
1

The "Turing Tax" - reducing the interpretive bottleneck

in computer architecture

UK Design Forum, Manchester, June 2025
Paul H J Kelly

Group Leader, Software Performance Optimisation

Department of Computing, Imperial College London

David Ham (Imperial Maths), Andy Davison (Imperial Computing), Lawrence Mitchell (NVIDIA),Gerard Gorman (Imperial Earth Science Engineering), Peter

Vincent (Imperial Aeronautics), Wayne Luk (Imperial Computing), Piotr Dudek (Manchester), Jim Whittaker (Huawei), Vassilios Chouliaras (Huawei), Martin

Berger (Montanarius), Sam Ainsworth (Edinburgh) and more

Luke Panayi, Jacky Wong, Nicholas Fry, Shinjeong Kim, Edward Stow, Yuncheng Lu, Shuang Liang, Riku Murai, George Bisbas

Eduardo Carvalho (Valantis Labs), Marius Koch (NVIDIA), Navjot Kukreja (Senapt), Philippos Papaphilippou (U. Southampton), Edward Stow (TBC),

Matthew Taylor, Sophia Vorderwuelbecke, Fabio Luporini (DevitoCodes), Graham Markall (NVIDIA), Florian Rathgeber (Google), Francis Russell (Quaisr),

George Rokos (Intel), Tianjiao Sun (Orbit Markets), Thanasis Konstantinides (Cerebras), Carlo Bertolli (AMD), Doru Bercea (AMD), Michael Lange

(ECMWF), Sajad Saeedi (UCL), Luigi Nardi (DBTune/Lund University), Navjot Kukreja (Senapt), Emanuele Vespa (Magic Leap), Miklos Homolya and more

Mike Giles (Oxford), Gihan Mudalige (Warwick), Istvan Reguly (Pazmany Peter, Hungary), Matt Piggott (Imperial ESE), Spencer Sherwin, Chris Cantwell

(Imperial Aero), Michelle Mills Strout (University of Arizona/HPE), Chris Krieger (Maryland), Cathie Olschanowsky (Colorado State University), Bruno Bodin

(Yale-NUS), Richard Veras, Ram Ramanujam (Louisiana State University), Doru Thom Popovici (LBL), Franz Franchetti (CMU), Jan Hückelheim (Argonne),

Freddie Witherden (Texas A&M), Chris–Kriton Skylaris (Southampton) Ridgway Scott (U Chicago), Lluis Guasch (Imperial Earth Science Engineering)
1

This talk includes work

done by or influenced by:

And affiliated

postdocs/PhD students:

And by group

alumni:

And by collaborators:

Feynmann: plenty of room at the bottom
…..

December 1959(1959, talk at the American Physical Society)

>60 years of exponential progress since then

We’re much closer to such limits

Much debate about where they really lie

What is clear is that we’re a lot closer

We are confronted more and more with fundamental physical
concerns

Particularly wrt communication latency, bandwidth and energy.
https://en.wikipedia.org/wiki/There's
_Plenty_of_Room_at_the_Bottom

“…I do know that computing machines are very
large; they fill rooms. Why can’t we make them
very small, make them of little wires, little
elements – and by little, I mean little? For
instance, the wires should be 10 or 100 atoms in
diameter, and the circuits should be a few
thousand angstroms across”

Moore’s Law:
“circuit density
doubles every 18
months”

60 years
=40x18months

So Moore’s Law
would predict 240=
1012 increase

11

So where we
had one vacuum
tube/valve in
1959, we might
expect 10^12
transistors now Ferranti Computer Systems Ltd Pegasus valve computer circuit board, c. 1964

https://blog.sciencemuseum.org.uk/the-pegasus-computer/

Cerebras co-founder Sean Lie holding the
Wafer Scale Engine. Image: Cerebras Systems

Ferranti Pegasus (1956-59) Cerebras CS-1 (2020)

1.2 x 1012
transistors

400k cores

18GB SRAM

17-20KW
TDP

C
a
.1
0
”

https://blog.sciencemuseum.org.uk/the-pegasus-computer/
https://blog.sciencemuseum.org.uk/the-pegasus-computer/
https://blog.sciencemuseum.org.uk/the-pegasus-computer/
https://blog.sciencemuseum.org.uk/the-pegasus-computer/
https://blog.sciencemuseum.org.uk/the-pegasus-computer/

18

Turing tax tariffs

Alan Turing realised we could use digital technology to

implement any computable function

He then proposed the idea of a “universal” computing

device – a single device which, with the right program, can

implement any computable function without further

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a

special-purpose device and a general-purpose one

One of the fundamental questions of computer

architecture is to how to reduce the Turing Tax

19

Turing tax tariffs

Alan Turing realised we could use digital technology to

implement any computable function

He then proposed the idea of a “universal” computing

device – a single device which, with the right program, can

implement any computable function without further

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a

special-purpose device and a general-purpose one

One of the fundamental questions of computer

architecture is to how to evade the Turing Tax

20

Turing tax tariffs

Alan Turing realised we could use digital technology to

implement any computable function

He then proposed the idea of a “universal” computing

device – a single device which, with the right program, can

implement any computable function without further

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a

special-purpose device and a general-purpose one

One of the fundamental questions of computer

architecture is to how to reduce the Turing Tariffs

21

•21

•22

https://www.pong-
story.com/LAWN_
TENNIS.pdf

Circuit
diagram
for Atari’s
Pong
game

Designed by
Allan Alcorn in
around 1972

Alcorn hired
Steve Jobs in
1974

7490 TTL IC:
“decade
counter” for
tracking the
score (ca.45
transistors)

Ball-paddle
collision
detect

24

~2300 transistors

Circuit diagram for the first commercially-available microprocessor, Intel’s 4004 (1971)

https://www.4004.com/•24

https://www.4004.com/

26

So how big is the Turing Tax?

Suppose you have a job that you can do on a single
CPU core

But you invest in a fully-specialised ASIC instead

How much faster?

How much smaller?

How much less energy?

27

Example: H264 encoding

2010 article: Hameed, Qadeer, Wachs,
Azizi, Solomatnikov, Lee, Richardson,
Kozyrakis & Horowitz: Understanding
sources of inefficiency in general-
purpose chips. ISCA’10

Intel’s hand-coded
implementation of H.264
encoding for Pentium 4 for
1280x720 HD:

11fps

122mm2

2023mJ/frame

ASIC implementation of H.264
encoding for 1280x720 HD:

30fps

8mm2

4mJ/frame

(Chen, Chien, Huang, Tsai, Chen,
Chen, & Chen: Analysis and
architecture design of an HDTV720p
30 frames/s H.264/AVC encoder.
IEEE Trans. Cir. and Sys. for Video
Technol. 16, 6 (September 2006))

35

Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the

reconfigurable fabric

Cache

If we know exactly when the

reuse will occur, we can

program movement to and

from local fast memory

explicitly

Floating-point arithmetic:

If we know the dynamic range

of expected values…

Registers are a Turing Tariff

Because if we know the program’s

dataflow, we can use wires and

latches to pass data from functional

unit to functional unit

Memory

But if we can stream data from where

it’s produced to where it’s used,

maybe we don’t need so much RAM?

36

Turing tariffs – how architects pay

Fetch-execute, decode

Registers, forwarding

Dynamic instruction scheduling, cracking, packing, renaming

Cache tags

Cache blocks

Cache coherency

Prefetching

Branch prediction

Speculative execution

Address translation

Store-to-load forwarding, write combining, address decoding, ECC,

DRAM refresh

Mis-provisioning: unused bandwidth, unusable FLOPs, under-used

accelerators

Basically the whole
computer architecture
textbook

38

How architects avoid Turing tariffs

SIMD: amortise fetch-execute over a

vector or matrix of operands

Predication, VLIW, EPIC, register

rotation

Macro-instructions: FMA, crypto,

conflict-detect, custom ISAs

Streaming dataflow: FPGAs, CGRAs,

systolic arrays

Circuit switching instead of packet

switching

DMA, long cache lines: move a lot of

data with one instruction

Non-temporal loads/stores, explicit

prefetch instructions

Scratchpads (“shared memory” in CUDA)

Message passing, instead of cache-

coherent shared memory

Texture caches, interpolation,

decompression

Fine-grain multithreading to avoid pipeline

hazards, hide latency

And many more ideas…. Your

ideas?

39

How compilers avoid Turing tariffs

Generating code to avoid the need

for interpretive mechanisms in

hardware:

Vectorisation

Static instruction scheduling

Offloading

Predication

Message aggregation

Synchronisation minimization

Generating code that is

specialized for a specific

purpose:

Function inlining, type

disambiguation, object

inlining

Specialisation:

metaprogramming, JIT,

metatracing

What about
compilers
?

Is there a
Turing Tax
for
compilers
too?

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•40

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•44

What about
compilers?

The price you
pay for
coding in a
general-
purpose
language

When you
could have
used a DSL

56

Computer architecture – the book

David Patterson

John Hennessy

Computer Architecture: A

Quantitative Approach

Six editions since 1990

Revolutionary landmark

book brought

experimental discipline to

processor design

Almost entirely devoid of

theory

58

Computer architecture – the future?

Computer Architecture

An Asymptotic Approach

A manifesto

For computer architecture at the end of

Moore’s Law

Where we confront fundamental physical

constraints

Where we have to account for

fundamental costs

Where architectural efficiency is

paramount h
tt

p
s
:/

/c
o

m
m

o
n

s
.w

ik
im

e
d

ia
.o

rg
/w

ik
i/
F

ile
:Z

e
n

o
P

la
in

.p
n

g

(Statue is of Zeno of Citium, perhaps the patron saint of asymptotics)

68

Acknowledgements

Partly funded by

UKRI On-Sensor Computer Vision EP/Y020499/1

UKRI Reliable and Robust Quantum Computing EP/W03221X/1

UKRI SysGenX: Composable software generation for system-level simulation at Exascale
EP/W026066/1

UKRI Efficient Cross-Domain DSL Development for Exascale EP/W007789/1

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

UKRI Gen X: ExCALIBUR working group on Exascale continuum mechanics through code
generation (EP/V001493/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PRISM” Platform Grants (EP/I006761/1, EP/R029423/1)

EPSRC “Custom Computing” Platform Grant (EP/I012036/1)

AMD, ARM, Arup, Codeplay, Huawei, IBM, Maxeler Technologies, Microsoft, VMWare

	Default Section
	Slide 1
	Slide 10: Feynmann: plenty of room at the bottom
	Slide 11
	Slide 18: Turing tax tariffs
	Slide 19: Turing tax tariffs
	Slide 20: Turing tax tariffs
	Slide 21
	Slide 22
	Slide 24: ~2300 transistors
	Slide 26
	Slide 27: Example: H264 encoding
	Slide 35: Turing tariffs
	Slide 36: Turing tariffs – how architects pay
	Slide 38: How architects avoid Turing tariffs
	Slide 39: How compilers avoid Turing tariffs
	Slide 40
	Slide 44

	Untitled Section
	Slide 56: Computer architecture – the book
	Slide 58: Computer architecture – the future?

	Untitled Section
	Slide 68: Acknowledgements

