

i j

Each row of A is reused for a series of dot-products

But if the cache is too small, it doesn’t fit

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
algorithms?
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Algorithmic complexity and scheduling

Tiling for cache bounds the reuse distance so that 
reused submatrix fits in cache

With a deep hierarchy we have to do this at every 
level of the cache, recursively

Doing this leads to a big-O performance improvement

Finding schedules with good locality is really an 
algorithmic challenge
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for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)

for (i = 0; i < N; i++)

for (k = kk; k < min(kk+S,N); k++)

for (j = jj; j < min(jj+S, N); j++)

C[i][j] += A[i][k] * B[k][j];

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
algorithms?
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Turing tax tariffs

Alan Turing realised we could use digital technology to 

implement any computable function

He then proposed the idea of a “universal” computing 

device – a single device which, with the right program, can 

implement any computable function without further 

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead 

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a 

special-purpose device and a general-purpose one

One of the fundamental questions of computer 

architecture is to how to reduce the Turing Tax

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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Turing tariffs

Fetch-execute is the original Turing tariff
Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric 

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric 

Registers are a Turing Tariff

Because if we know the program’s dataflow, we can use wires and 

latches to pass data from functional unit to functional unit

Memory

But if we can stream data from where it’s produced to where it’s used, 

maybe we don’t need so much RAM?

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric 

Registers are a Turing Tariff

Because if we know the program’s dataflow, we can use wires and 

latches to pass data from functional unit to functional unit

Memory

But if we can stream data from where it’s produced to where it’s used, 

maybe we don’t need so much RAM?

Cache

If we know exactly when the reuse will occur, we can program 

movement to and from local fast memory explicitly

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric 

Registers are a Turing Tariff

Because if we know the program’s dataflow, we can use wires and 

latches to pass data from functional unit to functional unit

Memory

But if we can stream data from where it’s produced to where it’s used, 

maybe we don’t need so much RAM?

Cache

If we know exactly when the reuse will occur, we can program 

movement to and from local fast memory explicitly

Floating-point arithmetic: 

If we know the dynamic range of expected values…

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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Turing tariffs – how architects pay

Fetch-execute, decode

Registers, forwarding

Dynamic instruction scheduling, cracking, packing, renaming

Cache tags

Cache blocks

Cache coherency

Prefetching

Branch prediction

Speculative execution

Address translation

Store-to-load forwarding, write combining, address decoding, ECC, 

DRAM refresh

Mis-provisioning: unused bandwidth, unusable FLOPs, under-used 

accelerators

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?

Basically the whole 
computer architecture 
textbook
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How architects avoid Turing tariffs

SIMD: amortise fetch-execute over a vector or matrix of operands

VLIW, EPIC, register rotation

Macro-instructions: FMA, crypto, conflict-detect, custom ISAs

Streaming dataflow: FPGAs, CGRAs

Systolic arrays

Circuit switching instead of packet switching

DMA

Predication

Long cache lines

Non-temporal loads/stores, explicit prefetch instructions

Scratchpads

Multi-threading

Message passing

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
architecture
?
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How compilers avoid Turing tariffs

Generating code to avoid the need for interpretive mechanisms in 

hardware:

Vectorisation

Static instruction scheduling

Offloading

Predication

Message aggregation

Synchronisation minimization

Generating code that is specialized for a specific purpose:

Function inlining, type disambiguation, object inlining

Specialisation: metaprogramming, JIT, metatracing

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
compilers?



Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….
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Compilation is like skiing

Suppose 
there were 
no more 
room at the 
bottom

How should 
that change 
how we 
think?

About 
compilers?

http://www.nikkiemcdade.com/subFiles/2DExamples.html
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Compilation is like skiing

General-purpose 

programming 

languages make you 

pay Turing tariffs!

http://www.nikkiemcdade.com/subFiles/2DExamples.html
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Compilation is like skiing

General-purpose 

programming 

languages make you 

pay Turing tariffs!

The real art of 

domain-specific 

compiler 

construction is 

compiler 

architecture: the 

design of the 

representations 

that make hard 

problems easy

http://www.nikkiemcdade.com/subFiles/2DExamples.html
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Computer architecture – the book

David Patterson

John Hennessy

Computer Architecture: A 

Quantitative Approach

Six editions since 1990

Revolutionary landmark 

book brought 

experimental discipline to 

processor design

Almost entirely devoid of 

theory
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Computer architecture – the future?

Computer Architecture

An Asymptotic Approach
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Computer architecture – the future?

Computer Architecture

An Asymptotic Approach

A manifesto

For computer architecture at the end of 

Moore’s Law

Where we confront fundamental physical 

constraints

Where we have to account for fundamental 

costs

Where architectural efficiency is paramount
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Conclusions - propositions

Parallelism is (usually) easy – locality is hard

Don’t spend your whole holiday carrying your skis uphill

Domain-specific compiler architecture is not about 
analysis!  It is all about designing representations, and 
doing the right thing at the right level

When there’s no more room at the bottom, all efficient 
computers will be domain-specific

Design of efficient algorithms will be about designing 
efficient domain-specific architectures

All compilers will have a place-and-route phase

A:

B:

C:

D:

E:

F:
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