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Architectures for the Post-Moore Era

Solving Mesoscale 
Atmospheric Dynamics 
Using a Reconfigurable 
Dataflow Architecture

This article presents an efficient dataflow methodology for solving 
Euler atmospheric dynamic equations. The authors map a complex 
Euler stencil kernel into a single field-programmable gate array 
chip and develop a long streaming pipeline that can perform 
956 mixed-precision operations per cycle. Their dataflow design 
outperforms traditional multicore and many-core counterparts in 
both time to solution and energy to solution.

N
umerical atmospheric simulation is an essential method to study the climate sys-
tem and a key tool for verifying climate changing mechanisms, making predic-
tions into the future, and providing guidance for protecting the planet from severe 
issues such as climate change and weather disasters. Due to atmospheric models’ 

high demand for computing power, a lot of effort has been made to study and simulate the 
atmospheric model using the world’s most powerful supercomputers. However, traditional 
high-performance computing (HPC) systems based on multicore and many-core architectures 
have to face architectural constraints from data representation, memory access patterns, com-
munications, and bandwidth, as well as challenges from the extremely complex atmospheric 
algorithm. Thus, novel architectures and revolutionary optimization techniques are in great 
demand toward achieving better results in both time to solution and energy to solution.

In recent years, dataflow engines (DFEs) based on reconfigurable field-programmable gate 
arrays (FPGAs) have developed quickly and achieved many inspiring results in various applica-
tions such as deep learning.1 Unlike traditional architectures, reconfigurable DFEs2 obtain high 
performance through deploying a long pipeline of concurrent operations corresponding to the 
targeting algorithm, while maintaining high power efficiency due to the lower clock frequency. 
Their customizable features on the hardware circuit, data representation, and on-chip memory 
provide great flexibility and optimizing space to tackle complex numerical algorithms.
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In this article, we present an efficient data-
flow computing model to solve the 3D Euler 
atmospheric equations, which is the essen-
tial step to describe mesoscale atmospheric 
dynamics. Through fully exploiting the cus-
tomizable features of the selected FPGA plat-
forms, we propose a set of novel optimizing 
techniques such as a customizable window 
buffer, algorithmic offsetting arithmetics, and 
a mixed-precision mechanism; manage to map 
the complex Euler kernel into a single FPGA 
chip; and build a long computing pipeline 
that can perform 956 mixed-precision oper-
ations per cycle. We also present our efforts 
to fully optimize the Euler algorithm over 
traditional platforms including CPU, Many 
Integrated Coprocessor (MIC), GPU, and 
SW26010 CPU.

Our dataflow design outperforms tradi-
tional multicore and many-core counterparts 
in terms of both time to solution and energy 
to solution. The performance comparisons with 

other major multicore and many-core proces-
sors prove dataflow computing to be a promis-
ing method in the post-Moore era to break the 
architectural constraints and bring inspiring 
achievements.

Background
This section introduces the hardware architec-
ture, equations, and algorithm, and summa-
rizes the existing efforts.

Dataflow Engines
Figure 1a shows the general architecture of a 
hybrid CPU-DFE system. Similar to the tradi-
tional hybrid system, it also contains CPUs to 
handle issues such as DFE initialization, task 
scheduling, and data exchange.

Compared with traditional multicore and 
many-core architectures such as CPU, MIC, 
and GPU, DFE achieves high performance 
through developing within a single FPGA 
chip a long streaming pipeline that comprises 
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Figure 1. The dataflow engine (DFE) architectures and algorithmic computing mechanisms. (a) General architecture of the hybrid 
CPU-DFE system using PCI Express as a bridge. (b) Dataflow computing model. Each dataflow core refers to a specific operation. 
(c) The 25-point Euler stencil. (d) The hybrid domain decomposition methodology assigns inner stencil to DFE and outer area to 
CPU. (e) Workflow of the hybrid methodology, in which C2D and D2C refer to the data exchange between CPU and DFE.
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many concurrent operations. Different hard-
ware resources, such as logic units and digital 
signal processors (DSPs), are customized to 
deploy a specific hardware circuit that corre-
sponds exactly to the targeted algorithm (see 
Figure 1b). Data that is originally stored in 
the onboard memory (DRAM) will stream 
through different dataflow cores on the pipe-
line and get computed. By streaming different 
dataflows through different dataflow cores, we 
can execute multiple instructions onto multiple 
data (MIMD), and thus boost the overall per-
formance.

Euler Equations
We can write the Euler equations3 as the fol-
lowing set of conservation laws:
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in which

Q 5 (r9, ru, rv, rw, (r)9)T,
F 5 (ru, ruu 1 p9, ruv, ruw, ru)T,
G 5 (rv, rvu, rvv 1 p9, rvw, rv)T,
H 5 (rw, rwu, rwv, rww 1 p9, rw)T,
S 5 (0, 0, 0, r9g, 0)T,  (2)

where r is the density, v 5 (u, v, w) is the 
velocity, p is the pressure, and  is the potential 
temperature of the atmosphere. The system is 
closed with the equation of state
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in which p00 5 1013:25hPa is the ground-level 
pressure, R 5 287:04J/(kg . K) is the gas con-
stant for dry air, and g 5 1:4. We remark here 
that because of the conservative property of the 

finite volume scheme,3 the numerical fluxes on 
a common edge of two consecutive mesh ele-
ments are identical.

We used a cell-centered finite volume 
scheme plus an explicit Runge-Kutta time- 
stepping method,3 after which each time step 
in solving the Euler equations (that is, the 
Euler algorithm) required two Euler stencil 
sweeps applied at all mesh elements. Figure 1c 
is the Euler stencil in the 3D channel, where 
to update a mesh element (for example, the 
central one in Figure 1c), we need to access 25 
elements. After the original channel is decom-
posed into different subdomains corresponding 
to different MPI processes (see Figure 1d), the 
halo area needs to exchange data information 
with neighboring subdomain halos, which is 
marked as halo updating.

Figure 2 shows the Euler algorithm that 
contains two major steps: halo updating and 
3D Euler stencil computing. Unlike an ordi-
nary stencil kernel, the 3D Euler stencil has 
to perform over 2,100 double-precision opera-
tions to update one element per sweep,4 and it 
is more complex in the communication model, 
resulting in tough computational challenges for 
traditional HPC platforms.

Computational Challenges
Traditional HPC systems based on many-core 
and multicore architectures face tough chal-
lenges in part from the complex algorithmic 
kernel. The more realistic 3D model built on 
the Euler equations brings more complex algo-
rithms and data communication patterns, and 
thus greatly strikes the memory bandwidth. 
The neighboring points of a 25-point stencil 
are stored in different rows, columns, or slices, 
and can be far apart in the memory space. 
Accessing all 25 points incurs a lot of cache 
misses.

Although complex atmospheric stencils 
have been widely studied on traditional HPC 
platforms, the achieved efficiency is relatively 
low (generally less than 10 percent). Therefore, 
novel architectures and revolutionary optimiza-
tion techniques are in great demand to achieve 
better efficiency.

Existing Efforts
With increased computing power in the form 
of many-core processors and accelerators (for 

Figure 2. Euler algorithm per stencil sweep.

1: for (k, j, i) ← (0, 0, 0) to  
 (Nk–1, Nj–1, Ni–1) do
2:  if (k, j, i)  Halo then
3:       Halo Updating
4:  end if
5:  3D Euler Stencil
6: end for
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example, the Sunway many-core processor, 
GPU, MIC, and so on), we see a lot of efforts 
at porting and refactoring atmospheric mod-
els on the most powerful supercomputers to 
achieve ultra-high scalability and resolution. A 
recent work5 that won the 2016 ACM Gordon 
Bell Prize scales a fully implicit Euler solver to 
over 10.5 million cores of the Sunway TaihuLight 
supercomputer6 and sustains a double-precision 
performance of 7.95 Pflops with 488-m hor-
izontal resolution. Although these many-core 
architectures demonstrate potential for improv-
ing the performance of existing models, we still 
see a gap of several orders of magnitude to 
advance to the next level of science.

On the other hand, preliminary work 
through FPGAs has achieved promising results 
in recent years. Melissa Smith and her col-
leagues accelerated the Parallel Spectral Trans-
form Shallow Water Model using ORNL’s 
SRC Computers.7 They managed to deploy 
and accelerate the key subroutines (such as fast 
Fourier transform or Laplace transform) on the 
FPGA clusters. Diego Oriato and his colleagues 
accelerated a realistic dynamic core of a mete-
orological limited area model (LAM)8 using 
the Maxeler2 DFE platform. It was a successful 
trial to reduce the resource usage through fixed-
point arithmetic with satisfactory speedup over 
multiple CPU cores. Compared with these 
works, the Euler equations we study are more 
complex in the spatial discretization schemes 
and data layouts and more meaningful for 
achieving cloud-resolving simulation in future 
models.

There are also many successful works on 
porting stencil kernels onto FPGAs. Kentaro 
Sano and his colleagues employed nine FPGAs 
(Altera Stratix IV EP4SGX230 and Stratix 
V EP5SGSD8 FPGAs) to compute 2D and 
3D Jacobi computations in a deep pipeline 
approach and obtain computing efficiencies 
of 87.4 and 83.9 percent, respectively.9 Xinyu 
Niu and his colleagues propose an approach to 
exploit runtime reconfigurability of FPGA for 
optimizing the revise time migration (RTM) 
stencil.10 The achieved performance on a Xil-
inx Virtex-6 SX475T FPGA is up to two orders 
of magnitude faster than the CPU reference 
designs. Hasitha Waidyasooriya and his col-
leagues proposed an OpenCL-based FPGA 
design and achieved better stencil performance 

over CPUs and GPUs.11 Koji Okina and his 
colleagues selected two essential 3D stencil 
kernels from the heat conduction and electro-
magnetic fields to evaluate their performance 
on stream-oriented FPGAs.12 Comparatively, 
the 3D Euler stencil in this work is much more 
challenging to solve, because more than 2,100 
double-precision floating-point operations 
must be performed.

Dataflow-Oriented Euler Designs
This section focuses on dataflow designs, 
including the essential optimizations to boost 
the overall performance.

Design Overview
Efficiently mapping a given algorithm into a 
DFE generally requires consideration of several 
issues.

Hybrid domain decomposition. The first step is 
to focus on the heterogeneous architecture for 
the best utilization on both the CPU and the 
DFE. So, the original algorithm can be divided 
into different tasks being processed by either the 
CPU or DFE, separately but simultaneously.

Hardware resource analysis. Because on-chip 
resources such as flip-flops and the DSP are 
required to build the hardware circuit for the 
streaming pipeline, those limited resources 
might not be enough to fulfill the demand for 
complex algorithms that generally contain too 
many operations, such as the Euler algorithm that 
originally contained more than 2,100 double- 
precision floating-point operations. In the rest 
of this section, we discuss the key designs we 
proposed to decrease the Euler algorithm’s 
resource demands.

Hybrid Domain Decomposition
Figure 1d shows the hybrid decomposition 
methodology. We decompose each subdomain 
into an inner cube (the shaded elements in Fig-
ure 1d) and the outer area (the blank elements). 
So, all halo elements go to the outer area, and 
the inner cube contains only stencil computa-
tion. We assign the DFE to process the inner 
cube stencil computations, and we assign the 
CPU to process the outer area stencil compu-
tation and all communication. Figure 1e shows 
the workflow of hybrid domain decomposition. 
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The CPU and DFE are now working simultane-
ously, and the CPU time for computation and 
communication can be hidden inside the DFE 
time for stencil computation, which results  
in efficient computation-communication over-
lapping. Moreover, DFE no longer needs to 
spend resources implementing the outer-part 
computation.

Memory Optimization
In this section, we focus on the optimizations 
based on the hierarchic memory.

Customizable window buffer. As we explained 
earlier, accessing the 25 points from the 3D 
Euler stencil always incurs a lot of cache misses 
for traditional architectures. On an FPGA, 
BRAM can be used to construct a customizable 
window buffer to accommodate the stream-
ing data from the 3D Euler stencil. The win-
dow buffer has the size covering all 25 points 
required by current stencil computing, and 
thus performs perfect cache mechanism with 
the following behaviors:

• Data will stream into the window buffer 
when required for stencil computing.

• Data will stream out of the window buffer 
when no longer required for stencil com-
puting.

• During stencil computing, all 25 points 
required are in the window buffer and can 
be accessed immediately.

Fast memory table. In the stencil loop, vari-
ables that rely only on the index coordinate can 
be precalculated during compile time by the 
CPU and stored as a fast memory table using 
the BRAM. Those variables can be accessed 
through looking up the table. If the BRAMs 
are not big enough to store all the coordinate 
variables, we can alternatively store them on the 
DRAM as constant variables. So, we use more 
memory in exchange of operations.

Data accommodation strategy. Different 
types of data from the Euler algorithm are stored 
on different memory on the DFE side. The 
on-board large DRAM is used to accommodate 
the wave propagation variables3 that must be 
updated every step, whereas the on-chip BRAM 
is used to store the coordinate variables to form 

the fast memory table. Because the kernel com-
putation is not bounded by the memory band-
width, the data can be accessed in time accord-
ing to the FPGA frequency (180 MHz in our 
case) and in a 2D pattern by using MaxCom-
piler,2 a source-to-source compiler that provides 
a high-level hardware description language.

Algorithm Optimization  
and DFE Programming
The identical rule to compute the fluxes on a 
common edge of two consecutive mesh elements 
provides a big optimizing space to simplify the 
Euler stencil based on the dataflow computing 
model. For example, Figure 3a shows the C 
code to compute variables y0 and y1. We can 
learn that computing y0 and y1 is putting an 
identical rule on different elements from x, and 
the x elements for computing y1 are one time 
step ahead of the x elements for computing y0. 
In other words, the result of y1 at step t equals 
the result of y0 at step t – 1. So, in a dataflow 
computing model, all dataflow operations for 
computing stream dfe_y1 can be replaced by 
offsetting stream dfe_y0 one time step back-
ward (see Figure 3c). Algorithmic offsetting 
lets us reduce a large amount of the redundant 
floating-point operations. Figure 3b shows how 
to transfer between the CPU and the DFE and 
how to pipeline the kernel for size cycles.

Figures 3b and 3c also illustrate the pro-
gramming details based on MaxCompiler.2 The 
programming complexity is reduced to the same 
level of software programming. Meanwhile, the 
flexibility to play with hardware design options 
is mostly retained.

In Figure 3, input stream x goes through 
different operations to construct a computing 
pipeline for output streams y0 and y1. Simi-
larly, when x goes to other pipelines for differ-
ent output streams simultaneously, a MIMD 
model that corresponds to what is shown in in 
Figure 1b is formed accordingly.

Precision Optimization
The customizable feature on data representa-
tions is another method to reduce the resource 
usage. By using fixed-point or reduced-preci-
sion floating-point data to replace the original  
double-precision data, we can greatly decrease 
the Euler algorithm’s resource requirements. To 
determine the best data precision, we applied 
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range analysis and precision analysis. The basic 
idea for range analysis is to track and record the 
range of all variables throughout the iteration 
and estimate the best data type and width range 
to represent the variables. Fixed-point data can 
be used for modules whose variables cover a small 
range, whereas reduced-precision floating-point 
data can be used for the remaining modules 
with a wide variable range. The width, such as 
the fractional part for fixed-precision and the 
exponent part for floating-point, can also be 
estimated based on the range of variables.

The basic idea for precision analysis is to 
dynamically trace the influence on the final 

accuracy with a set of different bit widths and 
find the least bit width that can still guarantee 
a satisfying accuracy. For example, to determine 
the mantissa bits, we explore a set of different bit 
widths from 53 to 24 and observe the dynamic 
trend of the relative error of divergence and the 
on-chip resource cost accordingly. The relative 
error of divergence can be used as an important 
indicator for a quick estimation of accuracy, and 
shall stay under 11 percent to ensure accuracy.

Selected Hardware and Implementation
The hybrid CPU-DFE node contains two six-
core E5650 CPUs (hyperthreading enabled) 

// x, y0, and y1 are the variables in the original Euler code
1: double y0 5 24*x[k, j, i] – (x[k, j, i 1 1] 1 x[k, j, i – 1] 1 x[k, j 1 1, i] 1 x[k, j – 1, i]  
   1 x[k 1 1, j, i] 1 x[k – 1, j, i]);
2: double y1 5 24*x[k, j, i – 1] – (x[k, j, i] 1 x[k, j, i – 2] 1 x[k, j 1 1, i – 1] 1 x[k, 
   j – 1, i – 1] 1 xk 1 1, j, i – 1] 1 x[k – 1, j, i – 1]);
(a)

// nx and ny are the domain size on x and y dimensions, respectively
1: const int size 5 nx * ny;
2: int sizeBytes 5 size * sizeof(double);
3: Stencil_Compute_writeLMem (0, sizeBytes, x); \\  CPU transfers array x to DFE DRAM as 

stream data
4: Stencil_Compute (size, y0, y1);    \\  The DFE Stencil kernel is executed 

and pipelined for size cycle
(b)

// dfe_x, dfe_y0, and dfe_y1 refer to the dataflows that correspond to x, y0, and y1
// nx and ny are the domain size on x and y dimensions, respectively
// in Java class Stencil_Compute
1: DFEVar dfe_x 5 io. input (“x”, hwFloat (11, 53));
2:  DFEVar dfe_y0 5 24* dfe_x – (stream . offset (dfe_x , 1) 1 stream . offset (dfe_x , – 1) 

1 stream . offset (dfe_x, nx) 1 stream . offset (dfe_x, –nx) 1 stream . offset (dfe_x, 
nx * ny) 1 stream . offset (dfe_x, –nx * ny));

3:  DFEVar dfe_y1 5 stream . offset (dfe_y0, –1); \\ by using algorithmic offset, original 
operations can be eliminated

4: io . output (“y0”, dfe_y0, hwFloat (11, 53));
5: io . output (“y1”, dfe_y1, hwFloat (11, 53));
(c)

Figure 3. An example of algorithmic offsetting and programming based on MaxCompiler.2 (a) The original Euler code written in 
C programming language. Its corresponding DFE implementation on MaxCompiler is shown in (b) and (c). (b) The host CPU code 
that transfers x from the CPU to DFE (line 3) and that pipelines the kernel for size cycle (line 4). The signals in the dataflow are 
called DFEVar variables, each of which is associated with a datatype (such as hwFloat(11,53)). (c) The stream.offset utility 
automates the construction of the window buffer (line 2) and facilitates the implementation of the algorithmic offsetting method 
(line 3), so the algorithmic offsetting method is easier to implement on the DFE than on traditional counterparts. Lines 1, 4, and 5 
in (c) show functions to transfer data to and from DFE. MaxCompiler provides tools for hardware simulation and resource analysis.
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and eight DFE accelerator cards. Each DFE 
card has one Altera Stratix5 D8 FPGA chip and 
up to 48 Gbytes of on-board memory. There 
is also 6 Mbytes of on-chip BRAM that can 
provide a bandwidth of 14 TBytes per second. 
DFEs are connected with the CPU through 
PCI Express 2.0.

The channel is first divided into eight 
subdomains, and the hybrid domain decom-
position is applied on each subdomain. So, 
each DFE processes only the inner-part 
stencil computing, while simultaneously, 
the CPU is processing the outer-part stencil 
computing and the halo updating. No direct 
communication is thereby required between 
DFE cards. The halo exchange is done auto-
matically by using the neighboring commu-
nication functions from the framework of 
PETSC (Portable Extensible Toolkit for Sci-
entific Computation).3

For the inner-part stencil computation, we 
applied memory and algorithm optimizations 

to reduce the total number of computations to 
956 (see Table 1). We then applied precision 
optimization to reduce the resource require-
ment by roughly 30 percent, and to an appro-
priate amount (see Table 2) that can fit the 
whole Euler algorithm onto the selected FPGA. 
The relative error of divergence increases from 
10–14 to 10–12, but still stays under 10–11 to 
ensure the accuracy of numerical simulation, 
which is validated in previous work.4

Multicore and Many-Core Designs
In this section, we explain our design details 
based on the reference counterparts targeting 
the same Euler code. Table 3 shows the system 
specifications. A lot of effort, including the 
algorithmic optimizations proposed earlier, is 
made on the reference designs for fair com-
parisons.

Hybrid CPU-MIC Design
The hybrid CPU-MIC node contains two 
12-core Intel E5-2697 (Ivy Bridge) CPUs and 
three Intel Xeon Phi 60-core 5120d (MIC) 
cards (see Table 3). The same hybrid method-
ology we proposed earlier is also applied here 
to fully utilize both CPU and MIC resources, 
so that the MIC needs only to process the inner 
area of each subdomain, with CPU cores pro-
cessing the outer area simultaneously. Both the 
CPU and MIC programs are fully optimized 
through OpenMP multithreading and vector-
ization to improve parallelism from different 
levels, and through cache blocking to improve 
the data reuse. Other efforts also include loop 
splitting, prefetching, and array-to-structure to 
structure-to-array.

The fully optimized performance based on 
two 12-core Intel E5-2697 is the CPU version 
for later performance comparison.

Hybrid CPU-GPU Design
The hybrid CPU-GPU node contains two 
12-core Intel E5-2697 (Ivy Bridge) CPUs and 
two Tesla K40 GPUs (see Table 3).

Besides the hybrid domain decompo-
sition methodology and the general tuning 
techniques such as multithreading, shared 
memory, coalesced access, kernel splitting, 
we further propose a set of novel GPU tun-
ing techniques specifically designed for the 
Euler algorithm, including a customizable data 

Table 1. Number of floating-point operations per sweep. 

Operations 1, – 3 4

Pow, 
Sqrt OFFSET

Original 
ALG

1,192 697 170 48  132*

ALG 
offsetting

619 549 76 21 30* 1 
140†

Look-up 
table

424 460 51 21 30* 1 
140†

*OFFSET operations on original input streams.
†New OFFSET operations generated after using ALG offsetting.

Table 2. Resource usage of mixed-precision algorithm.

Resource Flip flops
Multipliers 

(18 3 18)
DSP 

blocks
Block 

memory

Stratix 5 D8 524,800 3,926 1,963 2,567

Mixed precision 382,599 652 326 1,041
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caching mechanism and thread warp reschedul-
ing scheme. Remarkable performance boost is 
achieved among mainstream GPUs, including 
Tesla Fermi C2050, K20x, K40, and K80. A 
speedup of 31.64 is obtained on the Tesla K80 
over a 12-core E5-2697 CPU.

SW26010 Many-Core CPU
The SW26010 CPU6 is the many-core proces-
sor used to construct the Sunway TaihuLight, 
the world’s most powerful supercomputer. 
Each SW26010 contains four core groups; 
each core group contains 65 cores, including 1 
management processing element (MPE) plus 
64 computing processing elements (CPEs). 

CPE cores within a core group can commu-
nicate with each other through low-latency 
register communication (P2P and collective 
communications). MPE has 32 Kbytes of L1 
cache and 256 Kbytes of L2 cache, whereas 
CPE has 64 Kbyte scratchpad memory.

As for the optimization for the Euler algo-
rithm, on the parallelism level, the algorithm 
is scaled among the 64 CPE cores first and 
then among the vector units inside each CPE 
core. On the memory level, a customized data- 
sharing scheme through register communi-
cation and on-the-fly array transposition are 
also proposed, while the basic mechanism is to 
improve the bandwidth utilization and decrease 

Table 3. Multicore and many-core system specifications. 

Architecture Clock (GHz)
Peak (TFlops)  
(float | double)

Memory 
(Gbytes)

Bandwidth (Gbytes/s) 
(theoretical | measured) Year*

CPU (E5-2697) 2.70 0.52 | 0.26 64 100 | 60 2013

MIC (5120d) 1.09 2.03 | 1.01 8 352 | 159 2013

GPU (K40) 0.75 4.29 | 1.43 12 288 | 100 2013

CPU (SW26010) 1.45 3.06 | 3.06 32 130 | 103 2016

*Selected processors were announced close to the year when the selected FPGA was announced, except for the 
SW26010.

Table 4. Performance and power efficiency. (Mesh size is 260 3 240 3 228.)

Platform*
Performance 

(Gflops) Speedup (3) Power (W)
Efficiency 

(performance/W)
Power  

efficiency (3)

CPU node 85 1 427 0.20 1

CPU-MIC node 255 3 815 0.31 1.6

CPU-GPU node 220 2.6 625 0.35 1.8

SW26010 CPU 520 6 380 1.36 6.8

CPU-DFE node 1,570 18 950 1.66 8.3

* Details of different platforms can be found in the “Multicore and Many-Core Designs” and “Selected Hardware and 
Implementation” sections.
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the bandwidth requirement. A speedup of more 
than 100 times is achieved over the MPE-only 
version. Optimizing details can be found in our 
previous work.5

Performance Evaluation
This section shows the performance results and 
comparison, with corresponding analysis.

Performance and Power Efficiency
Table 4 summarizes the performance and power 
efficiency. The power consumption is measured 
with a power meter, and the FPGA works at a 
frequency of 180 MHz. The dataflow design 
based on a hybrid CPU-DFE node outperforms 
traditional multicore and many-core counter-
parts in both time to solution and energy to 
solution. The achieved performance on a hybrid 
CPU-FPGA node is 18 times faster and 8 times 
more power efficient than a CPU node, 6 times 
faster and 5 times more power efficient than a 
CPU-MIC node, 7 times faster and 4.7 times 
more power efficient than a CPU-GPU node, 
and 3 times faster and 1.2 times more power 
efficient than a Sunway SW26010 CPU.

Discussion
The customizable feature on on-chip hardware 
resources, memory, and data representations 
offers us significant optimizing space to over-
come major constraints confronted by multi-
core and many-core architectures.

For example, compared with the imperfec-
tions in data presentation of traditional HPC 
platforms, the mixed-precision arithmetic that 
enables flexibility in data format and precision 
can greatly improve the computing efficiency of 
logic units and decrease consumption of on-chip 
resources. Algorithmic offsetting based on the 
streaming model can eliminate a large amount 
of redundant operations. Therefore, we greatly 
decrease the resource demands of the Euler algo-
rithm and manage to build a long streaming pipe-
line that can perform 956 mixed-precision oper-
ations per cycle. The customizable window buffer 
performs better caching behaviors, whereas the 
on-chip fast memory decreases both the number 
of operations and the data transfers. Therefore, 
we can push data closer to the computing side 
and break the memory wall restriction.

Moreover, the FPGA chip’s low clock 
frequency leads to better power efficiency 

compared with other platforms. The above rea-
sons contribute to the inspiring results achieved 
in this work. Note that selected multicore and 
many-core processors are announced close to 
the year when the selected FPGA is announced, 
so we can provide comparisons of different sys-
tems from the same era.

As for the programming model, new 
methods such as OpenCL and MaxCompiler 
can support high-level programming and a 
user-friendly development environment, so the 
programming complexity for reconfigurable 
hardware is reduced to a level similar to that of 
software programming.

C ompared with traditional multicore and 
many-core counterparts, the FPGA-based 

dataflow architecture provides a novel comput-
ing methodology through mapping parallelism 
into the increased number of transistors, and 
can greatly improve its performance and power 
efficiency. With the reconfigurable hardware 
becoming a component in future computing 
systems, we see it as a promising candidate to 
provide highly efficient and green HPC solu-
tions in the post-Moore era. Future work will 
include using more powerful FPGAs and test-
ing the scalability among multiple nodes. 
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