
1

Attributed Relational Graphs for Cell Nucleus
Segmentation in Fluorescence Microscopy Images:

Supplementary Material
Salim Arslan, Student Member, IEEE, Tulin Ersahin, Rengul Cetin-Atalay,

and Cigdem Gunduz-Demir*, Member, IEEE

Abstract—More rapid and accurate high-throughput screening
becomes possible with the development of automated microscopy
imaging, for which cell nucleus segmentation commonly consti-
tutes the core step. This technical report contains the supplemen-
tary material for the model-based algorithm that we developed
for segmenting cell nuclei in fluorescence microscopy images [1].

Index Terms—Nucleus segmentation, model-based segmenta-
tion, fluorescence microscopy imaging, graph, attributed rela-
tional graph.

I. INTRODUCTION

WE recently developed a model-based segmentation
algorithm, which we called ARGraphs [1]. In that

work, we compared our algorithm against three different
methods: adaptive h-minima [2], conditional erosion [3], and
iterative voting [4]. We selected the external parameters of
each comparison method as follows: we first listed a set of
values for each of the method’s parameters, considered all
possible combinations of the values of different parameters,
and selected the combination that gave the best F-score for
the training nuclei. In this technical report, we briefly explain
the external parameters of the comparison methods along with
the analysis of their effects on the segmentation performance.
This analysis for our proposed algorithm can be found in [1].

II. ADAPTIVE H-MINIMA

The adaptive h-minima method [2] obtains a binary seg-
mentation via active contours without edges and calculates
an inner distance map that represents the distance from every
foreground pixel to the background. Then, it identifies regional
minima as the markers, found after applying the h-minima
transform to the inverse of the map, and calculates an outer
distance map representing the distance from the foreground
pixels to their nearest marker. Finally, it grows the markers
using the combination of the outer distance map and the gray-
scale image as a marking function.

This method has a single external parameter ∆, which is
the gap value between shape markers in the adaptive h-minima
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transform. In the experiments, it was selected as 1, considering
the following set ∆ = {1, 2, 3, 4, 5}. However, when we
analyze the effects of this parameter to the segmentation
performance, we observe that it only slightly changes the F-
scores (Fig. 1).
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Fig. 1. For the Huh7 and HepG2 test sets, cell-based and pixel-based F-score
measures as a function of the gap parameter ∆.

III. CONDITIONAL EROSION

The conditional erosion method [3] obtains a binary image
by histogram thresholding and iteratively erodes its connected
components by a series of two cell-like structuring elements
of different sizes. It first uses the larger element until the
sizes of the eroded components fall below a threshold. The
component shapes are coarsely preserved due to the size of
the structuring element and its round shape. It next uses the
smaller element on the remaining components and stops the
iterations just before the component sizes become smaller than
a second threshold. Considering the eroded components as the
markers, it then applies a watershed algorithm on the binary
image.

This method has four external parameters: the size slarge
of the larger structuring element, the threshold tlarge used
in the first erosion step, the size ssmall of the smaller
structuring element, and the threshold tsmall used in the
second erosion step. In the experiments, we considered the
following sets for these parameters: slarge = {3, 5, 7, 9},
tlarge = {1000, 1250, 1500, 1750}, ssmall = {1, 2, 3, 4}, and
tsmall = {50, 100, 150, 200}. The selected values, which
yielded the highest F-score for the training nuclei, were
slarge = 3, tlarge = 1500, ssmall = 2 and tsmall = 150.
Figure 2 gives the effects of each parameter to the segmenta-
tion performance. As observed in this figure, the sizes of the
structuring elements (slarge and ssmall) affect the performance
more than the thresholds. Moreover, the second threshold has
a more significant effect than the first threshold.
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Fig. 2. For the Huh7 and HepG2 test sets, cell-based and pixel-based F-score
measures as a function of the (a) larger structuring element size slarge, (b)
threshold tlarge used in the first erosion step, (c) smaller structuring element
size ssmall, and (d) threshold tsmall used in the second erosion step.

IV. ITERATIVE VOTING

The iterative voting method [4] defines and uses a series of
oriented kernels for localizing saliency, which corresponds to
nucleus centers in a microscopic image. This study localizes
the centers from incomplete boundary information by itera-
tively voting kernels along the radial direction. It continues
iterations, in which the shape of the kernel and its orientation
are refined, until convergence. It then identifies the centers
by thresholding the vote image computed throughout the
iterations and outputs a set of centers that can be used as
the markers in a watershed algorithm. In our comparisons,
we used the software provided by [4]’s authors, available
at http://vision.lbl.gov/Publications/ieee trans ip07, to find the
nucleus centers and apply a marker-controlled watershed algo-
rithm on the binary image obtained by histogram thresholding.

This method has three external parameters: the diameter r
of an object to be detected, the vote strength threshold Γv for
selection or elimination of the detected points, and the scale
σ for computing image gradients used in the voting process.
In the experiments, we considered the following parameter
sets: r = {25, 30, 35, 40}, Γv = {400, 500, 600}, and σ =
{5, 6, 7, 8}. The parameters that gave the highest F-score are
r = 35, Γv = 500, and σ = 7. The effects of these parameters
to the segmentation performance are demonstrated in Fig. 3.
As observed in this figure, the vote strength threshold Γv is
less effective on the performance compared with the other two
parameters.

REFERENCES

[1] S. Arslan, T. Ersahin, R. Cetin-Atalay, and C. Gunduz-Demir, “Attributed
relational graphs for cell nucleus segmentation in fluorescence microscopy
images,”, IEEE Trans. Med. Imaging, submitted 2013.

[2] J. Cheng and J. C. Rajapakse, “Segmentation of clustered nuclei with
shape markers and marking function,” IEEE Trans. Biomed. Eng., vol.
56, no. 3, pp. 741-748, 2009.

25 30 35 40 45 50
50

60

70

80

90

Object diameter

 

 

Huh7 nucleus−based
Huh7 pixel−based
HepG2 nucleus−based
HepG2 pixel−based

300 500 700 900 1100
50

60

70

80

90

Vote strength threshold

 

 

Huh7 nucleus−based
Huh7 pixel−based
HepG2 nucleus−based
HepG2 pixel−based

(a) (b)

5 7 9 11
50

60

70

80

90

Image gradient scale

 

 

Huh7 nucleus−based
Huh7 pixel−based
HepG2 nucleus−based
HepG2 pixel−based

(c)

Fig. 3. For the Huh7 and HepG2 test sets, cell-based and pixel-based F-
score measures as a function of the (a) object diameter r, (b) vote strength
threshold Γv , and (c) image gradient scale σ.
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