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Highlights

• A three-layer parcellation framework which uses
a different clustering strategy at each layer,
attacking different problems.

• Resting-state fMRI is used to capture the
functional organization of the entire cortex.

• Segregates the cortex into highly reproducible
and functionally homogeneous parcels at
different resolutions.

• More effective than the state-of-the-art
approaches at single-subject and group levels.

Introduction

The analysis of the human connectome provides a
better understanding of the functional organization
of the brain as well as helps explore its evolution
through aging and in neurological disorders (such
as Alzheimer’s disease) [1]. In a whole-brain con-
nectivity analysis, a critical stage is the computa-
tion of a set of network nodes that can effectively
represent functional subregions.
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Despite the attempts at developing parcellation al-
gorithms using rs-fMRI [5, 6, 7], there still remain
challenges, such as generating reproducible and
functionally consistent parcellations at both
single-subject and group levels.

Data Acquisition and Processing

• We evaluated our approach with a set of 100
subjects from the Human Connectome
Project [2].

• We conducted our experiments on the rs-fMRI
datasets, containing scans from 100 different
subjects (54 female, 46 male adults, age 22-35).

• For each subject, gray matter voxels were
mapped to the native cortical surface and
registered onto the 32K standard triangulated
mesh to establish correspondences [3].

• Each time series was temporally normalized to
zero-mean and unit-variance.

Step 1: Supervertex Clustering

Inspired by the superpixels [4], each vertex is it-
eratively clustered into a supervertex as per their
distance, computed with a Euclidean function in
the form of:
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where dc corresponds to the functional distance,
measured by the Pearson’s distance transfor-
mation and dg corresponds to the spatial distance,
measured by the geodesic distance along the
cortical surface, approximated as the length of the
shortest path between the nodes. Nc and Ng refer
to the normalization factors.

Algorithm 1: Supervertex Clustering
/* k initial supervertex centroids are

selected by uniform sampling. */
foreach vertex v do

labels(v)← 0
distances(v)←∞

repeat
changed← false
foreach supervertex centroid Sk do

/* Distance calculated only for
vertices within a range. */

foreach vertex v within R mm of Sk do
D = distance between Sk and v
if D < distances(v) then

distances(v)← D
labels(v)← k
changed← true

Compute the new supervertex centroids
until changed 6= true

Step 2: Single-Level Parcellation

We join adjacent supervertices into spatially con-
tiguous parcels using agglomerative hierarchi-
cal clustering with a bottom-up strategy, in
which pairs of clusters are merged if their similarity
is the maximal among the other pairing clusters.

• Linkage Criterion: Ward’s linkage rule.
• Similarity Metric: Pearson’s correlation
distance.

The output is a dendrogram, in which the leaves
represent the supervertices and the root represents
an entire hemisphere.

Step 3: Groupwise Parcellation

We compute a fully-connected, undirected graph
of the parcel stability for each individual parcella-
tion [5], in which edges eij = 1 if vertices i and j
are in the same parcel and eij = 0 otherwise. The
graphs are averaged across the whole population
and subdivided by spectral clustering with normal-
ized cuts [6] into pre-defined number of subregions.
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Comparison Methods

• RG-HC: A single-subject parcellation method
composed of region growing and hierarchical
clustering [7].

• NCUT: Spectral clustering with normalized
cuts directly applied on the cross-correlated
affinity networks obtained from each subject
separately [6].

• MEAN: The average affinity network is
parcellated via n-cut spectral clustering [6] (only
applies to the groupwise experiments).

Performance Measures

• Reproducibility: Parcel overlaps are
computed with a two-pass Dice score-based
method [7].

• Functional Homogeneity: The average
pairwise correlations within each parcel [6].

• Functional Segregation: Silhouette width is
defined by combining within-parcel homogeneity
H and inter-parcel separation S as follows:

Swidth = H − S

max{H, S}
(2)

Quantitative Results
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Figure 1: Single-subject reproducibility (left), functional homogeneity (middle), and functional segregation (right) results.
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Figure 2: Group-level reproducibility (left), functional homogeneity (middle) and functional segregation (right) results.

Visual Results

Single Group

Figure 3: Individual and groupwise parcellations obtained by
the proposed method for 200 parcels. Single-level and group-
wise parcellations in the first two rows were derived from dif-
ferent rs-fMRI datasets of the same subject and from different
subgroups of the population, respectively. The third row shows
the differences between the first and second parcellations.

Functional Connectivity

• Proposed method segregates the cortex into
functionally distinctive parcels as shown below.

• Sharp transitions in the correlation patterns are
significantly aligned with the parcellation
borders.

Figure 4: Left: A path drawn on the cortical surface, crossing
the parcellation borders at a right angle. Right: The correlation
(upper triangle) and connectivity (lower triangle, as measured
to the vertices marked in red) profiles derived from the vertices
along the path. Black lines indicate the parcellation borders.
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