
40 Published by the IEEE Computer Society 0272-1732/17/$33.00 © 2017 IEEE

Architectures for the Post-Moore Era

Solving Mesoscale
Atmospheric Dynamics
Using a Reconfigurable
Dataflow Architecture

This article presents an efficient dataflow methodology for solving
Euler atmospheric dynamic equations. The authors map a complex
Euler stencil kernel into a single field-programmable gate array
chip and develop a long streaming pipeline that can perform
956 mixed-precision operations per cycle. Their dataflow design
outperforms traditional multicore and many-core counterparts in
both time to solution and energy to solution.

N
umerical atmospheric simulation is an essential method to study the climate sys-
tem and a key tool for verifying climate changing mechanisms, making predic-
tions into the future, and providing guidance for protecting the planet from severe
issues such as climate change and weather disasters. Due to atmospheric models’

high demand for computing power, a lot of effort has been made to study and simulate the
atmospheric model using the world’s most powerful supercomputers. However, traditional
high-performance computing (HPC) systems based on multicore and many-core architectures
have to face architectural constraints from data representation, memory access patterns, com-
munications, and bandwidth, as well as challenges from the extremely complex atmospheric
algorithm. Thus, novel architectures and revolutionary optimization techniques are in great
demand toward achieving better results in both time to solution and energy to solution.

In recent years, dataflow engines (DFEs) based on reconfigurable field-programmable gate
arrays (FPGAs) have developed quickly and achieved many inspiring results in various applica-
tions such as deep learning.1 Unlike traditional architectures, reconfigurable DFEs2 obtain high
performance through deploying a long pipeline of concurrent operations corresponding to the
targeting algorithm, while maintaining high power efficiency due to the lower clock frequency.
Their customizable features on the hardware circuit, data representation, and on-chip memory
provide great flexibility and optimizing space to tackle complex numerical algorithms.

Lin Gan,
Haohuan Fu
Tsinghua University

Wayne Luk
Imperial College London

Chao Yang
Chinese Academy of
Sciences

Wei Xue,
Guangwen Yang
Tsinghua University

www.computer.org/micro July/August 2017 41

In this article, we present an efficient data-
flow computing model to solve the 3D Euler
atmospheric equations, which is the essen-
tial step to describe mesoscale atmospheric
dynamics. Through fully exploiting the cus-
tomizable features of the selected FPGA plat-
forms, we propose a set of novel optimizing
techniques such as a customizable window
buffer, algorithmic offsetting arithmetics, and
a mixed-precision mechanism; manage to map
the complex Euler kernel into a single FPGA
chip; and build a long computing pipeline
that can perform 956 mixed-precision oper-
ations per cycle. We also present our efforts
to fully optimize the Euler algorithm over
traditional platforms including CPU, Many
Integrated Coprocessor (MIC), GPU, and
SW26010 CPU.

Our dataflow design outperforms tradi-
tional multicore and many-core counterparts
in terms of both time to solution and energy
to solution. The performance comparisons with

other major multicore and many-core proces-
sors prove dataflow computing to be a promis-
ing method in the post-Moore era to break the
architectural constraints and bring inspiring
achievements.

Background
This section introduces the hardware architec-
ture, equations, and algorithm, and summa-
rizes the existing efforts.

Dataflow Engines
Figure 1a shows the general architecture of a
hybrid CPU-DFE system. Similar to the tradi-
tional hybrid system, it also contains CPUs to
handle issues such as DFE initialization, task
scheduling, and data exchange.

Compared with traditional multicore and
many-core architectures such as CPU, MIC,
and GPU, DFE achieves high performance
through developing within a single FPGA
chip a long streaming pipeline that comprises

N–1 N

subdomain 2

subdomain subdomain

subdomain 1 1 5432

inner
halo

(d)

T

B

EW
N

S

 25-point stencil

(c)

CPU

DRAM
BRAM

FPGA

PCIe

DFE

D
ata

DRAM

Dataflow
core B

Dataflow
core A

Dataflow
core C

Dataflow
core D

Dataflow
core E

Dataflow
core F

Dataflow
core G

Dataflow
core H

Dataflow
core J

Dataflow
core I

D
ata

FPGA

per stencil sweep cycle

Inner Euler stencilDFE

CPU Halo updating Outer stencil

C2D

D2C

(e)

(b)
(a)

Figure 1. The dataflow engine (DFE) architectures and algorithmic computing mechanisms. (a) General architecture of the hybrid
CPU-DFE system using PCI Express as a bridge. (b) Dataflow computing model. Each dataflow core refers to a specific operation.
(c) The 25-point Euler stencil. (d) The hybrid domain decomposition methodology assigns inner stencil to DFE and outer area to
CPU. (e) Workflow of the hybrid methodology, in which C2D and D2C refer to the data exchange between CPU and DFE.

42 IEEE Micro

Architectures for the Post-Moore Era

many concurrent operations. Different hard-
ware resources, such as logic units and digital
signal processors (DSPs), are customized to
deploy a specific hardware circuit that corre-
sponds exactly to the targeted algorithm (see
Figure 1b). Data that is originally stored in
the onboard memory (DRAM) will stream
through different dataflow cores on the pipe-
line and get computed. By streaming different
dataflows through different dataflow cores, we
can execute multiple instructions onto multiple
data (MIMD), and thus boost the overall per-
formance.

Euler Equations
We can write the Euler equations3 as the fol-
lowing set of conservation laws:

Q

t

F

x

G

y

H

z
S 0

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+ = , (1)

in which

Q 5 (r9, ru, rv, rw, (r)9)T,
F 5 (ru, ruu 1 p9, ruv, ruw, ru)T,
G 5 (rv, rvu, rvv 1 p9, rvw, rv)T,
H 5 (rw, rwu, rwv, rww 1 p9, rw)T,
S 5 (0, 0, 0, r9g, 0)T, (2)

where r is the density, v 5 (u, v, w) is the
velocity, p is the pressure, and  is the potential
temperature of the atmosphere. The system is
closed with the equation of state

p p
pR

p00
00











θ
=

γ

, (3)

in which p00 5 1013:25hPa is the ground-level
pressure, R 5 287:04J/(kg . K) is the gas con-
stant for dry air, and g 5 1:4. We remark here
that because of the conservative property of the

finite volume scheme,3 the numerical fluxes on
a common edge of two consecutive mesh ele-
ments are identical.

We used a cell-centered finite volume
scheme plus an explicit Runge-Kutta time-
stepping method,3 after which each time step
in solving the Euler equations (that is, the
Euler algorithm) required two Euler stencil
sweeps applied at all mesh elements. Figure 1c
is the Euler stencil in the 3D channel, where
to update a mesh element (for example, the
central one in Figure 1c), we need to access 25
elements. After the original channel is decom-
posed into different subdomains corresponding
to different MPI processes (see Figure 1d), the
halo area needs to exchange data information
with neighboring subdomain halos, which is
marked as halo updating.

Figure 2 shows the Euler algorithm that
contains two major steps: halo updating and
3D Euler stencil computing. Unlike an ordi-
nary stencil kernel, the 3D Euler stencil has
to perform over 2,100 double-precision opera-
tions to update one element per sweep,4 and it
is more complex in the communication model,
resulting in tough computational challenges for
traditional HPC platforms.

Computational Challenges
Traditional HPC systems based on many-core
and multicore architectures face tough chal-
lenges in part from the complex algorithmic
kernel. The more realistic 3D model built on
the Euler equations brings more complex algo-
rithms and data communication patterns, and
thus greatly strikes the memory bandwidth.
The neighboring points of a 25-point stencil
are stored in different rows, columns, or slices,
and can be far apart in the memory space.
Accessing all 25 points incurs a lot of cache
misses.

Although complex atmospheric stencils
have been widely studied on traditional HPC
platforms, the achieved efficiency is relatively
low (generally less than 10 percent). Therefore,
novel architectures and revolutionary optimiza-
tion techniques are in great demand to achieve
better efficiency.

Existing Efforts
With increased computing power in the form
of many-core processors and accelerators (for

Figure 2. Euler algorithm per stencil sweep.

1: for (k, j, i) ← (0, 0, 0) to
 (Nk–1, Nj–1, Ni–1) do
2: if (k, j, i)  Halo then
3: Halo Updating
4: end if
5: 3D Euler Stencil
6: end for

www.computer.org/micro July/August 2017 43

example, the Sunway many-core processor,
GPU, MIC, and so on), we see a lot of efforts
at porting and refactoring atmospheric mod-
els on the most powerful supercomputers to
achieve ultra-high scalability and resolution. A
recent work5 that won the 2016 ACM Gordon
Bell Prize scales a fully implicit Euler solver to
over 10.5 million cores of the Sunway TaihuLight
supercomputer6 and sustains a double-precision
performance of 7.95 Pflops with 488-m hor-
izontal resolution. Although these many-core
architectures demonstrate potential for improv-
ing the performance of existing models, we still
see a gap of several orders of magnitude to
advance to the next level of science.

On the other hand, preliminary work
through FPGAs has achieved promising results
in recent years. Melissa Smith and her col-
leagues accelerated the Parallel Spectral Trans-
form Shallow Water Model using ORNL’s
SRC Computers.7 They managed to deploy
and accelerate the key subroutines (such as fast
Fourier transform or Laplace transform) on the
FPGA clusters. Diego Oriato and his colleagues
accelerated a realistic dynamic core of a mete-
orological limited area model (LAM)8 using
the Maxeler2 DFE platform. It was a successful
trial to reduce the resource usage through fixed-
point arithmetic with satisfactory speedup over
multiple CPU cores. Compared with these
works, the Euler equations we study are more
complex in the spatial discretization schemes
and data layouts and more meaningful for
achieving cloud-resolving simulation in future
models.

There are also many successful works on
porting stencil kernels onto FPGAs. Kentaro
Sano and his colleagues employed nine FPGAs
(Altera Stratix IV EP4SGX230 and Stratix
V EP5SGSD8 FPGAs) to compute 2D and
3D Jacobi computations in a deep pipeline
approach and obtain computing efficiencies
of 87.4 and 83.9 percent, respectively.9 Xinyu
Niu and his colleagues propose an approach to
exploit runtime reconfigurability of FPGA for
optimizing the revise time migration (RTM)
stencil.10 The achieved performance on a Xil-
inx Virtex-6 SX475T FPGA is up to two orders
of magnitude faster than the CPU reference
designs. Hasitha Waidyasooriya and his col-
leagues proposed an OpenCL-based FPGA
design and achieved better stencil performance

over CPUs and GPUs.11 Koji Okina and his
colleagues selected two essential 3D stencil
kernels from the heat conduction and electro-
magnetic fields to evaluate their performance
on stream-oriented FPGAs.12 Comparatively,
the 3D Euler stencil in this work is much more
challenging to solve, because more than 2,100
double-precision floating-point operations
must be performed.

Dataflow-Oriented Euler Designs
This section focuses on dataflow designs,
including the essential optimizations to boost
the overall performance.

Design Overview
Efficiently mapping a given algorithm into a
DFE generally requires consideration of several
issues.

Hybrid domain decomposition. The first step is
to focus on the heterogeneous architecture for
the best utilization on both the CPU and the
DFE. So, the original algorithm can be divided
into different tasks being processed by either the
CPU or DFE, separately but simultaneously.

Hardware resource analysis. Because on-chip
resources such as flip-flops and the DSP are
required to build the hardware circuit for the
streaming pipeline, those limited resources
might not be enough to fulfill the demand for
complex algorithms that generally contain too
many operations, such as the Euler algorithm that
originally contained more than 2,100 double-
precision floating-point operations. In the rest
of this section, we discuss the key designs we
proposed to decrease the Euler algorithm’s
resource demands.

Hybrid Domain Decomposition
Figure 1d shows the hybrid decomposition
methodology. We decompose each subdomain
into an inner cube (the shaded elements in Fig-
ure 1d) and the outer area (the blank elements).
So, all halo elements go to the outer area, and
the inner cube contains only stencil computa-
tion. We assign the DFE to process the inner
cube stencil computations, and we assign the
CPU to process the outer area stencil compu-
tation and all communication. Figure 1e shows
the workflow of hybrid domain decomposition.

44 IEEE Micro

Architectures for the Post-Moore Era

The CPU and DFE are now working simultane-
ously, and the CPU time for computation and
communication can be hidden inside the DFE
time for stencil computation, which results
in efficient computation-communication over-
lapping. Moreover, DFE no longer needs to
spend resources implementing the outer-part
computation.

Memory Optimization
In this section, we focus on the optimizations
based on the hierarchic memory.

Customizable window buffer. As we explained
earlier, accessing the 25 points from the 3D
Euler stencil always incurs a lot of cache misses
for traditional architectures. On an FPGA,
BRAM can be used to construct a customizable
window buffer to accommodate the stream-
ing data from the 3D Euler stencil. The win-
dow buffer has the size covering all 25 points
required by current stencil computing, and
thus performs perfect cache mechanism with
the following behaviors:

• Data will stream into the window buffer
when required for stencil computing.

• Data will stream out of the window buffer
when no longer required for stencil com-
puting.

• During stencil computing, all 25 points
required are in the window buffer and can
be accessed immediately.

Fast memory table. In the stencil loop, vari-
ables that rely only on the index coordinate can
be precalculated during compile time by the
CPU and stored as a fast memory table using
the BRAM. Those variables can be accessed
through looking up the table. If the BRAMs
are not big enough to store all the coordinate
variables, we can alternatively store them on the
DRAM as constant variables. So, we use more
memory in exchange of operations.

Data accommodation strategy. Different
types of data from the Euler algorithm are stored
on different memory on the DFE side. The
on-board large DRAM is used to accommodate
the wave propagation variables3 that must be
updated every step, whereas the on-chip BRAM
is used to store the coordinate variables to form

the fast memory table. Because the kernel com-
putation is not bounded by the memory band-
width, the data can be accessed in time accord-
ing to the FPGA frequency (180 MHz in our
case) and in a 2D pattern by using MaxCom-
piler,2 a source-to-source compiler that provides
a high-level hardware description language.

Algorithm Optimization
and DFE Programming
The identical rule to compute the fluxes on a
common edge of two consecutive mesh elements
provides a big optimizing space to simplify the
Euler stencil based on the dataflow computing
model. For example, Figure 3a shows the C
code to compute variables y0 and y1. We can
learn that computing y0 and y1 is putting an
identical rule on different elements from x, and
the x elements for computing y1 are one time
step ahead of the x elements for computing y0.
In other words, the result of y1 at step t equals
the result of y0 at step t – 1. So, in a dataflow
computing model, all dataflow operations for
computing stream dfe_y1 can be replaced by
offsetting stream dfe_y0 one time step back-
ward (see Figure 3c). Algorithmic offsetting
lets us reduce a large amount of the redundant
floating-point operations. Figure 3b shows how
to transfer between the CPU and the DFE and
how to pipeline the kernel for size cycles.

Figures 3b and 3c also illustrate the pro-
gramming details based on MaxCompiler.2 The
programming complexity is reduced to the same
level of software programming. Meanwhile, the
flexibility to play with hardware design options
is mostly retained.

In Figure 3, input stream x goes through
different operations to construct a computing
pipeline for output streams y0 and y1. Simi-
larly, when x goes to other pipelines for differ-
ent output streams simultaneously, a MIMD
model that corresponds to what is shown in in
Figure 1b is formed accordingly.

Precision Optimization
The customizable feature on data representa-
tions is another method to reduce the resource
usage. By using fixed-point or reduced-preci-
sion floating-point data to replace the original
double-precision data, we can greatly decrease
the Euler algorithm’s resource requirements. To
determine the best data precision, we applied

www.computer.org/micro July/August 2017 45

range analysis and precision analysis. The basic
idea for range analysis is to track and record the
range of all variables throughout the iteration
and estimate the best data type and width range
to represent the variables. Fixed-point data can
be used for modules whose variables cover a small
range, whereas reduced-precision floating-point
data can be used for the remaining modules
with a wide variable range. The width, such as
the fractional part for fixed-precision and the
exponent part for floating-point, can also be
estimated based on the range of variables.

The basic idea for precision analysis is to
dynamically trace the influence on the final

accuracy with a set of different bit widths and
find the least bit width that can still guarantee
a satisfying accuracy. For example, to determine
the mantissa bits, we explore a set of different bit
widths from 53 to 24 and observe the dynamic
trend of the relative error of divergence and the
on-chip resource cost accordingly. The relative
error of divergence can be used as an important
indicator for a quick estimation of accuracy, and
shall stay under 11 percent to ensure accuracy.

Selected Hardware and Implementation
The hybrid CPU-DFE node contains two six-
core E5650 CPUs (hyperthreading enabled)

// x, y0, and y1 are the variables in the original Euler code
1: double y0 5 24*x[k, j, i] – (x[k, j, i 1 1] 1 x[k, j, i – 1] 1 x[k, j 1 1, i] 1 x[k, j – 1, i]
 1 x[k 1 1, j, i] 1 x[k – 1, j, i]);
2: double y1 5 24*x[k, j, i – 1] – (x[k, j, i] 1 x[k, j, i – 2] 1 x[k, j 1 1, i – 1] 1 x[k,
 j – 1, i – 1] 1 xk 1 1, j, i – 1] 1 x[k – 1, j, i – 1]);
(a)

// nx and ny are the domain size on x and y dimensions, respectively
1: const int size 5 nx * ny;
2: int sizeBytes 5 size * sizeof(double);
3: Stencil_Compute_writeLMem (0, sizeBytes, x); \\ CPU transfers array x to DFE DRAM as

stream data
4: Stencil_Compute (size, y0, y1); \\ The DFE Stencil kernel is executed

and pipelined for size cycle
(b)

// dfe_x, dfe_y0, and dfe_y1 refer to the dataflows that correspond to x, y0, and y1
// nx and ny are the domain size on x and y dimensions, respectively
// in Java class Stencil_Compute
1: DFEVar dfe_x 5 io. input (“x”, hwFloat (11, 53));
2: DFEVar dfe_y0 5 24* dfe_x – (stream . offset (dfe_x , 1) 1 stream . offset (dfe_x , – 1)

1 stream . offset (dfe_x, nx) 1 stream . offset (dfe_x, –nx) 1 stream . offset (dfe_x,
nx * ny) 1 stream . offset (dfe_x, –nx * ny));

3: DFEVar dfe_y1 5 stream . offset (dfe_y0, –1); \\ by using algorithmic offset, original
operations can be eliminated

4: io . output (“y0”, dfe_y0, hwFloat (11, 53));
5: io . output (“y1”, dfe_y1, hwFloat (11, 53));
(c)

Figure 3. An example of algorithmic offsetting and programming based on MaxCompiler.2 (a) The original Euler code written in
C programming language. Its corresponding DFE implementation on MaxCompiler is shown in (b) and (c). (b) The host CPU code
that transfers x from the CPU to DFE (line 3) and that pipelines the kernel for size cycle (line 4). The signals in the dataflow are
called DFEVar variables, each of which is associated with a datatype (such as hwFloat(11,53)). (c) The stream.offset utility
automates the construction of the window buffer (line 2) and facilitates the implementation of the algorithmic offsetting method
(line 3), so the algorithmic offsetting method is easier to implement on the DFE than on traditional counterparts. Lines 1, 4, and 5
in (c) show functions to transfer data to and from DFE. MaxCompiler provides tools for hardware simulation and resource analysis.

46 IEEE Micro

Architectures for the Post-Moore Era

and eight DFE accelerator cards. Each DFE
card has one Altera Stratix5 D8 FPGA chip and
up to 48 Gbytes of on-board memory. There
is also 6 Mbytes of on-chip BRAM that can
provide a bandwidth of 14 TBytes per second.
DFEs are connected with the CPU through
PCI Express 2.0.

The channel is first divided into eight
subdomains, and the hybrid domain decom-
position is applied on each subdomain. So,
each DFE processes only the inner-part
stencil computing, while simultaneously,
the CPU is processing the outer-part stencil
computing and the halo updating. No direct
communication is thereby required between
DFE cards. The halo exchange is done auto-
matically by using the neighboring commu-
nication functions from the framework of
PETSC (Portable Extensible Toolkit for Sci-
entific Computation).3

For the inner-part stencil computation, we
applied memory and algorithm optimizations

to reduce the total number of computations to
956 (see Table 1). We then applied precision
optimization to reduce the resource require-
ment by roughly 30 percent, and to an appro-
priate amount (see Table 2) that can fit the
whole Euler algorithm onto the selected FPGA.
The relative error of divergence increases from
10–14 to 10–12, but still stays under 10–11 to
ensure the accuracy of numerical simulation,
which is validated in previous work.4

Multicore and Many-Core Designs
In this section, we explain our design details
based on the reference counterparts targeting
the same Euler code. Table 3 shows the system
specifications. A lot of effort, including the
algorithmic optimizations proposed earlier, is
made on the reference designs for fair com-
parisons.

Hybrid CPU-MIC Design
The hybrid CPU-MIC node contains two
12-core Intel E5-2697 (Ivy Bridge) CPUs and
three Intel Xeon Phi 60-core 5120d (MIC)
cards (see Table 3). The same hybrid method-
ology we proposed earlier is also applied here
to fully utilize both CPU and MIC resources,
so that the MIC needs only to process the inner
area of each subdomain, with CPU cores pro-
cessing the outer area simultaneously. Both the
CPU and MIC programs are fully optimized
through OpenMP multithreading and vector-
ization to improve parallelism from different
levels, and through cache blocking to improve
the data reuse. Other efforts also include loop
splitting, prefetching, and array-to-structure to
structure-to-array.

The fully optimized performance based on
two 12-core Intel E5-2697 is the CPU version
for later performance comparison.

Hybrid CPU-GPU Design
The hybrid CPU-GPU node contains two
12-core Intel E5-2697 (Ivy Bridge) CPUs and
two Tesla K40 GPUs (see Table 3).

Besides the hybrid domain decompo-
sition methodology and the general tuning
techniques such as multithreading, shared
memory, coalesced access, kernel splitting,
we further propose a set of novel GPU tun-
ing techniques specifically designed for the
Euler algorithm, including a customizable data

Table 1. Number of floating-point operations per sweep.

Operations 1, – 3 4

Pow,
Sqrt OFFSET

Original
ALG

1,192 697 170 48 132*

ALG
offsetting

619 549 76 21 30* 1
140†

Look-up
table

424 460 51 21 30* 1
140†

*OFFSET operations on original input streams.
†New OFFSET operations generated after using ALG offsetting.

Table 2. Resource usage of mixed-precision algorithm.

Resource Flip flops
Multipliers

(18 3 18)
DSP

blocks
Block

memory

Stratix 5 D8 524,800 3,926 1,963 2,567

Mixed precision 382,599 652 326 1,041

www.computer.org/micro July/August 2017 47

caching mechanism and thread warp reschedul-
ing scheme. Remarkable performance boost is
achieved among mainstream GPUs, including
Tesla Fermi C2050, K20x, K40, and K80. A
speedup of 31.64 is obtained on the Tesla K80
over a 12-core E5-2697 CPU.

SW26010 Many-Core CPU
The SW26010 CPU6 is the many-core proces-
sor used to construct the Sunway TaihuLight,
the world’s most powerful supercomputer.
Each SW26010 contains four core groups;
each core group contains 65 cores, including 1
management processing element (MPE) plus
64 computing processing elements (CPEs).

CPE cores within a core group can commu-
nicate with each other through low-latency
register communication (P2P and collective
communications). MPE has 32 Kbytes of L1
cache and 256 Kbytes of L2 cache, whereas
CPE has 64 Kbyte scratchpad memory.

As for the optimization for the Euler algo-
rithm, on the parallelism level, the algorithm
is scaled among the 64 CPE cores first and
then among the vector units inside each CPE
core. On the memory level, a customized data-
sharing scheme through register communi-
cation and on-the-fly array transposition are
also proposed, while the basic mechanism is to
improve the bandwidth utilization and decrease

Table 3. Multicore and many-core system specifications.

Architecture Clock (GHz)
Peak (TFlops)
(float | double)

Memory
(Gbytes)

Bandwidth (Gbytes/s)
(theoretical | measured) Year*

CPU (E5-2697) 2.70 0.52 | 0.26 64 100 | 60 2013

MIC (5120d) 1.09 2.03 | 1.01 8 352 | 159 2013

GPU (K40) 0.75 4.29 | 1.43 12 288 | 100 2013

CPU (SW26010) 1.45 3.06 | 3.06 32 130 | 103 2016

*Selected processors were announced close to the year when the selected FPGA was announced, except for the
SW26010.

Table 4. Performance and power efficiency. (Mesh size is 260 3 240 3 228.)

Platform*
Performance

(Gflops) Speedup (3) Power (W)
Efficiency

(performance/W)
Power

efficiency (3)

CPU node 85 1 427 0.20 1

CPU-MIC node 255 3 815 0.31 1.6

CPU-GPU node 220 2.6 625 0.35 1.8

SW26010 CPU 520 6 380 1.36 6.8

CPU-DFE node 1,570 18 950 1.66 8.3

* Details of different platforms can be found in the “Multicore and Many-Core Designs” and “Selected Hardware and
Implementation” sections.

48 IEEE Micro

Architectures for the Post-Moore Era

the bandwidth requirement. A speedup of more
than 100 times is achieved over the MPE-only
version. Optimizing details can be found in our
previous work.5

Performance Evaluation
This section shows the performance results and
comparison, with corresponding analysis.

Performance and Power Efficiency
Table 4 summarizes the performance and power
efficiency. The power consumption is measured
with a power meter, and the FPGA works at a
frequency of 180 MHz. The dataflow design
based on a hybrid CPU-DFE node outperforms
traditional multicore and many-core counter-
parts in both time to solution and energy to
solution. The achieved performance on a hybrid
CPU-FPGA node is 18 times faster and 8 times
more power efficient than a CPU node, 6 times
faster and 5 times more power efficient than a
CPU-MIC node, 7 times faster and 4.7 times
more power efficient than a CPU-GPU node,
and 3 times faster and 1.2 times more power
efficient than a Sunway SW26010 CPU.

Discussion
The customizable feature on on-chip hardware
resources, memory, and data representations
offers us significant optimizing space to over-
come major constraints confronted by multi-
core and many-core architectures.

For example, compared with the imperfec-
tions in data presentation of traditional HPC
platforms, the mixed-precision arithmetic that
enables flexibility in data format and precision
can greatly improve the computing efficiency of
logic units and decrease consumption of on-chip
resources. Algorithmic offsetting based on the
streaming model can eliminate a large amount
of redundant operations. Therefore, we greatly
decrease the resource demands of the Euler algo-
rithm and manage to build a long streaming pipe-
line that can perform 956 mixed-precision oper-
ations per cycle. The customizable window buffer
performs better caching behaviors, whereas the
on-chip fast memory decreases both the number
of operations and the data transfers. Therefore,
we can push data closer to the computing side
and break the memory wall restriction.

Moreover, the FPGA chip’s low clock
frequency leads to better power efficiency

compared with other platforms. The above rea-
sons contribute to the inspiring results achieved
in this work. Note that selected multicore and
many-core processors are announced close to
the year when the selected FPGA is announced,
so we can provide comparisons of different sys-
tems from the same era.

As for the programming model, new
methods such as OpenCL and MaxCompiler
can support high-level programming and a
user-friendly development environment, so the
programming complexity for reconfigurable
hardware is reduced to a level similar to that of
software programming.

C ompared with traditional multicore and
many-core counterparts, the FPGA-based

dataflow architecture provides a novel comput-
ing methodology through mapping parallelism
into the increased number of transistors, and
can greatly improve its performance and power
efficiency. With the reconfigurable hardware
becoming a component in future computing
systems, we see it as a promising candidate to
provide highly efficient and green HPC solu-
tions in the post-Moore era. Future work will
include using more powerful FPGAs and test-
ing the scalability among multiple nodes.

Acknowledgments
This work was supported in part by the National
Key R&D Program of China (grant nos.
2016YFA0602200 and 2016YFA0602103),
the National Natural Science Foundation of
China (grant nos. 41374113 and 91530323),
the National High-Tech R&D (863) Program
of China (grant no. 2015AA01A302), China
Postdoctoral Science Foundation (grant no.
2016M601031), Tsinghua University Initia-
tive Scientific Research Program (grant no.
20131089356), Major Science and Technology
Foundation Program of Ministry of Education
(special support for NSCC-Guangzhou, Sun
Yat-sen University), China Special Fund for
Meteorological Research in the Public Interest
(grant no. GYHY201306062), Key Laboratory
of Data Analysis and Application of State Oce-
anic Administration of China, the European
Union Horizon 2020 Research and Innovation
Programme (grant no. 671653), the UK EPSRC
(EP/I012036/1, EP/L00058X/1, EP/L016796/1,

www.computer.org/micro July/August 2017 49

and EP/N031768/1), the Maxeler University
Programme, and the Intel Programmable Solu-
tions Group.

References
 1. H. Sharma et al., “From High-Level Deep

Neural Models to FPGAs,” Proc. 49th
Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture, 2016, pp. 1–12.

 2. O. Pell and V. Averbukh, “Maximum
Performance Computing with Dataflow
Engines,” Computing in Science & Eng.,
vol. 14, no. 4, 2012, pp. 98–103.

 3. C. Yang and X.-C. Cai, “A Scalable Fully
Implicit Compressible Euler Solver for
Mesoscale Nonhydrostatic Simulation of
Atmospheric Flows,” SIAM J. Scientific
Computing, vol. 36, no. 5, 2014, pp. S23–
S47.

 4. L. Gan et al., “A Highly-Efficient and
Green Data Flow Engine for Solving Euler
Atmospheric Equations,” Proc. 24th Int’l
Conf. Field Programmable Logic and Appli-
cations, 2014, pp. 1–6.

 5. C. Yang et al., “10m-Core Scalable Ful-
ly-Implicit Solver for Nonhydrostatic
Atmospheric Dynamics,” Proc. Int’l Conf.
High Performance Computing, Networking,
Storage and Analysis, 2016, p. 6.

 6. H. Fu et al., “The Sunway TaihuLight
Supercomputer: System and Applica-
tions,” Science China Information Sci-
ences, vol. 59, no. 7, 2016; doi:10.1007
/s11432-016-5588-7.

 7. M.C. Smith, J.S. Vetter, and X. Liang,
“Accelerating Scientific Applications
with the SRC-6 Reconfigurable Com-
puter: Methodologies and Analysis,”
Proc. 19th IEEE Int’l Parallel and Distrib-
uted Processing Symp., 2005; doi:10.1109
/IPDPS.2005.75.

 8. D. Oriato et al., “Acceleration of a Mete-
orological Limited Area Model with Data-
flow Engines,” Proc. Symp. Application
Accelerators in High Performance Comput-
ing, 2012, pp. 129–132.

 9. K. Sano, Y. Hatsuda, and S. Yamamoto,
“Multi-FPGA Accelerator for Scalable
Stencil Computation with Constant
Memory Bandwidth,” IEEE Trans. Paral-
lel and Distributed Systems, vol. 25, no. 3,
2014, pp. 695–705.

 10. X. Niu et al., “Exploiting Run-time Recon-
figuration in Stencil Computation,” Proc.
22nd Int’l Conf. Field Programmable Logic
and Applications, 2012, pp. 173–180.

 11. H.M. Waidyasooriya et al., “OpenCL-Based
FPGA-Platform for Stencil Computation
and Its Optimization Methodology,” IEEE
Trans. Parallel and Distributed Systems, vol.
28, no. 5, 2017, pp. 1390–1402.

 12. K. Okina et al., “Power Performance Pro-
filing of 3D Stencil Computation on an
FPGA Accelerator for Efficient Pipeline
Optimization,” ACM SIGARCH Com-
puter Architecture News, vol. 43, no. 4,
2016, pp. 9–14.

Lin Gan is a postdoctoral research fellow in the
Department of Computer Science and Tech-
nology at Tsinghua University and the assis-
tant director of the National Supercomputing
Center in Wuxi. His research interests include
high-performance computing solutions to geo-
science applications based on hybrid platforms
such as CPUs, FPGAs, and GPUs. Gan received
a PhD in computer science from Tsinghua Uni-
versity. He has received the 2016 ACM Gordon
Bell Prize, Tsinghua-Inspur Computational
Geosciences Youth Talent Award, and the FPL
Significant Paper award. He is a member of
IEEE. Contact him at lingan@tsinghua.edu.cn.

Haohuan Fu is an associate professor in the
Ministry of Education Key Laboratory for
Earth System Modeling and in the Department
of Earth System Science at Tsinghua University,
and the deputy director of the National Super-
computing Center in Wuxi. He is the affili-
ated researcher in the Laboratory for Regional
Oceanography and Numerical Modeling, Qin-
gdao National Laboratory for Marine Science
and Technology. His research interests include
high-performance computing in earth and envi-
ronmental sciences, computer architectures,
performance optimizations, and programming
tools in parallel computing. Fu received a PhD
in computing from Imperial College London.
He has received the 2016 ACM Gordon Bell
Prize, Tsinghua-Inspur Computational Geosci-
ences Youth Talent Award, and the FPL Signif-
icant Paper Award. He is a member of IEEE.
He is the corresponding author of this article.
Contact him at haohuan@tsinghua.edu.cn.

50 IEEE Micro

Architectures for the Post-Moore Era

Wayne Luk is a professor of computer engineering
at Imperial College London and the director of
the EPSRC Centre for Doctoral Training in High
Performance Embedded and Distributed Sys-
tems. His research focuses on theory and practice
of customizing hardware and software for specific
application domains, such as genomic data analy-
sis, climate modeling, and computational finance.
Luk received a doctorate in engineering and com-
puting science from the University of Oxford. He
is a Fellow of the Royal Academy of Engineering,
IEEE, and the British Computer Society. Contact
him at w.luk@imperial.ac.uk.

Chao Yang is a professor in and vice director of
the Laboratory of Parallel Software and Com-
putational Sciences, Institute of Software, Chi-
nese Academy Sciences. His research interests
include numerical analysis and modeling, large-
scale scientific computing, and parallel numer-
ical software. Yang received a PhD in computer
science from the Institute of Software, Chinese
Academy of Sciences. He has received the 2016
ACM Gordon Bell Prize. He is a member of

IEEE and ACM. Contact him at yangchao@
iscas.ac.cn.

Wei Xue is an associate professor in the Depart-
ment of Computer Science and Technology
at Tsinghua University. His research interests
include scientific computing and uncertainty
quantification. Xue received a PhD in electrical
engineering from Tsinghua University. He has
received the 2016 ACM Gordon Bell Prize and
the Tsinghua-Inspur Computational Geosci-
ences Youth Talent Award. He is a member of
IEEE. Contact him at xuewei@tsinghua.edu.cn.

Guangwen Yang is a professor in the Depart-
ment of Computer Science and Technology
at Tsinghua University and the director of the
National Supercomputing Center in Wuxi. His
research interests include parallel algorithms,
cloud computing, and the earth system model.
Yang received a PhD in computer science from
Tsinghua University. He has received the 2016
ACM Gordon Bell Prize. He is a member of
IEEE. Contact him at ygw@tsinghua.edu.cn.

NOMINATE A COLLEAGUE FOR THIS AWARD!

DUE: 15 OCTOBER 2017

CALL FOR STANDARDS AWARD NOMINATIONS

IEEE COMPUTER SOCIETY HANS KARLSSON
STANDARDS AWARD

Submit your nomination electronically: awards.computer.org | Questions: awards@computer.org

• Requires 3 endorsements.

• Self-nominations are not accepted.

• Do not need IEEE or IEEE Computer Society membership to apply.

A plaque and $2,000 honorarium is presented in recognition of
outstanding skills and dedication to diplomacy, team facilitation, and
joint achievement in the development or promotion of standards in the
computer industry where individual aspirations, corporate competition,
and organizational rivalry could otherwise be counter to the bene� t
of society.

