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Abstract—The best way to combine the results of deep
learning with standard 3D reconstruction pipelines remains an
open problem. While systems that pass the output of traditional
multi-view stereo approaches to a network for regularisation
or refinement currently seem to get the best results, it may be
preferable to treat deep neural networks as separate compo-
nents whose results can be probabilistically fused into geometry-
based systems. Unfortunately, the error models required to
do this type of fusion are not well understood, with many
different approaches being put forward. Recently, a few systems
have achieved good results by having their networks predict
probability distributions rather than single values. We propose
using this approach to fuse a learned single-view depth prior
into a standard 3D reconstruction system.

Our system is capable of incrementally producing dense
depth maps for a set of keyframes. We train a deep neural
network to predict discrete, nonparametric probability dis-
tributions for the depth of each pixel from a single image.
We then fuse this “probability volume” with another proba-
bility volume based on the photometric consistency between
subsequent frames and the keyframe image. We argue that
combining the probability volumes from these two sources
will result in a volume that is better conditioned. To extract
depth maps from the volume, we minimise a cost function
that includes a regularisation term based on network predicted
surface normals and occlusion boundaries. Through a series
of experiments, we demonstrate that each of these components
improves the overall performance of the system.

I. INTRODUCTION

There has been continued research interest in using
Structure-for-Motion (SfM) and Visual Simultaneous Local-
isation and Mapping (SLAM) for the incremental creation
of dense 3D scene geometry due to its potential appli-
cations in safe robotic navigation, augmented reality and
manipulation. Until recently, dense monocular reconstruction
systems typically worked by minimising the photometric
error over several frames. As this minimisation problem is
not well-constrained due to occlusion boundaries or regions
of low texture, most reconstruction systems employ regu-
larisers based on smoothness ([1], [2]) or planar ([3]-[5])
assumptions.

With the continued success of deep learning in computer
vision, there have been many suggestions for data-driven
approaches to the monocular reconstruction problem. Several
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Fig. 1: Fusing a single-view depth probability distribution
predicted by a DNN with standard photometric error terms
helps to resolve ambiguities in the photometric error due to
occlusions or lack of texture. The above projected keyframe
depth map was created by our system.

of these approaches propose a completely end-to-end frame-
work, predicting the scene geometry from either a single
image ([6]-[9]) or several consecutive frames ([10]-[15]).
Most promising, however, are those systems that combine
deep learning with standard geometric constraints ([16]—
[22]). It was shown in [23] that learning-based and geometry-
based approaches have a complementary nature as learning-
based systems tend to perform better on the interior points
of objects but blur edges, whereas geometry-based systems
typically do well on areas with a high image gradient but
perform poorly on interior points that may lack texture.

The optimal way to combine these two approaches, how-
ever, is not clear. The best current results seem to come
from systems that take the output of traditional geometry-
based systems and feed these into a deep neural network
(DNN). A particularly impressive example of this type of
system includes DeepTAM [13], which passes a photometric
cost volume through a network to extract a depth map.

It may be desirable, however, to use learning-based sys-
tems as an additional component that is fused into the
pipeline of a traditional system. Such a framework would
prevent the necessity of having to perform an expensive
neural network pass every time the geometric information
is updated. Also, as DNNs perform best on images close
to the training dataset, it would be possible to switch the
network component on or off or switch between different
networks depending on the environment being reconstructed.



The difficulty of this approach, however, is that to probabilis-
tically fuse the network outputs into a 3D reconstruction
system, some measure of the uncertainty associated with
each prediction is required.

In general, uncertainty can be classified into two cat-
egories: model or epistemic uncertainty and statistical or
aleatoric uncertainty. In [24], the authors suggest using
a Monte Carlo dropout technique to estimate the model
uncertainty of a network, but this requires multiple expensive
network passes.

Like [25], the authors of [26] propose having the network
predict its own aleatoric uncertainty and using a Gaussian
or Laplacian likelihood as the loss function during training,
which was used by [21] for 3D reconstruction. The problem
with this approach is that it forces the network to predict
a parametric and unimodal distribution. As shown in [27],
this type of distribution may be particularly ill-suited to
dense reconstruction where there is a clear need for a multi-
hypothesis prediction.

One proposal has been to use a multi-headed network
([13], [28]) with each head making a separate prediction.
From these many predictions, one can calculate the mean
and covariance to use in a probabilistic fusion algorithm.
The drawbacks of this approach are that it increases the size
of the network and requires a careful balancing of the relative
size of the network body and heads.

Recently, both [9] and [29] achieved impressive results
by having their networks predict discrete, nonparametric
probability distributions. While [29] uses these distributions
to fuse the output with other network predictions, to the
best of our knowledge, no one has used this method to
fuse the predictions of networks with the output of standard
reconstruction pipelines.

In this paper, we propose a 3D reconstruction system
that fuses together the output of a DNN with a standard
photometric cost volume to create dense depth maps for a set
of keyframes. We train a network to predict a discrete, non-
parametric probability distribution for the depth of each pixel
over a given range from a single image. Like [29], we refer
to this collection of probability distributions for each pixel
in the keyframe as a “probability volume”. Then, with each
subsequent frame, we create a probability volume based on
the photometric consistency between the current frame and
the keyframe image and fuse this into the keyframe volume.
The main contribution of this paper is to demonstrate that
combining the probability volumes from these two sources
often results in a better conditioned probability volume.
We extract depth maps from the probability volume by
optimising a cost function that includes a regularisation term
based on network predicted surface normals and occlusion
boundaries. Please see Figure 1 for an example keyframe
reconstruction created by our system.

II. METHOD

In this section, we describe our method for fusing predic-
tions from DNNs into a standard 3D reconstruction pipeline

to produce dense depth maps.

Our system represents the observed geometry as a col-
lection of keyframe-based “probability volumes”. That is,
instead of representing the surface as a depth map with a
single depth estimate per pixel, the depth is represented with
a per-pixel discrete probability distribution over a given depth
range. These probability volumes are initialised with the
output of a monocular depth prediction network. With each
additional RGB image, the system computes a cost volume
based on the photometric consistency. This cost volume is
then converted to a probability volume and fused into the
volume of the current keyframe. Once the number of inliers
drops below a given threshold, a new keyframe is created.
To propagate information from one keyframe to another, we
warp the previous distribution and fuse it into the new one.

When we want to extract a depth map from the prob-
ability volume, we could take the maximum probability
depth values, but in featureless regions where there is also
high network uncertainty this would be susceptible to false
minima and cause local inconsistencies in the prediction.
Also, as the probability distribution is discrete, taking the
maximum would result in a quantisation of the final depth
prediction. To overcome these shortcomings, we first con-
struct a smooth probability density function (PDF) from the
volume using a kernel density estimation (KDE) technique.
We then minimise the negative log probability of this PDF
along with a regularisation term. While many dense systems
propose using regularisers based on smoothness ([1], [2]) or
planar ([3], [4], [30]) assumptions, we follow the examples
of [16] and [21] and penalise our reconstruction for deviating
from the surface normals predicted by a DNN.

A. Multi-Hypothesis Monocular Depth Prediction

Rather than predict a single depth value for each pixel,
our network predicts a discrete depth probability distribution
over a given range, similar to [9] and [29]. Not only does this
allow the network to express uncertainty about its prediction,
but it also allows the network to make a multi-hypothesis
depth prediction. As discussed in [9], the prediction of the
depth probability distribution can be improved by having a
variable resolution over the depth range. We choose a log-
depth parameterisation, following the examples of [31] and
[6]. By uniformly dividing the depth range in log-space, we
achieve the desired result of having higher resolution in the
areas close to the camera and lower resolution farther away.

For our network architecture (see Figure 2), we use a
ResNet-50 encoder [32] followed by three upsample blocks,
each consisting of a bilinear upsampling layer, a concatena-
tion with the input image, and then two convolutional layers
to bring the output back up to the input resolution. All inputs
and outputs have a resolution of 256x192.

As we are having the network predict a discrete distri-
bution rather than a depth map, we cannot use a standard
loss function based on the sum of squared errors. A cross-
correlation loss would not be ideal either, as we would like to
penalise the network less for predicting high probabilities in
incorrect bins that are close to the true bin than in bins farther
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Fig. 2: Our network consists of a ResNet-50 encoder with
an output stride size of 8 and no global pooling layer. We
then pass the output of the encoder through three upsample
blocks consisting of a bilinear resize, concatenation with the
input image, and then two convolutional layers to match the
output resolution to the input. The probability distribution
that the network outputs is discretised over 64 channels.

away. Instead, we choose to use the ordinal loss function
proposed in [9]:
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0 is the set of network welghts, K is the number of bins
over which the depth range is discretised, k; is the index
of the bin containing the ground truth depth for pixel 7, and
Pe, (ki = j) is the network prediction of the probability that
the ground truth depth is in bin j.

Like [29], we train our network on the ScanNet RGB-
D dataset [33]. No fine-tuning was done on our evaluation
dataset, the TUM RGB-D dataset [34]. We set the depth
range to be between 10cm and 12m and group the log-depth
values uniformly into 64 bins.

Each keyframe created by our system is initialised with
this network output.

B. Fusion with Photometric Error Terms

For each additional reference frame, we construct a
DTAM-style cost volume [1]. First, we normalise both the
keyframe and reference frame images by subtracting their
means and dividing by their standard deviations. We then
calculate the photometric error by warping the normalised
keyframe image into the reference frame for each depth value
in the cost volume and taking the sum of squared differences
on 3x3 patches. To simplify the later fusion, we use the
midpoint of each of the depth bins used for the network
prediction as the depth values in the cost volume. Poses are
obtained from an oracle, such as a separate tracking system
like ORB-SLAM?2 [35].
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Fig. 3: Our fusion algorithm produces a discrete probability
distribution for each pixel in the keyframe. To reduce dis-
cretisation errors and to have a continuous cost function for
the optimiser, we convert the probability values along each
ray into a smooth probability density function using a kernel
density estimation technique.

To convert to a probability volume, we separately scale
the negative of the squared photometric error for each pixel
such that it sums to one over the ray. We then fuse this new
probability volume, pgrg, into the current keyframe volume,

PKF:
Pi(k: = k) PKF z(kl = k)pRF (kz* = k')? 3)
for each pixel ¢, which is then scaled to sum to one.

C. Kernel Density Estimation

To avoid a quantisation of the final depth prediction and
to have a smooth function to use in the optimisation step,
we construct a PDF for the depth of each pixel using a KDE
technique with Gaussian basis functions:

K-1
d) = Z pi(kz =
k=0

where ¢ (i, o) is the probability density of the Gaussian
distribution with mean g and standard deviation o, d(k)
is the depth value at the midpoint of bin k, and o is a
constant smoothing parameter across all pixels and depth
values. The value of o is a hyperparameter that needs to be
tuned empirically; we found that o = 0.1 works well in our
setting.

An example of a discrete PDF produced by our system
and the smoothed result after applying the KDE technique
is shown in Figure 3.

¢ (d(k), o) 4)

D. Regularisation

Although the fused probability volume will have more lo-
cal consistency than using the photoconsistency terms alone,
the result can still be improved by adding a regularisation
term to the optimisation used to extract the depth map. While
most dense reconstruction systems base their regularisers on
smoothness or planar assumptions, we propose using the
surface normals predicted by a DNN as was done in both



Fig. 4: To regularise our depth estimate, we use the surface
normals and occlusion boundaries predicted by SharpNet
[36]. Some examples of the predictions made by SharpNet
on the TUM RGB-D dataset [34] are shown above. From
left to right: input RGB images, predicted normals, predicted
occlusion boundaries with a probability greater than 0.4.

[16] and [21] as this may allow for better preservation of
fine-grained local geometry. To predict the surface normals
from the keyframe image, we use the state-of-the-art network
SharpNet [36]. As we determine the local surface orientation
of our depth estimation from neighbouring pixels and we
do not wish incur high costs at depth discontinuities, we
mask the regularisation term at occlusion boundaries, which
are also predicted by SharpNet. Since SharpNet actually
predicts a probability of each pixel belonging to an occlusion
boundary, we include all pixels with a probability higher than
0.4 in the mask. Example predictions of surface normals and
occlusion boundaries made by SharpNet on the TUM RGB-
D dataset [34] are shown in Figure 4.

E. Optimisation

To extract a depth map from the probability volume, we
minimise a cost function consisting of two terms:

c(d) = ¢4 (d) + Acz(d), (5)

where d is the set of depth values to be estimated, and
A is a hyperparameter used to adjust the strength of the
regularisation term. Empirically, we found A = 1.0 - 107 to
work well.

The first term, ¢ s imposes a unary constraint on each of
the pixels:

c(d) = = _log (fi(d;) (6)

where f;(d;) is the smoothed PDF of pixel i evaluated at
depth d;.

The second term, ¢y, is a regularisation term that combines
two pairwise constraints:

2
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where b; € {0,1} is the value of the occlusion boundary

mask for pixel 4, (-,-) is the dot product operator, fi; is
the normal vector predicted by SharpNet, K is the camera

intrinsics matrix, @l; is the homogeneous pixel coordinates
for pixel ¢, and W is the width of the image in pixels.

We minimise the cost function by applying 100 iterations
of gradient descent with a step size of 0.2, and initialise
the optimisation with the maximum probability depth values
from the fused probability volume. The process of going
from a fused probability volume through the smoothing and
optimisation to an extracted depth map is currently only
able to run at a few Hz; however, this could be improved
significantly by using Newton’s method or the primal-dual
algorithm. As the main contribution of this work is to show
the benefit of the fusion, we leave this for future work.

F. Keyframe Warping

To avoid throwing away information on the creation of
each new keyframe, we warp the probability volume of the
current keyframe into the new one. As the probability volume
is a distribution over the depth values of a pixel, however,
warping the probability volume is not trivial. To do this, we
propose using a discrete variation of the method described in
[37], where we first convert the depth probability distribution
to an occupancy-based probability volume, where for each
depth bin along the ray there is a probability that the
associated point in space is occupied. We then warp this
occupancy grid into the new frame and convert back to a
depth probability distribution.

We start by defining the probability that the voxel S} ;
(correpsonding to depth bin & along the ray of pixel @) is
occupied, conditioned on the depth belonging to bin j:

0 ifk<j
P(Ski=1lki =j)=q1 ifk=j ®)
3 ifk>j

To convert a depth probability distribution into an occu-
pancy probability, we marginalise out the conditional:

K-1
P(Ski =1) =Y pilki =k)p(S; = 1lk; =k) (9
k=0

where p;(kj = k) is the value of the depth probability
volume in bin £ for pixel q.

As the occupancy grid represents probabilities for lo-
cations in 3D space, we can directly warp this into the
new keyframe, filling in any unknown values with a default
occupancy probability (we use a value of 0.01).

After warping, the occupancy grid can be converted back
into a depth probability distribution:

pi(ki = k)= H [1—p(S;;=1)] p(Sy; = 1),

i<k

(10)

and scaled so that the distribution sums to one along the ray.

ITII. EXPERIMENTAL RESULTS

We evaluate our system on a sample of sequences from the
TUM RGB-D dataset [34]. Please note that only the RGB
images are processed by our system and the depth channel
is only used as a “ground truth” with which to validate our
results against.



A. Qualitative Results

Figure 5 shows the various PDFs for a sample of four
pixels taken from a keyframe in the TUM RGB-D sequence
frl/desk. The PDFs in the first row are those predicted by the
DNN. Note that the network is able to make multi-hypothesis
predictions and can have varying degrees of certainty. The
PDFs in the second row are those that result from the
photometric cost volume. For some of the pixels (such as
pixels A and C), the photometric error results in a clear peak.
This situation is most often found on corners and edges in the
image where there are large intensity gradients. For pixels
in textureless regions or on occlusion boundaries or areas
with repeating patterns, the photometric PDF may have many
peaks (such as pixel B) or no peak at all (such as Pixel D).
The final row of the figure shows the fused PDF for each of
the pixels. By fusing the two PDFs together, uncertainty can
be reduced and ambiguous photometric data can be resolved.

An example reconstruction for a single keyframe with
various ablations is shown in Figure 6.

B. Quantitative Evaluation

We demonstrate the value of fusion on the reconstruction
pipeline by comparing the performance of the system on
the first 400 frames of three TUM RGB-D sequences under
three different scenarios: using only the network probability
volume, using only the photometric probability volume and
using the fused probability volume. To isolate the perfor-
mance of our reconstruction system, we use the ground truth
poses provided in the dataset. We evaluate the performance
using three metrics defined in [6]: the absolute relative
difference (L1-rel), the squared relative difference (L2-rel)
and the root mean squared error (RMSE). Note that since
the photometric probability volume has extremely noisy
results on textureless surfaces, we found that the results were
improved by initialising the optimisation with the expected
value of the depth from the probability volume rather than
the highest probability depth.

The results are presented in Table I. While there is a large
performance gain in using the network over the photometric
probability volume, the best outcome is achieved by fusing
the two together.

Sequence  System Ll-rel L2-rel RMSE
Network-Only 0.275 0.185 0.450
fr1/desk Photometric-Only ~ 0.532 0.474 0.837
Fused 0.260 0.165 0.431
Network-Only 0.242 0.151 0.487
frl/room Photometric-Only ~ 0.588 0.752 1.171
Fused 0.234 0.140 0.479
Network-Only 0.191 0.101 0.354
frl/xyz Photometric-Only ~ 0.543 0.450 0.823
Fused 0.187 0.090 0.339

TABLE I: Comparison of reconstruction errors on select
TUM RGB-D [34] sequences showing the relative per-
formance of using only the network-predicted probability
volume, only the photometric probability volume, and the
fused probability volume.

Sequence  System Ll-rel L2-rel RMSE
No Optimisation 0.310 0.274 0.552

fr1/desk Smoothing-Only 0.308 0.271 0.548
es Total Variation 0280 0213 0481
Normals + Occlusions 0.260 0.165 0.431

No Optimisation 0.292 0.233 0.591

fr1/room Smoothing-Only 0.289 0.228 0.586
00 Total Variation 0265  0.183  0.530
Normals + Occlusions 0.234 0.140 0.479

No Optimisation 0.245 0.213 0.512

1/ Smoothing-Only 0.242 0.208 0.506
rxyz Total Variation 0205  0.135  0.405
Normals + Occlusions  0.187 0.090 0.339

TABLE 1II: Comparison of reconstruction errors on select
TUM RGB-D [34] sequences showing the relative perfor-
mance of different regularisation schemes. No Optimisation:
results from taking the depth value with the maximum
probability in the probability volume. Smoothing-Only: re-
sults from minimising the smoothed negative log probability
density function without including a regularisation term.
Total Variation: results from using the total variation of the
depth as a regulariser. Normals + Occlusions: the pipeline as
described in this paper.

Sequence  System Ll-rel L2-rel RMSE
fr1/desk No Keyframe Warping  0.290 0.203 0.471
Keyframe Warping 0.260 0.165 0.431
No Keyframe Warping  0.254 0.166 0.513
frlfroom oo frame Warping 0234 0140 0479
1/ No Keyframe Warping  0.270 0.194 0.469
rlixyz Keyframe Warping 0.187  0.090 0339

TABLE III: Comparison of reconstruction errors on select
TUM RGB-D [34] sequences showing the performance gain
from using our method to warp keyframe probability vol-
umes.

To show the benefit of our method of regularisation, we
compare the performance of the full system against three
other regularisation schemes: using no optimisation at all
(taking the depth values that maximise the discrete prob-
ability distribution), optimising without any regularisation
(this will allow for the smoothing of the depth maps based
on the continuous PDF, but provide no regularisation), and
regularising using the total variation.

For the total variation, we tuned the hyperparameters of
our system for the best performance (A = 1.0 - 10% and a
step size of 0.05).

The results are presented in Table II. In all cases the best
performance is achieved when using the surface normals and
occlusion masks predicted by SharpNet.

Finally, to evaluate our method for warping probability
volumes between keyframes, we compare our system against
a version without warping where each keyframe is initialised
only with the network output and does not receive any
information from other keyframes.

The results are presented in Table III. Using our warping
method improves the performance of the system in all cases.



z 4 4 4 4

2% 3 3 3 3
=

29

FE 2 2 2 2

2 s

EER 1 1 1

2

&

o 1oz =21 o0 1 3 %= ot o 12z 92T oo 1 2
zp 4 4 4 4
o g
£0 3 3 3 3
|
EEZ 2 2 2
g
ER-I 1 1 1
E
[-—2

R = U R 2 -1 o0 1.2 972 12
.? 4 4 4 4
%

5_ 3 3 3 3
53
g’gz 2 2 2
%5
51 1 1 1
g
= 0 0 0

-2 -1 0 1 2
Log Depth [log(m)]

-2 -1 0 1 2
Log Depth [log(m)]

-2 -1 0 1 2
Log Depth [log(m)]

-2 -1 0 1 2
Log Depth [log(m)]

Fig. 5: This figure shows a grid of probability densities for a sample of four pixels from a keyframe (left). The first row,
in red, shows the probability densities predicted by the network. The second row, in green, shows the probability densities
estimated from the photometric error after the addition of 25 reference frames. The final row, in blue, shows the fused
probability densities that results from our algorithm. Note that both the network and the photometric error are capable of
producing multiple peaks. In some cases (such as pixel C), both the network and the photometric methods produce good
estimates. In others (such as pixel A), both the network and photometric error are relatively uncertain, but together produce
a strong peak. In pixels B and D, the network helps resolve ambiguous photometric peaks from either a repetition or lack
of texture. The vertical black bars show the location of the ground truth depth.
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Fig. 6: Qualitative results from an example keyframe and 6 additional reference frames in the TUM RGB-D fr1/360 sequence.
The top left image is the keyframe image, and the bottom left is the ground truth depth. The remaining images on the top
row are the depth estimates obtained by taking the maximum probability depth from each corresponding probability volume.
The bands of colour show the quantisation that results from using this method. The remaining images in the bottom row
are the depth estimates that result after performing the optimisation step. Note that the photometric error is only capable
of estimating the depth at pixels with a high image gradient (the repeated edges are the result of pose error). While using
only the network prediction results in a good reconstruction, the best reconstruction is obtained by fusing the network and
photometric volumes together.

IV. CONCLUSION tometric error, we achieve better performance than either
on its own. Further experiments showed the value of our

We have presented a method for fusing learned monocular o .
regularisation scheme and warping method.

depth priors into a standard pipeline for 3D reconstruction.
By training a DNN to predict nonparametric probability
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