
Dataflow Design for
Optimal Incremental SVM Training

Shengjia Shao∗, Oskar Mencer∗,† and Wayne Luk∗
∗Department of Computing, Imperial College London, †Maxeler Technologies

United Kingdom

E-mail: {shengjia.shao12, o.mencer, w.luk}@imperial.ac.uk

Abstract—This paper proposes a new parallel architecture for
incremental training of a Support Vector Machine (SVM), which
produces an optimal solution based on manipulating the Karush-
Kuhn-Tucker (KKT) conditions. Compared to batch training
methods, our approach avoids re-training from scratch when
training dataset changes. The proposed architecture is the first
to adopt an efficient dataflow organisation. The main novelty is
a parametric description of the parallel dataflow architecture,
which deploys customisable arithmetic units for dense linear al-
gebraic operations involved in updating the KKT conditions. The
proposed architecture targets on-line SVM training applications.
Experimental evaluation with real world financial data shows
that our architecture implemented on Stratix-V FPGA achieved
significant speedup against LIBSVM on Core i7-4770 CPU.

I. INTRODUCTION

Support Vector Machine (SVM) is one of the most widely-

used supervised machine learning techniques with successful

application to various classification and regression tasks [1].

To train an SVM, a Quadratic Programming (QP) problem

constructed from the training dataset needs to be solved. The

QP problem has a unique global optimal solution, determined

by the Karush-Kuhn-Tucker (KKT) conditions [2].

Traditionally, SVM is trained using batch training methods,

in which the training dataset is gathered, then the correspond-

ing QP problem is solved [2]. Its drawback is whenever the

training dataset changes, the QP problem needs to be solved

from scratch again. For on-line tasks like financial trading

in which the training dataset itself is evolving, incremen-

tal training methods are more suitable than batch training

methods. Incremental training updates the SVM from existing

KKT conditions in obtaining the solution for the new training

dataset, without solving QP from scratch again. Incremental

SVM training algorithms can be optimal or approximate, de-

pending on whether the new SVM obtained from incremental

updating corresponds to the exact new optimal QP solution

or an approximate one. In this paper, we develop an optimal

incremental SVM training algorithm [3] on FPGA.

Much existing work accelerating SVM training on FPGA

focuses on batch training [4]. This paper presents the first

hardware accelerated SVM for incremental training. In par-

ticular, we focus on the ǫ-insensitive SVM for Regression

(ǫ-SVR). The main novelty is a parametric parallel dataflow

architecture with customisable arithmetic units for the dense

linear algebraic operations involved in updating the KKT

conditions. Specifically, we make the following contributions:

• A novel dataflow architecture addressing the challenges

of incremental SVM training on FPGA: random memory

access, numerical accuracy, and list manipulation.

• A parallel data path for updating KKT conditions. Paral-

lelism is adjustable to make the design scalable, and to

trade-off between parallelism and resource usage.

• Implementation on Maxeler MPC-X2000 with an Altera

Stratix-V FPGA and evaluation using real financial data.

The proposed system is significantly faster than software.

The rest of this paper is organised as follows. Section II

reviews related background. Section III details our dataflow

architecture. Section IV presents experimental evaluation. Fi-

nally, Section V provides conclusion and suggests future work.

II. BACKGROUND

We focus on the ǫ-insensitive SVM for Regression (ǫ-SVR).

With training dataset D = {(xi, yi) | i = 1, · · · , N}, where

xi ∈ R
d the input feature and yi ∈ R the regression target,

ǫ-SVR gives the following regression function:

f(x) =

N
∑

i=1

θiK(x,xi) + b (1)

Here, θi and b are obtained from the KKT conditions.

K(x,x′) = 〈Φ(x),Φ(x′)〉 is the kernel function [2].

We define training error as h(xi) = f(xi) − yi. For the

SVM training problem, the KKT conditions can be expressed

as a relation between training error and coefficients [3]. These

relations divide the training dataset into three subsets:










Set S = {i||h(xi)| = ǫ, 0 < |θi| < C}

Set E = {i||h(xi)| ≥ ǫ, |θi| = C}

Set R = {i||h(xi)| ≤ ǫ, θi = 0}

(2)

When a sample (xc, yc) joins or leaves the training dataset,

a new optimal solution could be obtained incrementally by

adjusting θi and b such that the KKT conditions are still satis-

fied. This is the idea of incremental SVM training algorithms

[3], [5]. The major computation involved is calculating the

sensitivities of θi and h(xi) with respect to θc. These sensi-

tivities tell us how existing training samples are affected if we

change the weight θc of the new sample. These computations

involve two dense matrices Q and R. Q is the kernel matrix

Qij = K(xi,xj). R is a matrix that depends on Q and set S.

Using {s1, s2, · · · , sls} to denote all samples in S, matrix R

can be expressed as follows:

978-1-5090-5602-6/16/$31.00 c©2016 IEEE

R =











0 1 · · · 1
1 Qs1,s1 · · · Qs1,sls

...
...

. . .
...

1 Qsls,s1 · · · Qsls,sls











−1

(3)

With matrices Q and R, sensitivity of b, θi and h(xi) of all

training samples with respect to θc and b can be calculated via

matrix-vector multiplications [5] [3]. The first one is vector ~β,

the sensitivity of b and θi(i ∈ S) with respect to θc. ~β is a

matrix-vector product of R and some Q elements:










∆b
∆θs1

...

∆θsls











= ~β∆θc =











−R











1
Qs1,c

...

Qsls,c





















∆θc (4)

For the elements in set E, R, consider the sensitivity between

training error h(xi) (i ∈ E ∪R) and θc. Denote the samples

in E ∪R as {n1, n2, · · · , nln} and let ∆h(xi) = γi∆θc. The

coefficient vector ~γ is calculated as follows:

~γ =











Qn1,c

Qn2,c

...

Qnln,c











+











1 Qn1,s1 · · · Qn1,sls

1 Qn2,s1 · · · Qn2,sls

...
...

. . .
...

1 Qnln,s1 · · · Qnln,sls











~β (5)

Using the sensitivity vectors ~β and ~γ, the change of θc or b
in each iteration can be calculated.

The two matrices need to be updated when necessary. Q is

updated when a new sample joins the training data set. As Q

is symmetrical, only one row needs to be updated. R will be

enlarged or shrunken when a sample joins or leaves set S [5].

The incremental training algorithm needs a starting point. It

can be initialised using either an existing trained SVM (warm

start) or two data samples (cold start) [3]. The incremental

training procedure can also be ‘reversed’ when an existing

training sample is removed from the training dataset, which

is called decremental training. In decremental training, the

coefficient θ of the leaving sample is gradually reduced to 0

while preserving KKT conditions [3], [5].

III. HARDWARE DESIGN

The general system architecture is shown in Figure 1.

Our system supports both incremental and decremental SVM

training as they share the same data path. As most of the

computations involve dense linear algebra, we introduce par-

allelism by using blocked matrix-vector arithmetic. The idea

is to divide an n-by-n matrix into K×K blocks sized at (n/K)-

by-(n/K) each and process them in parallel. K is a compile

time parameter. We will first discuss the design challenges.

A. Design Challenges

1) Random Memory Access: While most of the dense linear

algebra operations involved can be easily parallelised using

blocked matrix-vector arithmetic, the computation of vector ~γ,

shown in eq. (5), brings challenges due to its random memory

Training

Samples

IN

Kernel Computation

 Matrix Q

Control

 Matrix R

Coefficients Calculation

Bookkeeping Logic

1D

Coefficients

Fig. 1. The overall system block diagram. The system is composed of a central
control block and parallelised computational and storage blocks. The proposed
architecture supports both incremental and decremental SVM training.

access pattern. Denote the number of elements of set S by NS ,

and that of set E∪R by NER. ~γ is a vector of NER elements.

Note that eq. (5) implies random access of Q, as both row and

column addresses depend on the set membership of S, E, R at

run-time. As matrix Q is divided into K×K blocks and each

BRAM block only has two ports in hardware, we are unable

to truly parallelise the random memory accesses, i.e. what if

the K elements needed in a certain cycle happened to be in

the same Q block?

We address this challenge by exploiting problem specific

properties to re-arrange the loop. We notice that in many

cases NER ≫ NS , i.e. the majority of the training samples

belong to E ∪ R. Thus, we extend the outer loop (the loop

over set E ∪ R with random access {n1, n2, · · · , nln}) to

loop over the entire dataset (the sequential loop over sample

{1, 2, 3, · · · , n}), and parallelise it with factor K. The inner

loop over set S is still computed sequentially due to random

memory access. The time complexity of computing ~γ without

parallelisation is O(NS ×NER). With the proposed scheme,

the time complexity is O(NS × n/K). In a typical scenario

that NER ≫ NS , the scheme is highly effective.

2) Numerical Accuracy: The incremental SVM iteratively

updates itself, and such procedure is sensitive to numerical

errors. In our FPGA design we use fixed-point numbers to

reduce resource usage, and it can be challenging to maintain

good numerical accuracy. We handle this issue in two ways:

• Using more fractional bits. Theoretically, double has

15-17 decimal digits precision. Thus we use 50 fractional

bits in our fixed-point data type (˜15 decimal digits).

• Exploiting problem specific features. As shown in eq. (2),

a sample in set S has h(xi) = ±ǫ; a sample in set E has

θi = ±C; a sample in set R has θi = 0. These values are

fixed. Although the incremental algorithm will compute

them when updating, there may be small deviations due

to limited precision. To correct such deviations we always

write these fixed values explicitly (±ǫ,±C, 0) when we

know them.

By combining the two methods above, our FPGA design

achieves the same level of accuracy as the double precision

LIBSVM software [6] in our experiment. For better accuracy

the number of fractional bits can be further increased.

3) List Manipulation: The training samples are divided into

S, E, R sets. Each set is a list. When a sample moves from

one set to another we need to update the lists. Set membership

update involves inserting/removing an element in a random

position in a list. A straightforward implementation on FPGA

is storing each list in an array and put it in a BRAM block.

In this way the set membership update will have O(n) time

complexity. For better performance we implement the list

using shift registers. In each clock cycle, the new value for

each register can be either: 1) its current value; 2) the value

from the register on its left; 3) the value from the register

on its right; 4) the external input. As all these registers are

synchronous and they operate in parallel, the insertion/removal

of an element in a random position in the list can finish within

one clock cycle. In this way we reduce the time complexity

of list manipulation from O(n) to O(1).

B. Training with Limited Resources - The Sliding Window

In the proposed architecture for incremental and decremen-

tal SVM training, all related coefficients are stored in FPGA’s

BRAM for efficient access. Among these coefficients, matrix

Q and R are the most memory consuming.

Consequently, the number of training samples that the

system can store is determined by the BRAM space available

in the FPGA chip. To train SVM with limited resources, we

adopt a sliding window approach: when the window is full and

a new sample arrives, an existing sample needs to be removed

before the new sample can be added to the training dataset.

Similar approach of learning with limited resources has been

reported [7]. In this paper, as we are evaluating the system

with high-frequency financial data, we choose to remove the

oldest sample from the training dataset, as it is considered to

be out-of-date. For other applications, the control logic can be

modified to deploy a different strategy of selecting the item to

be removed.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate the proposed hardware design

running on FPGA against LIBSVM, one of the most widely-

used SVM software libraries [6]. LIBSVM uses the Sequential

Minimal Optimisation (SMO) algorithm to train SVM. SMO

is an efficient batch training algorithm. LIBSVM is single-

threaded. We use high-frequency financial order book data in

our experiments.

A. Hardware Platform

The proposed system is implemented using the MaxJ

dataflow computing language by Maxeler Technologies and

0 500 1000 1500 2000
data

58.50

58.52

58.54

58.56

58.58

M
id
 P
ric

e

Support Vector Regression AAPL1932.csv

Mid Price
Up Label
Down Label

Fig. 2. Mid-Price Prediction using Incremental SVM with WinSize 420

built on Maxeler’s MAX4 platform with an Altera Stratix-

V 5SGSD8 FPGA (28nm technology). The FPGA runs at

150MHz. The LIBSVM software runs on a computer with

Intel Core-i7 4770 CPU at 3.4GHz (22nm technology) and

with 16GB DDR3-1600 memory.

B. Benchmark Problem

We use 5-level financial order book data in our experiments.

An order book is a list of buy and sell orders for a certain

financial instrument. Level 1 correspond to the best bid and

ask, level 2 the second best, and so on. The order book keeps

evolving as market participants buy and sell. Our application

predicts future mid-price at level 1 (average of best bid and

best ask). We construct 16 features from the order book data

as follows (EMA is Exponential Moving Average):

• 1-2: Ask(Bid) Size at Level 1

• 3: Bid Size at Level 1 - Ask Size at Level 1

• 4-5: Total Ask(Bid) Size in Level 1-5

• 6-10: Mid-Price at Level 1-5

• 11: Ask Price at Level 1 - Bid Price at Level 1

• 12-13: Weighted Average Ask(Bid) Price of Level 1-5

• 14: 10-period EMA of Mid Price at Level 1

• 15: 20-period EMA of Mid Price at Level 1

• 16: (Bid Price at Level 1 * Ask Size at Level 1 + Ask

Price at Level 1 * Bid Size at Level 1)/(Ask Size at Level

1 + Bid Size at Level 1)

This SVM model has the potential to predict stock price

movements. Figure 2 shows the mid-price prediction using

our window-based incremental SVM with window size 420.

A green dot is plotted when SVM mid-price prediction is

continuously higher than the recent mid-price for 150 events;

and a red dot is plotted when it is continuously lower for 150

events. They can be used to make trading decisions.

C. Resource Usage

Our incremental SVM system has a window size n = 420,

and RSize = 120. RSize controls the allocated memory space

(RSize×RSize elements) for matrix R, which can be smaller

than window size. This is because R is determined by set S

and set S can be small for many real world problems. With

(420, 120) fixed, we parallelise our system with K=3,4,5,6 and

report resource usage in Table I. FPGA clock frequency is set

TABLE I
RESOURCE USAGE OF STRATIX-V 5SGSD8 FPGA

K QBDim RBDim LUT FF BRAM DSP

3 140 40 185942 270687 1446 770
4 105 30 201825 313540 1479 1143
5 84 24 224748 365129 1657 1486
6 70 20 253331 423728 1892 1916

Available 524800 1049600 2567 1963

to 150MHz. In the table, QBDim = n/K is the dimension of

each matrix Q block, RBDim = RSize/K is the dimension

of each matrix R block. Larger K will lead to fewer kernel

cycles, thus better performance. DSP is the critical resource in

our system. Most of the DSPs are used by: a) Gaussian RBF

kernel K(x,x′) = exp(−
‖x−x

′‖
2

2σ2), because of its complexity;

and b) matrix R enlarging and shrinking, because R is divided

into K ×K blocks.

We notice that although the total size of matrix Q, R and

other coefficients stay the same for different configurations as

n = 420 and RSize = 120 are fixed, there is an increase

in BRAM usage with parallelism K. This is because blocked

storage is used for parallel access and higher parallelism means

more blocks, even though the overall size is unchanged.

D. Performance Evaluation and Discussion

We compare the elapsed time for LIBSVM and FPGA

to perform the training task. Our dataset contains 1902

items, corresponding to 88 seconds of trading. We use the

sliding window approach with window size n = 420 and

RSize = 120. This means as the stock trading goes on, we

always use the latest 420 prices to train the SVM. In the

beginning when there are fewer than 420 items, all data are

used. Table II shows the performance results. Below are the

descriptions of table items:

• TLIB: the run time of LIBSVM to perform the task

• Cycles: the number of FPGA cycles needed for the task

• TExp.: Expected FPGA run time TExp. = Cycles/Freq.

• TAct.: Actual FPGA run time

• AccExp.: Expected speed-up AccExp. = TLIB/TExp.

• AccAct.: Actual speed-up AccAct. = TLIB/TAct.

As we see from the table, up to 40.97 times speed-up has been

achieved. However, the expected speed-up calculated using

the number of cycles to run and the FPGA clock frequency

(150MHz) is much greater than the actual speed-up. This

means our system is bounded by CPU-FPGA communication.

When constructing the SVM we use 16 features, so together

with the prediction target (future mid-price), there are 17

items. As they are double-precision numbers, the size of each

training sample is therefore 17∗64 = 1088 bits. The total size

of 1902 samples is 252.61KB. In the Maxeler MAX4 system

we used, CPU and FPGA communicate via an Infiniband

connection with 2GB/s bandwidth. If we divide 252.61KB

by 2GB/s, then data transfer only needs 0.00012s; but this

is certainly not the case as the difference between TExp. and

TAct. is much larger than that. A reasonable explanation is that

TABLE II
PERFORMANCE COMPARISON BETWEEN LIBSVM AND FPGA (K=6)

Samples TLIB(s) Cycles TExp.(s) TAct.(s) AccExp. AccAct.

402 0.1826 836953 0.0056 0.0308 32.61x 5.93x
802 0.5991 1712549 0.0114 0.0406 52.55x 14.76x
1202 1.9214 2620524 0.0175 0.0469 109.79x 40.97x
1602 2.1240 3785907 0.0252 0.0564 84.29x 37.66x
1902 2.3672 4873275 0.0325 0.0672 72.84x 35.22x

bandwidth is a function of transfer data size and pattern. In

our experiment, the data are transferred in small pieces (1088

bits) at random times (when the training of previous sample

finishes). It is possible that for this kind of data transfer the

actual Infiniband bandwidth available may be much smaller

than expected.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel dataflow design

for incremental SVM training. The proposed design addresses

three challenges of implementing incremental SVM efficiently

on FPGA: random memory access, numerical accuracy, and

list manipulation. Experimental evaluation using high fre-

quency financial data shows the proposed design running on

Stratix-V FPGA achieves up to 40.97 times speed up against

LIBSVM software on Core-i7 4770 CPU. The proposed design

is suitable for scenarios in which on-line SVM training is

needed, such as financial time series prediction.

Possible future work includes using data compression to

reduce communication overhead. Assuming the I/O overhead

is removed with such compression techniques, we should be

able to reach the expected speed-up (up to 109.79 times).

ACKNOWLEDGEMENTS

This work is supported in part by the Lee Family Schol-

arship, European Union Horizon 2020 research and inno-

vation programme under Grant Number 671653, by the

UK EPSRC (EP/N031768/1, EP/I012036/1, EP/L00058X/1

and EP/K503733/1), the Maxeler University Programme, the

HiPEAC NoE, and Altera.

REFERENCES

[1] H. Byun and S.-W. Lee, “Applications of support vector machines for
pattern recognition: A survey,” in Pattern Recognition with Support Vector

Machines. Springer, 2002, pp. 213–236.
[2] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”

Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.
[3] J. Ma, J. Theiler, and S. Perkins, “Accurate on-line support vector

regression,” Neural Computation, vol. 15, no. 11, pp. 2683–2703, 2003.
[4] S. M. Afifi, H. GholamHosseini, and R. Sinha, “Hardware implementa-

tions of SVM on FPGA: A state-of-the-art review of current practice,”
International Journal of Innovative Science, Engineering & Technology,
vol. 2, 2015.

[5] T. Poggio and G. Cauwenberghs, “Incremental and decremental support
vector machine learning,” NIPS, vol. 13, p. 409, 2001.

[6] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[7] P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller, “Incremental support
vector learning: Analysis, implementation and applications,” Journal of

Machine Learning Research, vol. 7, no. Sep, pp. 1909–1936, 2006.

