
CASK - Open-Source Custom Architectures for
Sparse Kernels

Paul Grigoras
Department of Computing
Imperial College London

paul.grigoras09@imperial.ac.uk

Pavel Burovskiy
Department of Computing
Imperial College London

p.burovskiy@imperial.ac.uk

Wayne Luk
Department of Computing
Imperial College London

w.luk@imperial.ac.uk

ABSTRACT
Sparse matrix vector multiplication (SpMV) is an impor-
tant kernel in many scientific applications. To improve the
performance and applicability of FPGA based SpMV, we
propose an approach for exploiting properties of the input
matrix to generate optimised custom architectures. The ar-
chitectures generated by our approach are between 3.8 to
48 times faster than the worst case architectures for each
matrix, showing the benefits of instance specific design for
SpMV.

1. INTRODUCTION
Sparse matrix vector multiplication (SpMV) is an impor-

tant kernel in many large scale scientific applications where
it is a typical component of linear solver algorithms for large
sparse systems of equations [1]. For the HPC community to
use FPGAs effectively, SpMV kernels need to have good per-
formance. However, the dynamic nature of the data flow in
SpMV [2, 3] requires expensive and complex circuitry and
it becomes a challenge to achieve effective use of arithmetic
and logic resources and on-chip and off-chip memory band-
width. Furthermore, performance varies greatly based on
the matrix instance [4–6].

While many general purpose solutions have been proposed
for reconfigurable architectures, they do not provide a viable
alternative to CPU or GPU based computing [4,5,7,8]. We
believe that an instance specific approach, in which prop-
erties of the sparse matrix such as its sparsity pattern and
numerical value range are adequately exploited, is the key to
generating high performance sparse matrix kernels on FP-
GAs. This work takes the first step towards instance specific
design methods for SpMV kernels. Our contributions are:
1) a framework for generating customised iterative double
precision floating point sparse matrix vector multiplication
designs based on sparse matrix instances, taking into ac-
count the matrix order and sparsity pattern, 2) an open-
source implementation of the proposed framework for the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA’16, February 21-23, 2016, Monterey, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3856-1/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2847263.2847338

Maxeler Vectis (Virtex 6) and Maia (Stratix V) platforms1

and 3) evaluation on a set of matrices from the University
of Florida sparse matrix collection [9] to demonstrate the
scope for instance specific design on SpMV.

2. BACKGROUND
SpMV refers to the multiplication of a sparse matrix A

by a vector x to produce a result vector b. A matrix is con-
sidered sparse if sufficient entries are zero to allow adequate
representation and algorithms to reduce the storage size or
execution time of various operations [1]. In this work, sparse
matrices are represented using the Compressed Sparse Row
(CSR) format [1]. CSR encodes a sparse matrix of dimension
n with Nnnz nonzero elements using three arrays: the val-
ues and col_ind arrays have one element for each nonzero
value representing its value and column index. The row_ptr
array encodes the start and end of each row as indices in
the values and col_ind arrays. The notation introduced in
this paragraph will be used throughout this work.

Early papers on reconfigurable architectures cover opti-
misations to reduce resource usage [6,8], but have not stud-
ied instance specific optimisations. [7] proposes a method to
process multiple CSR rows in parallel by using independent
channels. A methodology for improving memory bandwidth
utilisation is described in [4]. However, the proposed format
(equivalent to a block CSR of width 16) is not parametric so
it is not possible to optimise it based on the matrix sparsity
pattern. In addition [4] also studies the use of compres-
sion to reduce memory traffic. This has also been proposed
in other work [10,11] to improve performance when memory
bound matrices are involved and remains an important point
for future development in this work. However, for matrices
on which SpMV is not memory bound, careful architectural
tuning is more effective than compression.

The cost of pre-processing is acceptable for iterative SpMV
implementations. Although early implementations intro-
duced too much overhead [12], recent preprocessing, schedul-
ing and partitioning techniques have been employed success-
fully [2, 7]. Pre-processing has become essential for modern
SpMV based applications and it is also used in our approach
to enable partitioning and blocking.

To quantify, understand and correctly apply the numerous
optimisation opportunities for SpMV, a systematic method
is required to explore the various implementation trade-offs
on particular sparse matrices. We present such a method
in this work and start by providing an overview in the next
section.

1caskorg.github.io/cask

3. OVERVIEW
To support instance specific design for SpMV problems we

introduce CASK, an open-source framework for exploring
custom architectures for sparse kernels. The key novelty of
CASK is the capability of adapting parts of the flow to
better suit the problem instance which may lead to more
efficient architectures.

At the application level, CASK is designed for iterative
double precision floating point SpMV. We assume the in-
put is a CSR encoded sparse matrix, with double precision
floating point values and 32 bit index pointers (col_ind and
row_ptr). SpMV kernels are most commonly part of iter-
ative algorithms, such as linear or non-linear solvers where
the structure and possibly values of the sparse matrices will
not change for the duration of the algorithm. We assume
the resulting optimised SpMV architecture is to be used
as part of an iterative algorithm. In such applications the
pre-processing time (up to a linear bound) is regularly ig-
nored [2, 4, 7, 10].

At the system level, we assume an accelerator model: an
FPGA co-processor is used in conjunction with a multi-CPU
host system. Therefore data are initially stored in the CPU
DRAM where they are generated as part of a wider applica-
tion (e.g. Finite Element Method [13]). Data are transferred
from CPU DRAM to accelerator DRAM via an interconnect
such as PCIe or Infiniband. An iterative computation is im-
plemented on-chip: matrix and vector data are transferred
once over the slow interconnect, many iterations are per-
formed on-chip and the output is transferred to the CPU.
A large on-board memory is assumed (24 – 48 GB) and the
bandwidth between on-board DRAM and the FPGA is as-
sumed to be significantly larger than over the interconnect
and significantly smaller than from the on-chip storage.

The three main steps of the CASK workflow are analysis,
generation and execution.

The analysis step identifies the best architecture based
on the input sparse matrix by using a performance model
which is a function of the architectural parameters shown
in Section 4. The performance model provides an accurate
estimation of the execution time and resource usage of an
SpMV operation on a particular architecture for a specific
matrix instance. To support customisation during this step,
CASK exposes important aspects of the optimisation pro-
cess ranging from data layout strategies (partitioning and
blocking) to architectural characteristics (such as datapath
replication and cache structure). In addition, the frame-
work can be extended with new architectures and execution
models entirely.

The generation step compiles the optimised architecture
identified previously. It then generates an x86 executable
that configures the FPGA with this architecture and per-
forms the SpMV.

The execution step uses the resulting implementation to
perform the SpMV as shown in Figure 1 and consists of three
main phases: 1) pre-processing, 2) accelerator execution, 3)
post-processing.

First, pre-processing is performed on the CPU. The input
matrix is partitioned in work items which can be parallelised
and operated on independently. Since the CSR format is
used, partitioning can be achieved by row slicing: splitting
the matrix into disjoint sets of adjacent rows. In accel-
erator DRAM, partitions are stored at different addresses
and a number of independent memory streams are used for

FPGA Accelerator

A

P
1
B

1

P
Np

B
1

P
1
B
Nb

P
Np

B
Nb

P
1
B

1
…

P

1
B
Nb

P
Np

B
1
…

P
Np

B
Nb

P
1

P
Np DRAM

SpMV Kernel

b
1

b

b
N

From Caller
(CPU)

From Caller
 (CPU)

To Caller
 (CPU)

x

Distribute

Parallel, independent,
iterative computations

on FPGA

Pipe
1

Pipe
N

…

…

… … … … … …

… … … … … …

…

…

Coalescing ensures
linear access pattern
during computation

CASK

User

Partition

Block

Read Merge

Coalesce

Output

Figure 1: Overview of SpMV steps in CASK

each partition. While this allows better workload distribu-
tion, the number of streams is constrained which means that
only a small number of partitions can be processed simul-
taneously. Each partition is then blocked. Blocking splits a
partition in independent sets of adjacent columns, each set
smaller than the size of the on-chip cache, to allow fully stor-
ing the required elements of x in the limited on-chip mem-
ory. Blocks are coalesced to merge the CSR representation
of each block into a single input stream. This is required to
ensure a linear access pattern of maximal length for acceler-
ator DRAM which is an important factor in achieving good
performance. As an optimisation, this process also merges
the values and col_ind arrays, to reduce the number of
required memory streams and therefore increasing the max-
imum number of partitions supported.

Second, during the accelerator execution phase, partitions
are distributed to accelerator DRAM. The distribution strat-
egy is exposed, so users can experiment with various schemes
to improve effective bandwidth, for example by using a bet-
ter distribution of data across DRAM banks. Then par-
titions are processed independently in parallel processing
units which we refer to as pipes; each pipe can process mul-
tiple matrix nonzero entries from the same row per cycle.
This step is described in more detail in Section 4.

Finally, post-processing is performed on the CPU to merge
the resulting outputs. We note that in many iterative algo-
rithms the order of partitions is irrelevant (due to commuta-
tivity of operations) and an iterative algorithm could operate
on the current data distribution without additional merging
steps.

4. ARCHITECTURE
A flexible, parametric architecture is a prerequisite of the

analysis and generation steps. Therefore, the architecture
introduced in this section exposes a number of parameters,
resulting in more effective customisation. Our architecture
is also generic, since it supports any problem up to the size

of the on-board memory of the accelerator. Supporting large
problems through blocking has long been a subject for fu-
ture work [6, 7] since it introduces significant optimisation
challenges. For example, the inter-block reduction strategy
and efficient handling of empty rows (inevitably introduced
by blocking) can have significant impact on performance as
shown in Section 5. In [4] a model which effectively con-
strains the block size to 16 is introduced, but as we find in
Section 5, the optimal block size may be as large as 15K
on some of the matrices in our benchmark, for our architec-
ture. This is why in our architecture, the blocking strategy
is flexible.

An overview of the proposed architecture is shown in Fig-
ure 2. It can evaluate k nonzero values per clock cycle
of one row and Np rows in parallel (from different parti-
tions). Intuitively larger values of k improve performance
on denser matrices, while larger values of Np improve per-
formance on sparser matrices. To achieve this design the
components shown in Figure 2 are required. Depending on
the properties of the input matrix, the generated design may
be composed of multiple replicated processing pipelines as
described above. As shown in Figure 2, these pipelines are
fully replicated, without sharing resources.

Control Unit

Parallel Reduction
(in row)

Vector Unit

Serial Reduction
(in row)

Serial Reduction
(in partition)

C
B

From Accelerator DRAM

P
1
B

Nb

P
Np

B
Nb

P
1
B

1

P
Np

B
1

DRAM
Controller 1

Dram
 Controller N

P

SpMV Pipe 1 SpMV Pipe N
P

Cache
C

X

From Accelerator DRAM

row_ptr col_indvalues

…

…

To DRAM To DRAM

N
P
 Parallel Pipes

…

…

 Partition 1

 Partition N
P

Blocks 1 to N
B
= n / C

X

… … … k

k

k

k

k inputs
per cycle

Figure 2: Parameterised SpMV architecture with
number of pipes (Np), reduction cache size (Cb), mul-
tiplicand cache size (Cx), vector input width (k)

The control unit implements the sequence of operations
in the proposed architecture. Following the steps described
in the previous Section, the matrix partitions have been
loaded in the accelerator DRAM. From there the execution
continues as outlined in Algorithm 1 for each iteration and
for each partition. This logic is implemented in a state ma-
chine which can decode one CSR entry per clock cycle. Since
each parallel pipeline has one such control unit, a total of
Np CSR entries (from different rows) can be decoded per
cycle.

The on-chip cache is used to store elements of the mul-
tiplicand x. Since the arithmetic unit in each pipe may
work on k nonzero entries of a row, the vector element cache
should be able to produce k elements per cycle at peak. This
is achieved by replicating the vector storage for each arith-

Algorithm 1 Architecture operation on a single iteration.

for all p in partitions do
for all b in p.blocks do

for i in 1, size(b) do . Load vector block on chip
v[i]← vectorV alue[blockNumber ∗ size(b) + i]

end for
partp ← SpMV (b, v, partp−1)

end for
output(partp)

end for

metic unit, in total of k times per pipe. During the load
stage, all copies can be updated in parallel; during the SpMV
arithmetic stage all copies can produce data in parallel.

To ensure efficient retrieval of elements from the cache
(at the rate of exactly k elements per clock cycle) we in-
troduce the Arbitrary Length Burst Proxy (ALBP). The
ALBP consists of k FIFOs to store the bursts retrieved from
DRAM. When a burst is retrieved (we request a multiple of
k elements in each burst from DRAM to improve transfer
efficiency), data are pushed in the FIFOs in a circular pat-
tern such that element i of a burst is assigned to the FIFO
o+ i mod k, where o is the position after processing the pre-
vious burst. mt ≤ k data items may be pulled from the
FIFOs, in parallel, by the compute kernel. mt is determined
at runtime, and if fewer than k items are requested, k −mt

zeros are padded to match with the regular k width architec-
ture of the SpMV pipe. Since the FIFOs are implemented
in BRAMs, both push and pull can be processed in a single
cycle. The ALBP also maintains the count of nonzero ele-
ments in a row left to process in order to deliver less than k
matrix elements to the arithmetic pipe at the end of matrix
row at one cycle, and continues processing k matrix entries
of a new matrix row at the next cycle (provided the matrix
row has more than k nonzeros to process).

The SpMV arithmetic pipeline processes the current
block once the vector elements have been loaded in the on-
chip cache. It operates on k elements of the current block
as shown in Algorithm 2. Once a block is computed, its re-
sults are accumulated with previous results from the current
partition. This is done, in parallel, for each partition in the
design.

Algorithm 2 Operation of arithmetic pipeline

for all r in b.rows do . Compute new block
tr ← 0
for all (value, idx) in r.subrows do . Compute new row

tr ← tr + value× v[idx]
end for

end for
output(partp−1 + tr) . Inter-partition accumulation

At the first stage of the arithmetic pipeline a vectorized
multiplication is performed on up to k elements of the cur-
rent row with corresponding vector elements. The outputs
are sum-reduced using a balanced adder tree composed of
deeply pipelined floating point units, so at every cycle, k
values are reduced to a single output. For rows of more than
k elements, additional reduction stages are required. There-
fore the outputs of the adder tree, one per clock cycle, are
reduced using a feedback adder. Due to the latency of dou-
ble precision floating point addition, a sequence of at least
FAddLatency partial sums will be generated in this stage, one
per clock cycle. These sums are reduced using a variation

of a partially compacted binary reduction tree (PCBT) [14].
Our modification to the standard PCBT supports reducing
an arbitrary number of inputs (up to a design parameter
maximum) without stall before processing the next reduc-
tion set. It is also capable of skipping inactive cycles: data
does not shift through the tree levels, thus not modifying its
internal data storage, in the case where no input is available.
This modification is motivated by the fact that sparse ma-
trix rows may also be shorter than FAddLatency. In this case
the third stage reduction circuit reduces a number of terms
equal to the row length, and the PCBT should produce a
correct result for the whole matrix row. This case is even
more likely in the presence of blocking, which may reduce
the row length per block even further.

Finally, the results from each block must be accumulated
with previous results within the same partition. This is done
in the inter-block reduction unit. For large matrices, this
accumulation is performed using DRAM. For small matrices,
the number of cycles between writing the result of row i in
block b and requiring this value to compute the new value of
row i in block b+1 may not be high enough to cover the large
latency of the write and read to DRAM. Therefore, for small
matrices an on-chip buffer (Cb) is employed to perform the
accumulation. Of course, it may be preferable to use this on-
chip buffer to perform the accumulation for large memory
bound matrices to reduce memory traffic.

The proposed architecture also supports empty rows ef-
ficiently. Although empty rows are not common in initial
sparse matrices since they would correspond to ill-formed
systems of equations, they can appear frequently as a result
of the blocking strategy required to deal with larger matri-
ces. For example, in banded matrices which are common in
practice, a large number of cycles will be wasted on handling
empty rows. In fact we observe that for banded matrices,
for every Cx columns there will be only at most 2×Cx rows
containing nonzeros on those columns as long as the matrix
band is smaller than Cx. Since we should maximise the size
of Cx to reduce DRAM transfer overhead due to inter-block
accumulation, in practice the matrix band is very likely to
be smaller than Cx. Therefore, the rest of n−2×Cx rows on
every group of Cx columns are empty. Assuming one cycle
of processing for each empty row (as in the current archi-
tecture, with one partition) gives a total quadratic workload
overhead of (n − 2 × Cx) × n/Cx = O(n2). We propose a
simple approach to reduce the number of clock cycles for
processing a sequence of empty rows to 1, provided that the
inter-block accumulation results can be buffered on chip,
that is n < Cb for some architectures.2 First, we modify
the current CSR format to support a run length encoding of
empty rows; we note that without this modification it would
not be possible to deal with sequences of empty rows, since
the decoding process is serial, requiring at least on cycle per
row; every sequence of empty rows will be encoded as an
unsigned 32 bit integer for which the most significant bit is
the encoding bit3 and the least significant 31 bits are the
length of the empty sequence. Second, we modify the inter-
block reduction circuit to allow skipping over empty rows,
by providing arbitrary increments to the address counter

2
a memory controller extension could be provided to support this

optimisation for larger problem sizes but is beyond the scope of this
work
3
when the encoding bit is high the number represents an encoded

sequence of empty rows

which controls the write address for the accumulated sum;
the address skip is passed from the control unit based on
the length of the decoded sequence. In practice the ability
to deal with empty rows efficiently can result in substantial
speedup.

In summary, the proposed architecture can be used to per-
form a blocked sparse matrix vector multiplication up to the
limit of the on-board DRAM. The architecture is parametric
and its most important parameters are k the width of vec-
tor pipelines; Cx the multiplicand cache size; Cb the partial
result cache size; and Np the number of parallel pipelines.
Tuning the values of these parameters for a specific input
matrix can have a strong impact on performance.

5. EVALUATION
The evaluation is performed on a set of matrices from the

University of Florida sparse matrix collection [9]. This set is
chosen to match the matrices that were used as benchmarks
in some of the previous SpMV work on FPGAs [4,5,7]. There
is no inherent restriction on the properties of the sparse ma-
trices which are supported, other than they must fit into
accelerator DRAM. The benchmark is summarised in Ta-
ble 1. We note that matrices mc2depi and conf5_4-8x8-05
are not real-valued matrices, so are omitted from our anal-
ysis.

We compare our model and implementation on the Max-
eler Vectis and Maia platforms with recent implementations
targeting the Convey HC-1 platform [4, 5] and a Stratix V
development board [7]. The main parameters of these sys-
tems are summarised in Table 2. It is difficult to perform
an accurate comparison since the DRAM bandwidth, num-
ber of FPGAs, type of FPGAs and arithmetic precision dif-
fer. To aggregate these results we report a double precision
GFLOPs value per FPGA. This is computed for our design
as 2 ×Nnnz/T , where the execution time T is measured as
explained below. For [7] we optimistically halve the perfor-
mance of the design, although the resource cost of floating
point units increases quadratically with word length and us-
ing double precision storage for x reduces the applicability of
the design from supporting 16K order matrices to 8K order
matrices. This is considerably smaller than those supported
in all other works (including our own, which supports up to
main DRAM limit).

Table 2: System properties for previous implemen-
tations and this work (Maia and Vectis)

Implementation [4, 5] [7] Maia Vectis
FPGA 4 x LX330 SV D5 SV D8 V6
Freq. (MHz) 150 150 120 100
Bwidth. (GB/s) 80 21.3 58 38.4
Precision Double Single Double Double

Figure 3 shows a comparison of the best architecture pro-
posed by our framework as shown in Table 1 with imple-
mentations of previous work. The execution time on the
Maxeler systems is measured using a high resolution clock
in the chrono library of C++11. It includes the time to
load scalar values, to send the compute request from the
CPU to the FPGA, to queue initial memory commands and
to perform the entire SpMV (including memory transfers on
the FPGA). It does not include the time to pre-process and
transfer the matrix, the input vector x and the output vector
y from CPU to FPGA (and back).

Table 1: Required architectures for each matrix, produced in our approach (for Maxeler Vectis)
Matrix Architecture Place & Route Peak Performance

Name Order Nonzeros Nnz/row Cx k Np Cb Logic/DSP/BRAM % GB/s GFLOPs
dense 2048 4194304 2048.00 2048 16 2 2048 42.63 / 23.41 / 43.14 38.4 6.30
psmigr 2 3140 540022 171.98 4096 16 2 3584 42.02 / 23.41 / 54.23 38.4 4.76
raefsky1 3242 294276 90.77 4096 16 2 3584 42.02 / 23.41 / 54.23 38.4 3.99
rma10 46835 2374001 50.69 7168 16 2 47104 42.91 / 23.41 / 84.87 38.4 1.63
consph 83334 3046907 36.56 9216 8 2 83456 37.46 / 12.30 / 82.61 19.2 1.37
cant 62451 2034917 32.58 11264 8 2 62464 37.15 / 12.30 / 80.92 19.2 1.60
shipsec1 140874 3977139 28.23 14336 16 1 141312 30.24 / 11.71 / 79.65 19.2 0.78
torso2 115967 1033473 8.91 15360 16 1 116224 30.97 / 11.71 / 78.62 19.2 0.19
t2d q9 A 01 9801 87025 8.88 10240 8 2 10240 36.24 / 12.30 / 60.81 19.2 0.87
epb1 14734 95053 6.45 15360 8 2 14848 37.06 / 12.30 / 75.94 19.2 0.69
mac econ 206500 1273389 6.17 15360 8 1 206848 27.31 / 6.10 / 73.07 9.6 0.08
scircuit 170998 958936 5.61 14336 16 1 171008 30.39 / 11.71 / 84.54 19.2 0.08
dw8192 8192 41746 5.10 8192 8 3 8192 45.59 / 18.45 / 78.57 28.8 0.68

First, we observe that on the denser matrices (dense,
psmigr_2, consph, cant) we outperform other implemen-
tations. This is due to the ability to select the correct val-
ues of k, Np, Cx and Cb to maximise the achieved band-
width while allowing sufficient spare resources to place and
route the design. We note that when increasing the memory
controller frequency to maximise bandwidth, the additional
buffering and pipelining logic for the memory streams occu-
pies as many resources as the SpMV kernel itself. So finding
the configuration that enables the design to place and route
and run correctly is an achievement in itself.

0

1

2

3

4

5

6

7

This work (Best Hw) Nagar Normalized

Townsend Normalized Fowers Normalized

Matrix

 D
o

u
b

le
 P

re
c

is
io

n
 G

F
L

O
P

s
 p

e
r

F
P

G
A

Figure 3: Comparison of the best Maia or Vectis de-
sign with prior work for matrices in our benchmark

For sparse matrices (torso2 to dw8192), the platform used
in [4] is better suited: with a monolithic memory controller
and a large burst size, the Maxeler platforms (both Maia
and Vectis) are better suited to linear access patterns with
a large number of consecutive bursts; with multiple con-
trollers, and high effective bandwidth for random access,
the Convey platform is a better fit to the sparser matrices.

On matrices with few unique values, which therefore com-
press well (rma10, cant) our implementation is outperformed

by [4] which uses compression techniques to improve effective
memory bandwidth while we do not. On epb1 and dw8192
the flexible cache structure results in better utilisation of
available memory bandwidth, but the approach is not di-
rectly applicable to large matrices in our benchmark.

Table 1 shows that on many matrices the proposed ar-
chitectures are not bound by memory throughput on the
Maxeler Vectis (and similarly Maia) platforms. Figure 4
shows projected results for the proposed architecture on
the Vectis platform assuming increased memory bandwidth
(100GB/s) and increased logic resources and hard blocks
such as BRAM. Architectures for denser matrices such as
dense, psmigr_2, raefsky1 benefit substantially from larger
memory bandwidth and are hence memory bound. Architec-
tures for sparser matrices could benefit from more resources,
by deploying more independent processing pipes to achieve
a better utilisation of on-board DRAM bandwidth.

0

2

4

6

8

10

12

14

16

This work (Best Hw) This Work Est. (100GB/s) This Work Est. (4x Logic)

Matrix

D
o

u
b

le
 P

re
ci

si
o

n
 G

F
L

O
P

s

Figure 4: Projections for increased bandwidth or
resources

We note that all implementations on FPGA so far are
outperformed by CPU and GPU implementations. For ex-
ample scaling the results of [15] for a modern dual CPU
Xeon server would indicate performance on the order of 4.4 –
12 GFLOPs and [4] observes performance in the range of 12

– 30 GFLOPs for an Intel MKL implementation running
on a dual Intel Xeon E5-2690 server. Furthermore NVIDIA
cuSPARSE [16] claims speedup in the range of 2 - 5x using
a modern Tesla K40 GPU over Intel MKL running on one
E5-2649. A more conservative estimate based on scaling the
results in [17] for the bandwidth of a K40 GPU suggests per-
formance in the range of 9 – 24 GFLOPs could be achieved.

Nevertheless, we believe that through the use of system-
atic instance specific optimisations, FPGAs would be able
to compare favourably with these platforms in the near fu-
ture. Table 1 also shows the need for an automated, instance
specific design method: to maximise performance on the 13
matrices in our benchmark, no fewer than 12 distinct config-
urations for the Vectis platform have been identified, with
various sizes of Cx, k and Np found to be most effective
based on the problem size (the number of rows, which also
constrains Cb) and matrix sparsity pattern. A similar set of
configurations has been built for the Maia platform, but has
been omitted for brevity.

0

5

10

15

20

25

30

35

40

45

50

Matrix

 S
p

e
e

d
u

p
 v

s
 W

o
rs

t A
rc

h
it

e
c

tu
re

Figure 5: Speedup of best architecture versus worst
architecture configuration

Finally, we note that not only do we require a large num-
ber of distinct configurations to achieve maximal perfor-
mance, but also selecting the wrong configuration can re-
duce performance significantly, by a factor of almost 50 in
the worst case, as shown in Figure 5.

6. CONCLUSION
We have introduced CASK, an open source tool for ex-

ploring custom architectures for sparse kernels. We have
shown that CASK can use properties of the input sparse
matrix such as the sparity pattern to generate customised,
instance specific architectures for SpMV. This approach can
lead to improved performance and applicability of FPGA
based SpMV implementations.

Opportunities for future work include the use of compres-
sion techniques [10, 11], instance specific word-length op-
timisation and support for additional parameters such as
clock frequency, memory controller frequency and various
low level, FPGA specific optimisations. These improvemets
can bring the performance of SpMV kernels on FPGAs closer
to that on optimised CPU and GPUs systems, paving the
way for wide adoption of FPGAs in HPC.

Acknowledgments
This work is supported in part by the EPSRC under grant
agreements EP/L016796/1, EP/L00058X/1 and EP/I012036/1,
by the Maxeler University Programme, by the HiPEAC NoE,
by Altera, and by Xilinx.

7. REFERENCES
[1] Y. Saad, Iterative Methods for Sparse Linear Systems.

Society for Applied and Industrial Mathematics, 2003.

[2] G. Chow, P. Grigoras, P. Burovskiy, and W. Luk, “An
Efficient Sparse Conjugate Gradient Solver Using a
Benes Permutation Network,” in Proc. FPL, 2014.

[3] X. Niu, W. Luk, and Y. Wang, “EURECA: On-Chip
Configuration Generation for Effective Dynamic Data
Access,” in Proc. FPGA, 2015.

[4] K. Townsend and J. Zambreno, “Reduce, Reuse,
Recycle (R 3): A design methodology for Sparse
Matrix Vector Multiplication on reconfigurable
platforms,” in Proc. ASAP, 2013.

[5] K. K. Nagar and J. D. Bakos, “A Sparse Matrix
Personality for the Convey HC-1,” in Proc. FCCM,
2011.

[6] L. Zhuo and V. K. Prasanna, “Sparse Matrix-Vector
Multiplication on FPGAs,” in Proc. FPGA, 2005.

[7] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and
G. Stitt, “A High Memory Bandwidth FPGA
Accelerator for Sparse Matrix-Vector Multiplication,”
in Proc. FPGA, 2014.

[8] L. Zhuo, G. R. Morris, and V. K. Prasanna,
“Designing Scalable FPGA-based Reduction Circuits
Using Pipelined Floating-point Cores,” in Proc.
ISPDP, 2005.

[9] T. A. Davis and Y. Hu, “The University of Florida
Sparse Matrix Collection,” ACM Transactions on
Mathematical Software, vol. 38, no. 1, p. 1, 2011.

[10] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a
Universal FPGA Matrix-Vector Multiplication
Architecture,” in Proc. FCCM, 2012.

[11] P. Grigoras, P. Burovskiy, E. Hung, and W. Luk,
“Accelerating SpMV on FPGAs by Compressing
Nonzero Values,” in Proc. FCCM, 2015.

[12] M. DeLorimier and A. DeHon, “Floating-point Sparse
Matrix-Vector Multiply for FPGAs,” in Proc. FPGA,
2005.

[13] P. Burovskiy, P. Grigoras, S. J. Sherwin, and W. Luk,
“Efficient Assembly for High Order Unstructured FEM
Meshes,” in Proc. FPL, 2015.

[14] L. Zhuo, G. R. Morris, and V. K. Prasanna,
“High-performance reduction circuits using deeply
pipelined operators on FPGAs,” IEEE Trans. PDS,
vol. 18, no. 10, pp. 1377–1392, 2007.

[15] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel, “Optimization of Sparse
Matrix–vector Multiplication on Emerging Multicore
Platforms,” Parallel Computing, vol. 35, no. 3, pp.
178–194, 2009.

[16] NVIDIA, “Nvidia cuSPARSE Framework.” [Online].
Available: https://developer.nvidia.com/cuSPARSE

[17] N. Bell and M. Garland, “Implementing Sparse
Matrix-vector Multiplication on Throughput-oriented
Processors,” in Proc. SC, 2009.

