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“Turing Tariff” Reduction: architectures, compilers
and languages to break the universality barrier

A little bit about my research

A little bit of history

A bit about how our algorithms textbooks are wrong/misguided
A bit about how our architecture textbooks are wrong/misguided
A bit about how our compilers textbooks are wrong/misguided B It's a polemic
The book | should be writing B Whose purpose

It's all about skiing IS to provoke
discussion

B Thisis not a
research talk
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Firedrake

Documentation Download Team  Citing Publications Events Funding Contact GitHub Jenkins

Firedrake is an automated system for the solution of partial differential equations using the Latest commits to the Firedrake master

finite element method (FEM). Firedrake uses sophisticated code generation to provide branch on Github

mathematicians, scientists, and engineers with a very high productivity way to create

sophisticated high performance simulations. Merge pull request #1520 from
firedrakeproject/wence/feature/assemble-
diagonal

Lawrence Mitchell authored at 22/10/2019,

FeOtU reS: 09:14:34

tests: Check that getting diagonal of matrix
+ Expressive specification of any PDE using the Unified Form Language from the FEnICS works ,
Pro Lawrence Mitchell authored at 21/10/2019,
roject. 13:04:04
» Sophisticated, programmable solvers through seamless coupling with PETSc.

_ ) matfree: Add getDiagonal method to
e Triangular, quadrilateral, and tetrahedral unstructured meshes.

implicit matrices

» Layered meshes of triangular wedges or hexahedra. Lawrence Mitchell authored at 18/10/2019,
« Vast range of finite element spaces. 10:19:48
« Sophisticated automatic optimisation, including sum factorisation for high order assemble: Add option to assemble

diagonal of 2-form into Dat

e'eme”ts_- and vectorisation. Lawrence Mitchell authored at 18/10/2019,
* Geometric multigrid. 10:08:37

» Customisable operator preconditioners. Merge pull request #1509 from

» Support for static condensation, hybridisation, and HDG methods. firedrakeproject/wence/patch-c-wrapper
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Firedrake is an automated system for the solution of partial differential equa
finite element method (FEM). Firedrake uses sophisticated code generation
mathematicians, scientists, and engineers with a very high productivity way
sophisticated high performance simulations.

Features:

+ Expressive specification of any PDE using the Unified Form Languag
Project.

» Sophisticated, programmable solvers through seamless coupling with

e Triangular, quadrilateral, and tetrahedral unstructured meshes.

» Layered meshes of triangular wedges or hexahedra.

» Vast range of finite element spaces.

» Sophisticated automatic optimisation, including sum factorisation for |
elements, and vectorisation.

* Geometric multigrid.

» Customisable operator preconditioners.

» Support for static condensation, hybridisation, and HDG methods.
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E Firedrake Is THETIS & T
used in: e e e ot Gt e

3 Th etis: The Thetis project rC“"e'“ developiment stats |
unstructured

Latest status:
Thetis is an unstructured grid coastal ocean model built using the Firedrake finite element

g ri d CO aStal framework. Currently Thetis consists of 2D depth averaged and full 3D baroclinic models. Thetis source code is hosted on

Github and is being continually tested
Some example animations are shown below. More animations can be found in the Youtube g y

mOdeI | I ng channel. AUSithenkins,
framework

-
(377 Idealized river plume simulation

HET

—
7 Baroclinic eddies test case
T ,

“

bl ne dal Barrage sim on
- ; ];'_ 0

B Whatis it used for? By whom?
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« Estuary of the River Severn: huge tidal energy
opportunity

|+ Significant causes for concern over ecological impact
« Should we do it? How? Where? How much energy?

) W’ﬁ ' How much impact?

» T — -


https://doi.org/10.1016/j.apenergy.2009.11.024
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THETIS

« Estuary of the River Severn: huge tidal energy
opportunity

« Significant causes for concern over ecological impact

« Should we do it? How? Where? How much energy?
How much impact?
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https://doi.org/10.1016/j.apenergy.2009.11.024
https://thetisproject.org/
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B Firedrake iIs
used In:

B Gusto:
atmospheric mmm . :
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i |
framework . 0
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beingused |
0 x / km 10

to prototype | APl

the next e
generation
of weather

and climate

simulations Three-dimensional simulation of a thermal rising through
for the UK a saturated atmosphere. From A Compatible Finite
Met Office Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,

)
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B Whatis it used for? By whom?



https://arxiv.org/pdf/1910.01857.pdf
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# icepack

Docs » icepack View page source

: . icepack
B Firedrake is

- - f Welcome to the documentation for icepack, a python library for modeling the flow of
u Se d I n - Overview

. o . . . )
Background ice sheets and glaciers! The main design goals for icepack are:

E lcepack:a ey
framework
for modeling .-
the flow of B
glaciers and  [—_G

Ice sheets, [
developed at

meters/year

Contributing

the Polar
Science
Center at the
University of
Washington

o < @

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero

(

B Whatis it used for? By whom?



https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html

Firedrake: a finite-

Non-FE loops Unified Form
element fram ework overhe mesh -anguage UFL specifies the (weak form of
o UFL “Two- the) partial differential equation
B Automates the finite stage” Form and how it is to be discretised
element method for compiler Compiler generates PyOP2
Solving PDEs kernels and access descriptors

: GEM: tensor GEM: abstract representation
B Alternative contractions supports efficient flop-reduction

Implementation of optimisations

. SO0 S EE e PyOP2: stencil DSL for
FENICS Ianguage, 100% unstructured-mesh
Python using runtime
code generation

Explicit access descriptors
characterise access footprint of
kernels

1
Loo.py loop transformations B Loo.py: vectorization etc

Distributed MPI-parallel PyOP2
implementation

) Manvcore Future/
Multicore Y
IGPU other
In In Some prototyping
production development

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016


https://www.firedrakeproject.org/

from devito import *

grid = Grid(shape=(nx, ny))

u = TimeFunction(name="'u', grid=grid,
space_order=2)

u.data[@, :] = initial_data[:]

eqn = Equ.dt, a * (u.dx2 + u.dy2))
stencil = solve(eqn, u.forward)

op = Operator(Eq(u.forward, stencil))
op(t=timesteps, dt=dt)

2D diffusion operator from tutorial

Equations lowering
Input Equations — Lowered Equations

v

Local analysis

Enforcement of iteration direction

v

Grouping

v

Clustering
Lowered Equations — Clusters

v

Symbolic optimization [DSE]

Clusters — Clusters

Firedrake’s sibling
project “Devito”
automates the
finite difference
method

Invariants extraction

Shift-invariants detection

Common sub-expressions elimination

|

IET construction
Clusters — IET [abstract syntax tree]

!

IET analysis
IET — IET

!

Declarations

IET optimization [DLE/YLE]
IET — IET

Factorization

Loop blocking

SIMD vectorization

¥

I

Instrumentation for profiling

v

Synthesis
IET = CGen AST — C/C++ string

Header files, globals, macros, ...

!

JIT Compilation

C/C++ string — kernel.c — kernel.so

Shared-memory (hierarchical) parallelism

Low-level optimization
(e.g., sw prefalching)

Architecture and performance of Devito, a system for
automated stencil computation. Fabio Luporini, Michael
Lange, Mathias Louboutin, Navjot Kukreja, Jan
Hickelheim, Charles Yount, Philipp Witte, Paul H. J.

Kelly, Felix J. Herrmann, Gerard J. Gorman. ACM TOMS
(accepted).



https://arxiv.org/search/cs?searchtype=author&query=Luporini%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Louboutin%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Kukreja%2C+N
https://arxiv.org/search/cs?searchtype=author&query=H%C3%BCckelheim%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Yount%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Witte%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Kelly%2C+P+H+J
https://arxiv.org/search/cs?searchtype=author&query=Herrmann%2C+F+J
https://arxiv.org/search/cs?searchtype=author&query=Gorman%2C+G+J
https://arxiv.org/abs/1807.03032
https://www.devitoproject.org/
https://www.devitoproject.org/

Domain-
specific
optimisation

Targetting MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
HPC to mobile,
embedded and
wearable

Vectorisation,
parametric
polyhedral tiling

Tiling for
unstructured-
mesh stencils

Lazy, data-
driven compute-
communicate

Runtime code
generation

Multicore graph
worklists

Generalised
common sub-
expressions

Optimisation of
composite FFT
operations

Technologies

Finite-volume
CFD

Finite-element

Finite-
difference

Real-time 3D

scene
understanding

Adaptive-
mesh CFD

Unsteady
CFD - higher-
order flux-
reconstruction
Ab-initio
computational

chemistry
(ONETEP)

Contexts

Firedrake
Finite-element

Devito: finite difference

PyOP2/0OP2

Unstructured-mesh stencils

SLAMBench2
Dense SLAM — 3D vision

PRAgMaTlc
Dynamic mesh adaptation

GIMMIK
Small-matrix multiplication

TINTL
Fourier interpolation

Hypermapper:
design optimisation

Flowsheets

SuperEight

Octtree adaptive mesh for
dense SLAM

Software products

Aeroengine
turbo-
machinery

Weather and
climate

Glaciers

Domestic
robotics,
augmented
reality

Tidal turbine
placement

Formula-1,
UAVs

Solar energy,
drug design

Urban
masterplanning

Application domains



Feynmann: plenty of room at the hottom

Miniaturizing the computer

I don’t know how to do this on a small scale in a prac-
tical way, but I do know that computing machines are
very large; they fill rooms. Why can’t we make them very
small, make them of little wires, little elements—and by
little, I mean little. For instance, the wires should be
10 or 100 atoms in diameter, and the circuits should be
a few thousand angstroms across.

(1999, talk at the American Physical Society)



Feynmann: plenty of room at the hottom

Miniaturizing the computer

I don’t know how to do this on a small scale in a prac-
tical way, but I do know that computing machines are
very large; they fill rooms. Why can’t we make them very
small, make them of little wires, little elements—and by
little, I mean little. For instance, the wires should be
10 or 100 atoms in diameter, and the circuits should be
few thousand angstroms across.
>60 years of exponential progress since then

We're much closer to such limits
Much debate about where they really lie
What is clear is that we’re a lot closer

We are confronted more and more with fundamental physical
concerns

I N B B e

B Particularly wrt communication latency, bandwidth and energy.
L1Y9Y, [AIK AL e American Pnysical Society)



Ferranti Pegasus (1956-59)

Cerebras CS-1 (2020)

B Cf Moore’s Law:
“circuit density
doubles every 18
months”

B 60 years
=40x18months

B So Moore’s Law
would predict 249=
1014 increase

Ferranti Computer Systems Ltd Pegasus valve computer circuit board, c. 1964 Cerebras co-founder Sean Lie holding the Wafer S
https://blog.sciencemuseum.org.uk/the-pegasus-computer/ Image: Cerebras Systems
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imperial College Algorithmic complexity and scheduling

S e e—
E Suppose B We teach that access to a hash table is O(1), ie

there were Independent of the size of the hash table
e the B And that it doesn’t matter how you want to
bottom access your hash table, it's still O(1)

E How should
that change
how we
think?

E About
algorithms?

26
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London Algorithmic complexity and scheduling

I — . e e—
E Suppose B We teach that access to a hash table is O(1), ie

there were Independent of the size of the hash table

no more . .
room at the I dB_ut t_rl;e hgs:?Dtable IS implemented using a RAM
bottom Istribute space
B So wire length increases with RAM size

E How should B And caching doesn’t help since access is randomised
that change e
hOW we > — umn address decoder
think?

E About

algorithms?

P
[0
e,
o
O
[0
o
0
0
@
S
S
S
IS
=
o
e

27
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
algorithms?

B We know that matrix-matrix multiply is O(n3)

B But in a deep memory hierarchy, access time depends
on reuse distance

B So naive “for i for j for k” loop nest suffers reuse access
latency that grows with N

B Anecdotally, execution time ~O(n>)

C A B
. _ — for (i=0; i<N; i++)
j b . J for (j=0; j<N; j++)
_ — for (k=0; k<N; k++)
= += e X K| i+ =A[il[KI*BKI[i]

B Each row of A Is reused for a series of dot-products
B But if the cache is too small, it doesn't fit
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
algorithms?

for (kk = 0; kk < N; kk += S)
for (j=0;Jj<N;jj+=9S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++)
for (j =Jj; ) <min(j+S, N); j++)
C[i]0] += Al][K] * BLK]DT;
B Tiling for cache bounds the reuse distance so that
reused submatrix fits in cache

B With a deep hierarchy we have to do this at every
evel of the cache, recursively

B Doing this leads to a big-O performance improvement

E Finding schedules with good locality Is really an
algorithmic challenge
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About

architecture
)

B Alan Turing realised we could use digital technology to

Implement any computable function

He then proposed the idea of a “universal” computing
device — a single device which, with the right program, can
Implement any computable function without further
configuration

“Turing Tax”, or “Turing Tariffs”: the overhead N
(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a
special-purpose device and a general-purpose one )

One of the fundamental questions of computer
architecture is to how to reduce the Turing Tax
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Turing tariffs

e e e e ——
B Fetch-execute is the original Turing tariff
B Suppose

there were
no more
room at the
bottom

E How should
that change
how we
think?

B About

architecture
)

33
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Turing tariffs

e e e e ——
B Fetch-execute is the original Turing tariff
B Suppose

there were
no more
room at the
bottom

B FPGAs pay Turing tariffs in the reconfigurable fabric

E How should
that change
how we
think?

B About

architecture
)

34
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Turing tariffs

e e e e ——
B Fetch-execute is the original Turing tariff

B Suppose
there were
NO More - e - :
B FPGASs pay Turing tariffs in the reconfigurable fabric
room at the pay J J
bottom B Registers are a Turing Tariff

B Because if we know the program’s dataflow, we can use wires and

B How should latches to pass data from functional unit to functional unit

that change
how we E Memory

INk?
think’ B But if we can stream data from where it's produced to where it's used,

maybe we don’t need so much RAM?
B About Y

architecture
)

35
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About

architecture
)

B Fetch-execute is the original Turing tariff

B FPGAs pay Turing tariffs in the reconfigurable fabric
B Registers are a Turing Tariff

B Because if we know the program’s dataflow, we can use wires and
latches to pass data from functional unit to functional unit

E Memory

B But if we can stream data from where it's produced to where it’s used,
maybe we don’'t need so much RAM?

B Cache

B If we know exactly when the reuse will occur, we can program
movement to and from local fast memory explicitly
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About

architecture
)

B Fetch-execute is the original Turing tariff

B FPGAs pay Turing tariffs in the reconfigurable fabric
B Registers are a Turing Tariff

B Because if we know the program’s dataflow, we can use wires and
latches to pass data from functional unit to functional unit

B Memory

B But if we can stream data from where it's produced to where it’s used,
maybe we don’'t need so much RAM?

B Cache

B If we know exactly when the reuse will occur, we can program
movement to and from local fast memory explicitly

B Floating-point arithmetic:

B If we know the dynamic range of expected values...
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About

architecture
)

Turing tariffs — how architects pay

Fetch-execute, decode

Registers, forwarding

Dynamic instruction scheduling, cracking, packing, renaming
Cache tags

Cache blocks Basically the whole
Cache coherency computer architecture
Prefetching textbook

Branch prediction

Speculative execution

Address translation

Store-to-load forwarding, write combining, address decoding, ECC,

DRAM refresh

Mis-provisioning: unused bandwidth, unusable FLOPSs, under-used
accelerators
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Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About

architecture
)

SIMD: amortise fetch-execute over a vector or matrix of operands
VLIW, EPIC, register rotation

Macro-instructions: FMA, crypto, conflict-detect, custom ISAs
Streaming dataflow: FPGAs, CGRAs

Systolic arrays

Circuit switching instead of packet switching

DMA

Predication

Long cache lines

Non-temporal loads/stores, explicit prefetch instructions
Scratchpads

Multi-threading

Message passing
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How compilers avoid Turing tariffs
e e e e

B Suppose Generating code to avoid the need for interpretive mechanisms in

there were hardware:

No maore '

room at the B Vectorisation

bottom B Static instruction scheduling
B How should B Offloading

that change B Predication

how we _

think? B Message aggregation

B Synchronisation minimization

E About

compilers?

Generating code that is specialized for a specific purpose:
B Function inlining, type disambiguation, object inlining
B Specialisation: metaprogramming, JIT, metatracing

40



B Suppose
there were
no more
room at the
bottom

E How should
that change
how we
think?

E About
compilers?

Points-to

Syntax

Compilation is like skiing

B Analysis is not always the interesting patrt....

I's more fun the higher you start!

http://www.nikkiemcdade.com/subFiles/2DExamples.html



http://www.nikkiemcdade.com/subFiles/2DExamples.html

B General-purpose

nay

programming
anguages make you

uring tariffs!

Syntax

Compilation is like skiing

B Analysis is not always the interesting patrt....

It's more fun the higher you start!

.nikkiemcdade.com/subFiles/2DExamp

http://Awww.



http://www.nikkiemcdade.com/subFiles/2DExamples.html

B General-purpose
programming
anguages make you
pay Turing tariffs!

B The real art of
domain-specific
compiler
construction is A\
compiler
arc h itectu re: th e B Analysis is not always the interesting part....

i B It's more fun the higher you start!
design of the
representations
that make hard
problems easy

B Compilation is like skiing
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Computer architecture — the book

B Computer Architecture: A
Quantitative Approach

~~~~~~~~~ B Six editions since 1990

... ERevolutionary landmark

wciicione book brought
experimental discipline to

processor design

David Patterson

E Almost entirely devoid of
theory

John Hennessy
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Computer architecture —the future?

COMPUTER COMPUTER
ARCMITECTURE ARCHITECTURE
A

Computer Architecture

A
QUANTITATIVE
AIPRDACH

COMPUTER

l : ARCHITECTUR
H' A Quantitative Approc

‘g
&

COMPUTER
ARCHITECTURE

A Quantitative Approach

An A

45
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COMPUTER COMPUTER
ARCMITECTURE ARCHITECTURE
A

A
QUANTITATIVE QUANTITATIVE
ATPRDACH iP ACH

COMPUTER

l : ARCHITECTUR
H‘ A Quantit roac

A manifesto

For computer architecture at the end of
Moore’s Law

Where we confront fundamental physical
constraints

Where we have to account for fundamental
costs

Where architectural efficiency is paramount

COMPUTER
ARCHITECTURE

A Quantitative Approach

:
&

Computer architecture —the future?

Computer Architecture

An A
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