HARNESS Project: Managing Heterogeneous
Computing Resources for a Cloud Platform™*

J.G.F. Coutinho', Oliver Pell?, E. O’Neill?, P. Sanders?, J. McGlone?,
P. Grigoras!, W. Luk!, and C. Ragusa®

! Tmperial College London, UK
2 Maxeler Technologies, UK
3 SAP HANA Cloud Computing, Systems Engineering, Belfast, UK
jgfc@doc.ic.ac.uk

Abstract. Most cloud service offerings are based on homogeneous com-
modity resources, such as large numbers of inexpensive machines in-
terconnected by off-the-shelf networking equipment and disk drives, to
provide low-cost application hosting. However, cloud service providers
have reached a limit in satisfying performance and cost requirements for
important classes of applications, such as geo-exploration and real-time
business analytics. The HARNESS project aims to fill this gap by devel-
oping architectural principles that enable the next generation cloud plat-
forms to incorporate heterogeneous technologies such as reconfigurable
Dataflow Engines (DFEs), programmable routers, and SSDs, and provide
as a result vastly increased performance, reduced energy consumption,
and lower cost profiles. In this paper we focus on three challenges for
supporting heterogeneous computing resources in the context of a cloud
platform, namely: (1) cross-optimisation of heterogeneous computing re-
sources, (2) resource virtualisation and (3) programming heterogeneous
platforms.

1 Overview

The current approach for building data centres is to assemble large numbers of
relatively inexpensive personal computers, interconnected by standard routers
and supported by stock disk drives. This model for cloud computing leverages
commodity computation, communication, and storage to provide low-cost appli-
cation hosting. The efficacy of this platform depends on the providers’ ability to
satisfy a broad range of application needs while at the same time capitalising on
infrastructure investments by making maximal use of the platform’s resources.
Two key concepts related to cloud data centres are managed multitenancy and
elasticity [6]. To support multitenancy, the provider must accommodate and rec-
oncile the resource needs of several applications simultaneously, while elasticity
allows an application to run on a platform using a pool of resources that can

* The HARNESS Project is supported by the European Commission Seventh Frame-
work Programme, grant agreement no 318521 http://www.harness-project.eu

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 324-329, 2014.
© Springer International Publishing Switzerland 2014

http://www.harness-project.eu

HARNESS Project: Managing Heterogeneous Computing Resources 325

N -
100000 149 times
slower than DFE

10000

cutoff point: DFE
becomes more profitable than
the 20 threads CPU version

M

1000

100
9 times
slower than DFE

100000 1000000 10000000

time to process (ms)

10 100

- /
3 times

V\ faster than DFE

0.01 o
ga;‘t":fihan oFE number of impressions processed

——CPU (1 thread @2.67Ghz) —=CPU (20 threads @2.67Ghz) DFE @100Mhz

Fig. 1. Results comparing three AdPredictor implementations running on a CPU and
DFE platforms. In this example, the size of the task (number of impressions to be
processed) affects how each implementation fares against other implementations.

grow and shrink over time. At play here are many conflicting concerns involving
application requirements, resource capacity and availability, and pricing.

The HARNESS project envisions an enhanced cloud Platform-as-a-Service
(PaaS) software stack that not only supports existing commodity technolo-
gies, but also incorporates heterogeneous technologies such as Dataflow Engines
(DFEs) [5], programmable routers and different types of storage devices, to pro-
vide vastly increased performance, reduced energy consumption, and lower cost
profiles. To realise this goal, we are working on a platform design that abstracts
the underlying infrastructure, enabled by runtime management systems, pro-
gramming tools and middleware layers.

In this paper, we focus on the problem of making effective use of specialised
computing resources, including DFEs and GPGPUs, in the context of a cloud
platform. In particular, we have identified three key challenges in addressing
this problem: performing global optimisation across a set of provisioned hetero-
geneous resources (Section 2), virtualising computing resources to enable sharing
in a multitenant environment (Section 3), and programming heterogeneous plat-
forms (Section 4).

2 Cross-Optimisation of Heterogeneous Resources

In current computational systems, heterogeneity is largely invisible to the oper-
ating system, and only minimal management functionality is provided. Acceler-
ators such as GPGPUs and FPGAs are often accessed by applications as I/O
devices via library-call interfaces. These accelerators must be manually managed
by the application programmer, including not just execution of code but also in
many cases tasks that are traditionally performed by the operating system such
as allocation, de-allocation, load balancing, and context switching. If resources

326 J.G.F. Coutinho et al.

virtual machine (a) Kernel DB

Stmtl execute task) library of executive
Executive strategies

stmt.

kernels

library of optimised J

T 1
task | ?diagnosﬂc task |

! diagnostic
dispatch * 1 information i

| information
H

dispatch
(e
* Virtual Computation /
m : Resource #2 e

(MaxelerOS DFE Group)

dispatcher monitor

Virtual Computation
Resource #1
(OpenCL GPU)

resource
characterisation

DFE #3

(b) (c)

Fig. 2. Our runtime management system performs cross-optimisations over set of pro-
visioned heterogeneous resources

are shared between several hosts, issues of contention, fairness and security be-
come further pronounced. Since heterogeneous computing elements are generally
outside the control of the operating system or other system software, global opti-
misation of resources for performance and energy efficiency, for instance, requires
considerable programming effort and expertise.

The need for a system that automatically performs global optimisation of re-
sources is illustrated in Fig. 1. In this example we compare the performance of the
AdPredictor [2] training process (a computationally intensive machine-learning
application) with three different implementations: a single-threaded CPU version
(CPU-1), a 20-threaded CPU version (CPU-20) and a 100Mhz DFE version. The
CPU platform is based on a dual Intel Xeon X5650 with 24 cores running each at
2.67Ghz. The DFE platform [5], on the other hand, contains a Virtex-6 FPGA
as the computation fabric and external RAM for bulk storage. The AdPredictor
training module processes a log of online advertisement views, called ad impres-
sions, to update a model that predicts whether a user will click an ad when
visiting a website. The size of an AdPredictor task corresponds to the number of
ad impressions to be processed. It can be seen from Fig. 1 that the DFE version
is not efficient for small tasks, however, at 10 million impressions, the DFE ver-
sion runs an order of magnitude faster than the multithreaded version. In this
example, the task size influences the relative performance of these three designs,
with smaller task sizes performing better on the single and multithreaded CPU,
and large tasks performing better with the DFE.

We are developing a computation management system [4] that automatically
makes these allocation decisions at runtime (Fig. 2). In particular, our runtime
management system processes jobs dispatched by the cloud platform using the
set of provisioned computing resources to satisfy a given goal or policy, such as
minimising job completion. Each job, triggered when an application is launched
on a cloud platform, is processed in a virtual machine (VM). An application con-
tains two types of code: standard code that is executed directly by the CPU host-
ing the VM, and managed tasks. Managed tasks are special program functions

HARNESS Project: Managing Heterogeneous Computing Resources 327

virtual machine #1 virtual machine #2
app : app :
Executive J Executive J

L .

% virtual 5 virtual

: resource ® resource

» interface physical machine : interface

H H

— (
N
3 ‘ez
(TEEEEEEEE 1
DFE #2 Sa DFE #2] MaxelerOS
P - DFE Group
DEESS virtual computation resource

% virtual computation
% resource management

8
MaxelerOS
DFE Group

virtual computation resource

Governor ‘
J

Fig. 3. Virtualisation of Maxeler DFEs to support resource sharing and elasticity

that are executed onto one or more provisioned computing resources through a
queue-based mechanism. In particular, during the application execution, man-
aged tasks are dispatched to a component called the ezecutive (Fig. 2(a)), which
decides how to allocate workload (Fig. 2(b)) based on the availability of opti-
mised kernel implementations stored in a database (Fig. 2(c)) along with associ-
ated performance models, such as the one presented in Fig. 1. These performance
models allow the executive to make intelligent decisions about how to optimise
workload based on runtime conditions, such as task size. Other factors that can
affect these decisions include accrued historical data, dependencies between tasks
and availability of computing resources.

3 Virtualising Specialised Computing Resources

Specialised computing resources, such as FPGAs and GPGPUs, are designed to
be single-tenant devices and typically do not provide native mechanisms that
allow these resource to be shared by multiple users. In contrast, CPUs are man-
aged by the operating system which transparently stores and restores the context
of a process, so that multiple processes can share a single CPU.

We have designed a virtualisation mechanism for DFEs that in addition of
supporting resource sharing, also supports elasticity where a single virtual com-
puting resource can accumulate or shed multiple physical resources according
to workload. Virtual computing resources (Fig. 2(b)) supported by our run-
time management system adhere to the same interface, which allows the exec-
utive component to dispatch tasks and acquire diagnostic information, such as
temperature and power consumption, without having to deal with proprietary
interfaces.

To illustrate our virtual computing resource mechanism we present an example
in Fig. 3 in which two applications are running each on a VM. In this example,

328 J.G.F. Coutinho et al.

cloud tenants CIDlLd PFU\{;dZIfS . LARA gspects 'can conv.ey qenera/ strategies to
write functional make Wf?l q e aspects optimise multiple applications
s that codify infrastructure
descriptions of .
. L knowledge for efficient
their applications L .
application mapping FAST design
program Ag
A
FAST LARA design LARA
program aspect e aspect
FAST design
program B
a weaver automatically B
maps a FAST program

onto the infrastructure to
derive an efficient design

weaving process strategy re-use

Fig. 4. Aspect-oriented programming methodology to support the HARNESS Cloud
Platform

each of the applications has one virtual DFE provisioned. A virtual DFE can
be instantiated to employ a fixed or variable number of physical DFEs. If the
virtual DFE (also known as a DFE group) is configured with variable physical
resources then physical DFEs are automatically re-allocated from one virtual
resource to another depending on the workload. This management of shared
resources is performed by a component called the governor. Shared resources are
particularly important for online jobs: cloud tenants, rather than provisioning
exclusive resources that are only used some of the time due to temporary bursts
of workload, can instead share those resources with other tenants to minimise
their cost, while cloud providers are able to maximise resource utilisation.

4 Application Development

Developers must acquire considerable knowledge and expertise to effectively pro-
gram heterogeneous platforms. Heterogeneous platforms may include an arbi-
trary number of computing resources, such as DFEs; GPGPUs and multi-core
CPUs. Developers of these platforms must, therefore, be aware of a number
of architectural details including: the different types of processing cores which
may exhibit various levels of complexity, the communication topology between
processing elements, the hierarchy between different memory systems, and built-
in specialised architectural features. There are two common programming ap-
proaches that address heterogeneity: (1) a uniform programming framework
supporting a single programming language and semantics to target different
types of computing resources; (2) a hybrid programming framework in which
developers must manually partition and map their applications using the most
suitable languages and tools.

We are developing the Uniform Heterogeneous Programming approach (see
Fig. 4), which aims to combine the benefits of the above two approaches by using
two complementary languages: FAST [3] and LARA [1]. With FAST, develop-
ers (cloud tenants) use a single software language (based on C99) to implement

HARNESS Project: Managing Heterogeneous Computing Resources 329

their applications with the possibility of using multiple semantics to describe al-
ternative versions of the same algorithm. For instance, with dataflow semantics,
C99 code is translated into functional units that are mapped into reconfigurable
logic to realise deep pipelined architectures, in which data is computed in par-
allel and the output is forwarded synchronously to the next functional unit. We
believe FAST simplifies not only the compilation and optimisation design-flow
using a single code base, but also simplifies the programming effort when target-
ing specialised computing resources. With LARA, on the other hand, hardware
infrastructure experts (for instance, working on behalf of cloud providers) can
codify domain specific knowledge into special programs called aspects which
analyse and manipulate (naive) FAST programs. Subsequently, a process called
weaving automatically combines non-functional (LARA aspects) and functional
concerns (FAST programs) to derive designs that are optimised for a specific
cloud platform and infrastructure.

5 Conclusion

In this paper we presented HARNESS, an FP7 project which aims to develop
the architectural principles that enable the next generation of cloud platforms
to provide increased performance, reduced energy consumption, and lower cost
profiles. In the context of this project, we are developing a runtime management
system that supports cross-optimisation and virtualisation of heterogeneous re-
sources to provide managed multitenancy and elasticity. In addition, we are
developing an aspect-oriented programming approach which allows programs
capturing multiple semantics to be mapped efficiently to the HARNESS cloud
platform. Future work includes integrating and evaluating our heterogeneous
cloud platform and development tools with industrial use cases.

References

1. Cardoso, J.M.P., Carvalho, T., Coutinho, J.G.F., Luk, W., Nobre, R., Diniz, P.,
Petrov, Z.: LARA: An aspect-oriented programming language for embedded sys-
tems. In: Proceedings of the Annual International Conference on Aspect-Oriented
Software Development, pp. 179-190 (2012)

2. Graepel, T., et al.: Web-scale Bayesian click-through rate prediction for sponsored
search advertising in Microsoft’s Bing search engine. In: Proc. of the Intl. Conf. on
Machine Learning, pp. 13-20 (2010)

3. Grigoras, P., Niu, X., Coutinho, J.G.F., Luk, W., Bower, J., Pell, O.: Aspect driven
compilation for Dataflow designs. In: Proc. of the IEEE Conference on App-Specific
Sys. Arch. and Proc. (ASAP), pp. 18-25 (2013)

4. O’Neill, E., McGlone, J., et al.. SHEPARD: Scheduling on HEterogeneous Plat-
forms using Application Resource Demands. In: Proc. of the Intl. Conf. on Parallel,
Distributed and Network-based Processing (2014) (to appear)

5. Pell, O., Averbukh, V.: Maximum performance computing with Dataflow engines.
Computing in Science Engineering 14(4), 98-103 (2012)

6. Schubert, L., et al.: Advances in clouds: Research in future cloud computing. Expert
Group Report, European Commission, Information Society and Media (2012)

	HARNESS Project: Managing Heterogeneous
Computing Resources for a Cloud Platform

	1 Overview
	2 Cross-Optimisation of Heterogeneous Resources
	3 Virtualising Specialised Computing Resources
	4 Application Development
	5 Conclusion
	References

