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ABSTRACT

This paper describes Harmonic, a toolchain that tar-
gets multiprocessor heterogeneous systems comprising
different types of processing elements such as general-
purposed processors (GPPs), digital signal processors
(DSP), and field-programmable gate arrays (FPGAs) from
a high-level C program. The main goal of Harmonic is
to improve an application by partitioning and optimising
each part of the program, and selecting the most appro-
priate processing element in the system to execute each
part. The core tools include a task transformation engine,
a mapping selector, a data representation optimiser, and
a hardware synthesiser. We also use the C language with
source-annotations as intermediate representation for the
toolchain, making it easier for users to understand and
to control the compilation process.

I. INTRODUCTION

A heterogeneous system contains diferent types of
processing elements, ideally working harmoniously to-
gether. Depending on the application, it can include
general-purpose processors (GPP), digital signal proces-
sors (DSP), and field-programmable gate arrays (FPGAs).
Both embedded system-on-chip technology [1] and high-
performance computing [2] can be heterogeneous. One
challenge of heterogeneous computing is to improve an
application by identifying and optimising parts of the
program that can benefit from appropriate optimisations,
and selecting the best processing element for a particular
task in the program.

FPGAs are becoming increasingly popular for imple-
menting computationally-intensive applications, providing
execution speeds orders of magnitude higher than con-
ventional processors. The key advantage of reconfig-
urable technology is its combination of the performance
of dedicated hardware and the flexibility of software,
while avoiding the cost and risk associated with circuit
fabrication. The performance of a reconfigurable design
is largely achieved by customising the hardware archi-
tecture to meet the application needs, and by exploiting,
for instance, the inherent parallelism in the application.

Furthermore, reconfigurable devices can be reused many
times over for implementing different hardware archi-
tectures, thus offering more flexibility than solutions in
application-specific integrated circuit technology.

The major obstacle in adopting heterogeneous sys-
tems has been the complexity involved in programming
and coordinating multiple processing elements, as well
as the additional effort to exploit individual specialised
processing elements, which are more difficult to program
than conventional processors. For FPGAs, this involves
addressing the problems of hardware design, such as
resource allocation and deriving efficient parallel archi-
tectures. There is a need for high-level design methods
and tools that can improve designer productivity, as well
as for design maintainability and portability as system
requirements evolve. It is also important to facilitate
design exploration so that additional target goals can
be obtained, such as minimising resource utilisation and
energy consumption.

In this paper, we introduce the Harmonic toolchain,
which addresses the problem of mapping a high-level C
description into a heterogeneous system. In particular, it
contains four core components:

1) Task transformation engine (Section III-C). It
allows users to select, describe and apply trans-
formations to individual tasks, taking into account
application- and platform-specific requirements. A
key novelty is the use of a high-level description
language, CML, which enables customisation of the
transformation process to exploit features of the
application domain and hardware system.

2) Mapping selector (Section III-D). Its aim is to
optimise an application running on a heterogeneous
computing system by mapping different parts of the
program on to different processing elements. Our
approach is unique in that we integrate mapping,
clustering and scheduling in a single step using
tabu search with multiple neighbourhood functions
to improve the quality of the solution, as well as the
speed to attain the solution.

3) Data representation optimiser (Section III-E). It
supports optimisation of data representations, and



TABLE I: Comparison between Harmonic and related approaches. GUI and RTL stand for “Graphical User Interface” and “Register Transfer Level”.

Approach Type Input Task Source-Level Task Hardware TargetPartitioning Transformation Mapping Synthesis
3L Diamond [3] Commercial C, VHDL, GUI Manual None Manual RTL Multiprocessors

Gedae [4] Commercial Dataflow GUI Manual None Manual RTL Multiprocessors, PS3
Atomium [5] Commercial C Manual Yes Manual Not supported Multiprocessors
Compaan [6] Commercial KPN Manual None Manual Not supported Multiprocessors

Hy-C [7] Academic C Automatic None Automatic Behavioural GPP+FPGA
COSYN [8] Academic Task graph Automatic None Automatic Not supported Multiprocessors
Harmonic Academic C Manual/Automatic Customisable Manual/Automatic RTL/Behavioural Multiprocessors

currently targets FPGAs to allow trade-offs between
computation accuracy and resource usage, speed
and power consumption.

4) Hardware synthesiser (Section III-F). It automat-
ically generates efficient hardware designs for cer-
tain types of computation. The novel aspect of this
approach is that it captures both cycle-accurate and
high-level information. This way, manual and au-
tomated optimisation transformations can be used
separately or in combination, so that one can
achieve the best compromise between development
time and design quality.

This paper is structured as follows. Section II compares
our work with existing approaches. Section III provides
an overview of our design flow and its core components.
Section IV illustrates our approach, and finally Section V
concludes and discusses future work.

II. RELATED WORK

There are several approaches that map high-level soft-
ware applications into heterogeneous systems. Table I
provides a comparison between our approach, Harmonic,
and other academic and commercial development tools.

The commercial tools ([3]–[6]) in this table offer pow-
erful graphical analysis and debugging capabilities that
help users make decisions with regards to the final
implementation. They also provide run-time support for a
number of established heterogeneous architectures. Still,
these tools rely on users to make architectural decisions
such as how the application is divided and mapped to
different processing elements; users are also expected
to have the expertise to exploit specialised processing
elements such as FPGAs.

On the other hand, academic approaches such as
Hy-C [7] and COSYN [8] provide a complete automatic
approach for partitioning and mapping, but it is difficult
for users to fine-tune the solution and to guide these
optimisations, since they work as blackboxes. In contrast,
Harmonic has an automatic partition and mapping pro-
cess that can be constrained by users based on specific
#pragma annotations.

Our approach employs the C language (C99) to de-
scribe not only the source application, but also the inter-
mediate representation at every stage of the toolchain,
providing three benefits:

(a) users can process legacy software code – this is
useful especially if there is a large code base in C
or C++, and rewriting the code into other languages
could be costly;

(b) at every level of the toolchain – such as partitioning,
source transformations, or mapping selection, users
can understand and modify the decisions made
automatically, enabling effective interaction with the
toolchain;

(c) users can abstract from the specifics of programming
different processing elements – there is a single
high-level source language to describe the whole
application, no matter how it is mapped.

In contrast, approaches like 3L Diamond [3] require
users to describe algorithms in different languages and
computational models to support different processing
element types, such as FPGAs. This could hinder design
exploration for different partition and mapping solutions,
since these decisions need to be made and committed
before providing an implementation.

Unlike other toolchains, Harmonic supports a source-
level transformation process that can be customised by
users to meet application-specific and platform-specific
requirements. Transformations can be implemented in
C++ and deployed as plugins using shared libraries.
Alternatively, transformations can be described using
CML, a language which allows users to quickly deploy,
combine and parameterise transforms. An example of an
application and platform domain specific transformation
is generating resource-efficient floating-point designs for
FPGAs, which is described in Section III-E.

To maximise performance, our toolchain is capa-
ble of deriving efficient architectures for reconfigurable
hardware (FPGA) from a C description (behavioural
approach). This means that unlike approaches like
Gedae [4], users do not have to use RTL methodology
and implement a state-machine and specify where to
place registers. Moreover, unlike approaches like Hy-C
which also support behavioural approach, we allow users
to use RTL to fine-tune their designs, and thus they
are able to interwoven both cycle-accurate (RTL) and
behavioural descriptions to find the best tradeoff between
design-time and the quality of the design.



III. DESIGN FLOW

A. Overview

Fig. 1 illustrates the key components of the Harmonic
toolchain. The Harmonic toolchain is built on top of
the ROSE open source compiler framework [9], which
provides support for source-level transformations, analy-
sis and instrumentation of C/C++ code, and supports a
number of additional frontends.

The toolchain receives as input the complete C source
project as defined by a set of .c and .h source files. There
are no restrictions on the syntax or semantics of the C
project. By default, all source is compiled and executed
on the reference processing element (usually a GPP),
which serves as the baseline for performance compari-
son. To improve performance, Harmonic distributes parts
of the program to specialised processing elements in the
system.

To maximise the effectiveness of the toolchain in opti-
mising an application, it is desirable that the C code is
written in a way that it is supported by as many types of
processing elements as possible in order to uncover op-
portunities for optimisation. For instance, recursive func-
tions are usually limited to run on the GPP, the reference
processing element, or in another instruction processor.
Transforming a recursive algorithm to an iterative version
involving loops can provide additional opportunities for
optimisation, such as introducing a hardware pipeline
running on a reconfigurable device. Hence, a set of C
guideline recommendations have been defined in order to
improve the quality of the mapping solutions, by making
the code more migratable to different types of processing
elements. We have developed a C guideline verification
tool which can automatically detect many code violations
of the recommendations.

The first stage of our toolchain is task partitioning,
which produces a set of tasks from a C project. By default,
each C function is treated as a task. A task defines the
minimal computation unit that is mapped to a processing
element. The goal of the task partitioner is to reduce
the search space for possible mappings into the target
system, by clustering two or more tasks into a single
larger task (Fig. 2). From the point of the view of the task
mapping process, all functions invoked inside a task are
made invisible and the task is treated as a black-box. The
partitioning tool also introduces OpenMP notation [10] to
denote that two or more tasks can be executed in parallel
because no data dependencies exist between them. Our
partition approach relies on grouping functions that have
similar features across different processing elements. For
instance, two functions that use floating-point operations
and have remarkable performance on one processing
element, and mediocre performance on another, are
good candidates to belong to the same cluster. Listing 1
illustrates the code annotation generated by the partition
tool to indicate a cluster. Note that manual partition is
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Fig. 1: An overview of the Harmonic toolchain design flow.
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compute_thread main_task30

d0d2d0d2d2d2Sci2CMixRealChTmpd2 float2long

ssOpStarsa1 ssOpStarsa2 ssOpPlusaa1

Fig. 2: The result of the task partitioning phase. By default, each indi-
vidual function in the application is considered a task, and a candidate
for mapping. The task partitioning tool groups small tasks into larger
tasks to reduce the search space for mappings into the target system.
In this example, we reduce the number of tasks from eight to five.

possible by simply modifying the source annotations.
Once the list of tasks has been established, we use

the task transformation engine to generate several C
implementations for each task so that they are optimised
for different processing elements. An implementation of
a task can be the unrolling of a loop with an annotation
to fully pipeline the outer loop, which is processed by the
hardware synthesis process. Another implementation of
the same task can correspond to fully unrolling the loop,
but placing an annotation to share resources. Similarly,
the same task can have other implementations that are
optimised for DSPs and GPPs.

After the implementations have been generated, the
mapping selector derives the associated cost of each
implementation (either statically or dynamically), and se-
lects the best implementation for each task so that the



1 #pragma map cluster
2 void d0d2d0d2d2d2Sci2CMixRealChTmpd2(...)
3 {
4 ...
5 ssOpStarsa1(a,x,t1);
6 ...
7 ssOpStarsa2(b,y,t2);
8 ...
9 ssOpPlusaa1(t1,t2,z);

10 }

Listing 1: To cluster a set of functions into a single task, we use
the #pragma map cluster annotation as showed above on top of the
function definition. In this case, all functions invoked inside the function
definition are part of the same task (Fig. 2). These annotations can be
introduced manually or generated automatically by the partitioning tool.

1 void foo(float *x, float *y) {
2 ...
3 #pragma map call_hw \
4 impl(MAGIC, 14) \
5 param(x,1000,r) \
6 param(h,100, rw)
7 filter(x, h);
8 ...
9 }

Listing 2: The mapping #pragma annotation (lines 3–6) is introduced by
the mapping selector before each remote function call, and indicates
the processing element (MAGIC DSP) and implementation (id=14)
associated with it. The mapping pragma also provides information about
the size of the memory referenced by the pointers, and whether this
memory has been read only (r), written only (w), or both (rw).

overall execution time (which includes communication
overhead) is minimised. Finally, the C code is generated
for each processing element according to the mapping so-
lution, and mapping #pragmas are introduced to indicate
the association between the task and the implementation
(Listing 2). If the mapping selection process is unable
to meet a particular threshold, it requests the partition
tool to derive a new solution. Each generated C source-
file contains macros, #pragmas and library calls that are
specific to the processing element that it was targeted
for.

To derive an FPGA implementation, we use the Haydn
approach [11] to perform high-level synthesis (HLS). The
HLS process is guided by source-annotations which
describe what hardware-specific transformations to ap-
ply, such as hardware pipelining, and capture available
resources and other constraints. The output of Haydn
is a Handel-C program that describes a cycle-accurate
synthesisable architecture, and that can be optionally
modified by the user before the hardware synthesis
phase. For GPP and DSP processing elements, we use
C compilers provided for those architectures. The final
phase of generating and linking the binaries and provid-
ing run-time support is dependant on specific hardware
platforms. In the next section we describe how different
platforms can be supported by Harmonic.

B. Toolchain Customisation

The Harmonic toolchain has been built to be modular,
so that new components can be introduced or combined
without re-structuring the entire toolchain. In particular,
each level of the toolchain parses and generates C code,
which we use as our intermediate representation, along
with #pragma annotations. Any new tool that we add only
needs to follow an established convention (Listings 1
and 2).

While our approach is capable of partitioning and map-
ping a C project to most heterogeneous architectures,
we need to customise the toolchain to exploit a specific
platform. This includes providing:

1) Platform description. The description of the plat-
form captures the physical attributes of the hetero-
geneous system in XML format, and includes in-
formation about the available processing elements,
storage components, and interconnects, as well
as additional information such as data types sup-
ported, storage size and bus bandwidth.

2) Transformations. The task transformation engine
can be instructed to apply a number of optimisa-
tions to a task targeting a particular processing
element (Section III-C).

3) Harmonic drivers. To install the backend compila-
tion support in Harmonic, we need the necessary
drivers. There are two types of drivers: system
drivers and processor drivers. The toolchain ex-
pects one system driver and one processor driver
for each available processing element. The sys-
tem driver is responsible for determining whether
a mapping solution is valid, generating code that
coordinates the components of the heterogeneous
system, and determining the cost of the mapping
solution. The processor driver, on the other hand,
works at task-level: it specifies whether a task is
mappable or synthesiable for a particular process-
ing element. It is responsible for adding any C
specific idioms, and estimating the cost to execute
that task.

4) Linking and run-time support. This module is
usually provided by the hardware vendor, which
includes system library calls supporting communica-
tion (DMA transfers, etc) and synchronisation calls,
as well as support for low-level drivers to allow the
execution of the application in a multi-processor
environment.

As part of the European hArtes project, our current
toolchain has been customised to target (a) the Diopsis
platform [12] which contains an ARM processor and a
floating-point DSP, as well as (b) the hArtes platform [13]
which contains an ARM processor, a floating-point DSP,
and an FPGA. An advanced partitioning tool, Zebu [14],
has been interfaced to Harmonic in this customisation;
Zebu is able to restructure the whole C project, for
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Fig. 3: An overview of the task transformation engine. The task trans-
formation engine receives as input a task and additional parameters
such as the processing element that we wish to target, and generates
a set of implementations. The set of transformations to be applied
to each processing element is provided by the user. The implemen-
tations of transformations are stored as shared libraries for ROSE
transformations, and as text files for CML-based transformations. A
CML description consists of three sections: the pattern to match, the
matching conditions, and the resulting pattern (Listing 3).

instance by breaking up or merging functions, to fine-tune
the granularity of the tasks according to criteria which can
be complex.

The customised Harmonic toolchain is also interfaced
to hArtes runtime support and compilation tools [15]. In
both Diopsis and hArtes platform architectures, there is a
master processing element (the ARM processor) which
communicates with the remaining processing elements
that act as accelerators. The C compiler for the master
processor element (hgcc) is responsible for determining
how data are transferred between different processing
elements and what storage components to use based on
the memory hierarchy. The system driver for these boards
helps this process by analysing each pointer passed to a
remote function, and determining the size of the memory
allocated where possible, and whether the memory has
been read only or written only, in order to minimise the
number of memory transfers (Listing 2).

C. Task Transformation Engine
The task transformation engine (Fig. 3) applies pattern-

based transformations, which involve recognising and
transforming syntax or dataflow patterns of design de-
scriptions, to source code at task level. We offer two ways
of building task transformations: using the underlying
compiler framework, ROSE, to write transformations in
C++; this is complex but offers the full power of the
ROSE infrastructure. Alternatively, our domain-specific
language CML simplifies description of transformations,
abstracting away housekeeping details such as keeping
track of the progress of pattern matching, and storing
labelled subexpressions.

CML is compiled into a C++ description; the resulting
program then performs a source-to-source transforma-
tion. For design exploration, we also support interpreting

1 transform coalesce {
2 pattern {
3 for (var(a)=0;var(a)<expr(e1);var(a)++){
4 for (var(b)=0;var(b)<expr(e2);var(b)++)
5 stmt(s);
6 }
7 }
8 conditions {

10 }
11 result {
12 for (newvar(nv)=0;
13 newvar(nv)<expr(e1)*expr(e2);
14 newvar(nv)++)
15 {
16 var(a) = newvar(nv) / expr(1);
17 var(b) = newvar(nv) % expr(1);
18 stmt(s);
19 }
20 }
21 }

Listing 3: CML description of the loop coalescing transformation

CML descriptions, allowing transformations to be added
without recompiling and linking. Task transformations
could be written once by domain specialists or hardware
experts, then used many times by non-experts. We iden-
tify several kinds of transformations: input transforma-
tions, which transform a design into a form suitable for
model-based transformation; tool-specific and hardware-
specific transformations, which optimise for particular syn-
thesis tools or hardware platforms. We provide a library
of useful transformations: general-purpose ones such as
loop restructurings, and special-purpose ones such as
transforming Handel-C arrays to RAMs.

Each CML transformation (Fig. 3) consists of three
sections: 1) pattern, 2) conditions and 3) result. The
pattern section specifies what syntax pattern to match
and labels its parts for reference. The conditions sec-
tion typically contains a list of Boolean expressions, all
of which must be true for the transformation to apply.
Conditions can check: a) validity, when the transformation
is legal; b) applicability: users can provide additional
conditions to restrict application. Finally, the result section
contains a pattern that replaces the pattern specified in
the pattern section, when conditions apply.

A simple example of a CML transformation is loop
coalescing (Listing 3), which contracts a nest of two loops
into a single loop. Loop coalescing is useful in software,
to avoid loop overhead of the inner loop, and in hardware,
to reduce combinatorial depth. The transformation works
as follows:

• Line 1: LST 3 starts a CML description and names the
transformation

• Lines 2–7: LST 3 give the pattern section, matching a loop
nest. CML patterns can be ordinary C code, or labelled
patterns. Here var(a) matches any lvalue an labels it
"a". From now on, each time var(a) appears in the CML
transform, the engine tries to match the labelled code with
the source code.

• There is no conditions section, as coalescing is always
valid and useful (lines 8–10: LST 3).

• Lines 11–20: LST 3 give the result section. The CML pat-



tern newvar(nv) creates a new variable which is guaran-
teed unique in the current scope. The resulting loop is
equivalent to the original loop nest. The former iteration
variables, var(a) and var(b) are calculated from the new
variable. This allows the original loop bode, stmt(s) to be
copied unchanged.

When the transformation engine is invoked, it triggers a
set of transformations that are specific to each processing
element, which results in a number of C implementations
associated with different tasks and processor elements.
The implementation description of ROSE transformations
are stored as shared libraries, and the CML definitions as
text files. Because a CML description is interpreted rather
than compiled, users can customise the transformation
by using a simple text editor, and quickly evaluate the ef-
fects of the transformation, without requiring an additional
compilation stage.

D. Mapping Selection
The aim of mapping selection is to optimise an appli-

cation running on a heterogeneous computing system by
selecting a processing element (or more specifically an
implementation) for each part of the program (Fig. 1). Our
approach is unique in that we integrate mapping, cluster-
ing and scheduling in a single step using tabu search
with multiple neighbourhood functions to improve the
quality of the solution, as well as the speed to attain the
solution [19]. In other approaches, this problem is often
solved separately, i.e. a set of tasks are first mapped to
each processing element, and a list scheduling technique
then determines the execution order of tasks [20], which
can lead to suboptimal solutions.

Figure 4 shows an overview of the mapping selection
approach. Given a set of tasks and the description of the
target hardware platform, the mapping selection process
uses tabu search to generate different solutions iteratively.
For each solution, a score is calculated and used as the
quality measure to guide the search. The goal is to find
a configuration with the highest score.

Fig. 5 illustrates the search process. At each point,
the search process tries multiple directions (solid arrows)
using different neighborhood functions in each move,
which can increase the diversification and help to find
better solutions. In the proposed technique, after an initial
solution is generated, two neighborhood functions are
used to generate neighbors simultaneously. If there exists
a neighbor of lower cost than the best solution so far
and it cannot be found in the tabu list, this neighbor is
recorded. Otherwise a neighbor that cannot be found
in the tabu list is recorded. If all the above conditions
cannot be fulfilled, a solution in the tabu list with the least
degree, i.e. a solution being resident in the tabu list for
the longest time, is recorded. If the recorded solution has
a smaller cost than the best solution so far, it is recorded
as the best solution. The neighbors found are added to
tabu list and solutions with the least degree are removed.
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Fig. 4: An overview of the mapping selection process.
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Fig. 5: Searching for the best mapping and scheduling solution using
multiple neighborhood functions. The solid arrows show the moves gen-
erated by different neighborhood functions. The dotted arrows denote
the best move in each iteration of the search. PE: processing element,
tk: task.

This process is repeated until the search cannot find a
better configuration for a given number of iterations. An
advantage of using multiple neighborhood functions is
that the algorithm can be parallelised, and therefore the
time to find a solution can be greatly reduced.

The cost calculator (Fig. 4), which involves the Har-
monic system driver (Section III-B), computes the overall
processing time, which is the time for processing all the
tasks using the target computing system and includes
data transfer time between processing elements. The
processing time of a task on a processing element is
calculated as the execution time of this task on the
processing element plus the time to retrieve results from
all of its predecessors. The data transfer time between a
task and its predecessor is assumed to be zero if they
are assigned to the same processing element.
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E. Data Representation Optimisation

This section describes the data representation optimi-
sation process used in Harmonic. Currently this is an
FPGA-specific optimisation built in ROSE, and part of our
task transformation engine.

The goal of our data representation optimisation is
to allow users to trade accuracy of computation with
performance metrics such as execution time, resource
usage and power consumption [16]. In the context of
reconfigurable hardware, such as FPGAs, this means
exploiting the ability to adjust the size of each data unit on
a bit-by-bit basis, as opposed to instruction processors
where data must be adjusted to be compatible with
register and memory sizes (such as 32 bits or 64 bits).

Fig. 6 presents a simplified design-flow for generating
resource efficient designs. It can be split into two parts:
static analysis and dynamic analysis.

Static analysis takes as input (Listing 4): (1) the ranges
of all input variables, and (2) the error constraints for the
output variables (along with any constraints imposed on
intermediate variables). The system analyses the design
representation in the form of an abstract syntax tree
(AST), and stores all relevant information in cost and error
tables. Once the AST has been analysed, we proceed
to range analysis which makes use of interval arithmetic
in computing the maximum and minimum values of vari-
ables and expressions in the program. It is important to
note that the range of a variable is stored with the specific
instance of the variable because it can be different at
each point in the program. At the end of the range
analysis phase, we perform precision analysis to compute
the accuracy required for each variable and expression
of the program.

1 #pragma data_opt range(x_in, 5, 10)
2 #pragma data_opt range(y_in, 5, 10)
3 #pragma data_opt precision(z_out ,6)

5 double x_in, y_in
6 double z_out;

8 z_out = x_in * y_in;

Listing 4: The data representation optimisation process requires as
inputs: (1) the ranges of all input variables, and (2) the desired precision
for the output variables. This information can be derived automatically
from profiling information.

1 #pragma data_opt precision(x_in, 11)
2 #pragma data_opt precision(y_in, 11)
3 #pragma data_opt precision(z_out, 11)

5 z_out = x_in * y_in;

Listing 5: The data representation optimisation process outputs the
precision of all variables in the program. This information can be used
to synthesise resource efficient FPGA designs.

If input information cannot be supplied, a dynamic
analysis can be run to determine the input ranges, and
output precision requirements automatically. In addition,
the code can be instrumented to uncover other dynamic
information such as the number of iterations of a loop.
This way, the dynamic mode is able to generate less
conservative results than the static mode, since it does
not have to assume that variables inside a loop have the
maximum range, and therefore there is more scope to
reduce the hardware design area.

At the end of this process, an implementation is gener-
ated where the code is annotated with range and preci-
sion of required variables (Listing 5). This information can
then be supplied to the FPGA synthesis tool to generate
efficient designs.

In addition to generating resource efficient designs,
we extend our approach to reduce power consumption
of circuits using an accuracy-guaranteed word-length
optimisation. We adapt circuit word-length at run time to
decrease power consumption, with optimisations based
on branch statistics. Our tool uses a technique related to
Automatic Differentiation to analyse library cores speci-
fied as black box functions, which do not include imple-
mentation information. We use this technique to analyse
benchmarks containing library functions, such as square
root. Our approach shows that power savings of up to
32% can be achieved by reducing the accuracy from 32
bits to 20 bits. Some benchmarks we adopt cannot be
processed by previous approaches, because they do not
support black box functions.

F. Hardware Synthesis
Tasks that are suitable for hardware implementation

are mapped to FPGAs using the Haydn compiler [11],
which performs high-level hardware synthesis (Fig. 1).
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(High-Level Synthesis) 

(a)  
C implementation requesting pipelining 

par { 

   sqrt_v4.in(a); 

   adder_v4[0].in(sqrt_v4.res, b); 

   adder_v4[1].in(c, d); 

   mult_v4.in(adder_v4[0].res, adder_v4[1].res); 

   y = mult_v4.res; 

} 

(b)  

generated Handel-C implementation 

Fig. 7: An illustration of the hardware synthesis process. The task
transformation engine may add source-annotations to certain kernels
(such as loops) to indicate that certain transformations are required
for FPGA. In (a) we show a source-annotation that requires a fully
pipelined design (initiation interval of 1). The result of the high-level
synthesis process is shown in (b). The Handel-C code contains a
specific construct to denote explicit parallelism. Users can modify this
code to fine-tune the design.

The strength of our approach is that we combine behav-
ioral and cycle-accurate (RTL) methodologies in order
to achieve the best tradeoff between design-time and
design quality.

At a first stage, the task transformation engine derives
one or more implementations from a task description.
These implementations are the result of transformations
that may help hardware pipelining, such as loop inter-
change and loop unrolling, as well as #pragma annota-
tions that are placed to trigger hardware pipelining, as
shown in Fig. 7(a). Along with these annotations, the
task transformation engine can also set the optimisation
options, such as the degree of parallelism and resource
sharing.

Once the mapper selects the appropriate C implemen-
tation, as shown in Fig. 7(a), to run on the FPGA, we use
the Haydn tools to synthesise it and generate the corre-
sponding Handel-C code, as shown in Fig. 7(b). Unlike
the initial C implementation which captures the behaviour
of the design, the Handel-C implementation captures its
structure, which can be modified to explore, for instance,
trade-offs between performance and resource utilisation.
Finally, the Handel-C implementation can be compiled to
netlist and then to bitstream using the place and route
tools provided by FPGA vendors.

G. Experimental Features

This section provides an overview of some of the new
experiments we have been applying to Harmonic.

Cost estimation. Section III-B mentions that each
processing element targeted by our toolchain needs to

provide a processor driver which can be used in esti-
mating the costs of executing an arbitrary task on the
processing element. The accuracy of the estimator is
important, since it affects the mapping selection. Our
approach for estimating the cost of a task on a par-
ticular processing element currently exploits rule-based
techniques. Our rule-based estimator makes use of linear
regression to estimate the cost based on a set of metrics:

EstT ime =
N∑

i=1

TPi
(1)

where N is the number of instructions, Pi is the type
of instruction i, TPi is the execution time of instruction
Pi. Each processing element contains one set of TPi

for
each type of instruction. Instructions include conditionals
and loops, as well as function calls. Other approaches for
cost estimation, such as those based on neural networks,
are also being explored.

Automatic verification. A verification framework has
been developed in conjunction with the task transforma-
tion engine [17]. This framework can automatically verify
the correctness of the transformed code with respect to
the original source, and currently works for a subset of
ANSI C. The proposed approach preserves the correct
functional behaviour of the application using equivalence
checking methods in conjunction with symbolic simulation
techniques. The design verification step ensures that
the optimisation process does not change the functional
behaviour of the original design.

Model-based transformations. The task transforma-
tion engine (Section III-C) supports pattern-based trans-
formations, based on recognising and transforming sim-
ple syntax or dataflow patterns. We experiment with com-
bining such pattern-based transformations with model-
based transformations, which map the source code into
an underlying mathematical model and solution method.
We show how the two approaches can benefit each other,
with the pattern-based approach allowing the model-
based approach to be both simplified and more widely
applied [18]. Using a model-based approach for data
reuse and loop-level parallelisation, the combined ap-
proach improves system performance by up to 57 times.

IV. EXAMPLES

This section includes two examples to illustrate how
facilities for task transformation and mapping selection
in Harmonic can be used in optimising heterogeneous
designs.

A. Task Transformation

To show the effect of our transformation engine, we
apply a set of transformations to an application that



models a vibrating guitar string. These transformations
have been described in both CML and ROSE, and allow
the user to explore the available design space, optimising
for speed and memory usage. We modify the application
for a 200 second simulated time to show the difference
between the various sets of transformations. The set of
transformations includes:

• S: simplify (inline functions, make iteration variables
integer, recover expressions from three-address
code)

• I: make iteration bounds integer
• N: normalise loop bounds (make loop run from 0 to

N-2 instead of 1 to N-1)
• M: merge two of the loops
• C: cache one array element in a temporary variable

to save it being reread
• H: hoist a constant assignment outside the loop
• R: remove an array, reducing 33% of memory usage

(using two arrays instead of three)
Fig. 8 shows how the design space can be explored

by composing these transformations. Transformation S
provides an almost three-fold improvement, mostly by
allowing the compiler to schedule the resulting code.
Transformation I gives nearly another two-fold improve-
ment, by removing floating-point operations from the
inner loop. Transformation N gives a small improvement
after transformation I. Transformation M slows the code
down, because the merged loop uses the GPP cache
badly. Transformation C improves the integer code (I)
but leaves the floating point version unimproved. Finally,
transformation R gives a small improvement to the integer
version, but actually slows down the floating-point version.
Overall, we have explored the design space of transfor-
mations to improve execution time from 61.5 seconds to
9.8 seconds, resulting in 6.3 times speedup.

As described in Section III-G, we have developed a tool
that checks the functional correctness of the transformed
design with respect to the original design; examples of
using this tool can be found in [17].

B. Mapping Selection
The reference heterogeneous computing system in this

example contains three processing elements: a GPP, an
FPGA, and a DSP; these three components are fully
connected. Specifically, the GPP is an Intel Pentium-
4 3.2GHz microprocessor, the FPGA is a Xilinx Virtex-
II XC2V6000 device, and the DSP is an Atmel mAgic
floating-point DSP.

Each processing element has a local memory for data
storage during task execution. Results of a task’s prede-
cessors must be transferred to the local memory before
this task starts execution. The method proposed is not
limited to this architecture; this reference architecture is
used on this occasion to illustrate the performance of
difference approaches. Three applications are employed:

Original
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23.3

SM

22.1

SMN

22.2

SMNC

22.5

SMNCR

24.8

SIN

10.2

SI

10.3

SIM

20.5

SIMN

20.7

SIMNC

20.5

SIMNCR

19.4

SINC

9.8

SINCH

9.8

Key:

•S: Simplify (inline, etc.)

•I: make iter vars ints

•M: merge 2 loops

•N: normalise inner loop

•C: cache y[x-1]

•R: remove yp[]

•H: hoist const assign.

Note:

•Times in seconds
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simulated time

Fig. 8: Starting with the original code for the application that models
the vibration of a guitar string, we explore ways of using seven different
transformations to attempt to improve the run time and memory usage.
Much of the speedup comes from simplifying the code and making
iteration variables integer, while the remainder comes from caching to
prevent a repeat memory access and removing a constant assignment
from the loop body. The caching also enables one array to be eliminated
(about 33% reduction in memory usage), possibly at the expense of
performance.

FIR filtering, matrix multiplication, and hidden Markov
model (HMM) decoding for pattern recognition. The num-
ber of tasks involved are 102, 112, and 80 respectively.

Figure 9 shows the speedup comparison between
the proposed mapping/scheduling approach and two
other approaches: a system that performs mapping and
scheduling separately [20], and an integrated system
which uses a single neighborhood function [21].

Our approach can achieve more than 10 times
speedup than using a single microprocessor: a speedup
of 11.72 times is obtained for HMM decoding. Further-
more, it outperforms the other two approaches in all
cases – the improvements over the separate approach
[20] are 18.3%, 13.2% and 4.5% respectively, and the cor-
responding improvements over the integrated approach
[21] are 199%, 316%, and 235%. The improvement is
more pronounced than [21] which has a single neigh-
borhood function with a strategy of choosing the best
neighbor at each iteration. This shows that using and
designing multiple neighborhood functions carefully are
crucial.

The separate approach [20] is mapping dominated; it
searches for the best mapping for a particular scheduling
method. Since tasks are relatively similar in each appli-
cation, they are likely to be mapped to the same pro-
cessing element. One can observe that the improvement
of the proposed integrated approach over the separate
approach [20] for the HMM application is less significant
than the FIR and the matrix applications; one reason
is that the amount of data flow is smaller in the HMM
application, so the penalty of inappropriate task mapping
using the separate approach is also less significant.

Further examples of our mapping selection tool can be
found in [22].
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Fig. 9: Speedup comparison for various applications. Wiangtong: an ap-
proach that separate mapping and scheduling [20]. Porto: an integrated
approach using single neighborhood function [21].

V. SUMMARY

An effective toolchain is key to productivity of applica-
tion developers targeting heterogeneous systems. The
Harmonic toolchain has several novel features for im-
proving design quality while reducing development time.
The core tools in Harmonic include a task transforma-
tion engine, a mapping selector, a data representation
optimiser, and a hardware synthesiser. The experimental
tools in Harmonic include facilities for cost estimation,
design verification, and combination of model-based and
pattern-based transformations.

The modular structure of the Harmonic toolchain sim-
plifies its customisation. Such customisation enables Har-
monic to be tailored for different application domains;
it also allows Harmonic to evolve with technological
advances and with changes in application requirements.
Indeed Harmonic has proved successful in providing an
infrastructure that facilitates rapid experiments of ideas
for new techniques in enhancing quality and productivity
of heterogeneous system design.

We hope that Harmonic will contribute to both founda-
tion and applications of next-generation heterogeneous
systems. Current and future work includes refining the
Harmonic toolchain to provide a basis both for a re-
search tool to support design automation experiments
and benchmarking, and for a platform on which industrial-
quality tools can be developed. Various extensions of
Harmonic are also being explored, to support targets
ranging from high-performance computers to embedded
system-on-chip devices.
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