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Abstract—Long Short-Term Memory (LSTM) networks have
been deployed in speech recognition, natural language processing
and financial calculations in recent years, and are beginning to be
used in systems where low latency and low power are required.
To meet such requirements, we propose a stall-free hardware
architecture by reorganising the order of operations in an LSTM
system and develop a unique blocking-batching strategy to reuse
the LSTM weights fetched from external memory to optimise the
benefits of on-chip memory with a limited size for a large machine
learning model. Evaluation results show that our architecture can
achieve up to 20.8 GOPS/W, which would be among the highest
for FPGA designs targeting LSTM systems with weights stored in
off-chip memory. Comparing to the state-of-the-art design using
off-chip memory to store the weights, we achieve 1.65 times
higher performance-per-watt efficiency and 1.60 times higher
performance-per-DSP efficiency. When compared with CPU and
GPU implementation, our novel hardware architecture is 23.7
and 1.3 times faster while consuming 208 and 19.2 times lower
energy respectively, which shows that our approach contributes
to high performance and low power FPGA-based LSTM systems.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) can be utilised to
process sequence data in many applications such as speech
recognition [1], real-time control [2] and video classifications
[3]. Among various types of RNN, Long Short-Term Mem-
ory (LSTM) networks can achieve high accuracy in many
problems by using a memory cell that can remember long-
term dependencies. A typical LSTM cell contains 4 gates,
each with their own weights and biases which leads to a high
computational cost during inference. This has typically been
solved using multi-core CPUs and GPUs that can process large
quantities of data.

FPGAs have been used to speed up the inference of LSTMs
[4, 5, 6, 7], which offer benefits of low latency and low power
when compared to CPUs or GPUs. Although FPGA-based
LSTM accelerators have advantages in latency and power
consumption, they are limited by the memory bandwidth of the
FPGA board. The situation is even worse when we consider
a small embedded system with low power and low memory
bandwidth. An example of this is a monitoring camera system
performing video processing, where large machine learning
models have previously been infeasible due to high memory
bandwidth and low latency requirements.

There has been previous work [7, 8, 9, 10] with FPGA
based implementations such that all the weights are stored in
the on-chip memory, but this is expensive and limits the size
of models that can be deployed. When the RNN model is too

large that the weights need to be stored on an external DRAM,
it is not efficient because the fetched weights are typically used
only once for each output computation.

In this work, we focus on LSTM models which are too
large to store in on-chip memory of FPGA and we propose
a novel blocking-batching strategy splitting the weight matrix
into multiple blocks while batching the input activation vectors
so that we can process the calculations block by block with
weight reuse, which will reduce external memory access to
save power and reduce latency. Batching the input activation
vectors for RNN has been studied [9, 11, 12, 13] to increase
the throughput, however few concern combining the blocking
and batching for RNNs. In addition, we analyse the underly-
ing data access pattern and dependency in the matrix-vector
multiplication required by LSTM and a stall-free hardware
architecture is proposed. With our method and new hardware
architecture, large LSTM systems can be processed efficiently
on FPGAs.

To the best of our knowledge, we are the first to propose
and develop a weight reusing Stall-free Blocking-batching
Engine (SBE) for large LSTMs whose weights are stored in
the external memory of FPGAs.

Our contributions in this paper are as follows:

1) A new blocking-batching strategy to reuse the LSTM
weights to optimise the throughput of large LSTM sys-
tems on FPGA devices with a performance analysis
based on LSTM models which enables FPGA designs
to balance between area, power and performance.

2) A novel stall-free hardware architecture to reorganise the
multiplications involved in elimination of data depen-
dency and stalls, thereby increasing the throughput of the
system.

3) Evaluations of the proposed approach in different sce-
narios, showing improvements in speed and in energy
efficiency.

Our performance efficiency can reach 20.8 GOPS/W while
the resource efficiency is 0.246 GOPS/DSP, which would be
the leading published results of LSTM systems whose weights
are stored in off-chip memory, to the best of our knowledge.
Comparing to the state-of-art design [13] storing weights in
off-chip memory, we achieve 1.65 times higher performance-
per-watt efficiency and 1.60 times higher performance-per-
DSP efficiency.



II. BACKGROUND
A. LSTM

LSTM is a class of Recurrent Neural Networks (RNN)
which relies on a memory controller to learn long-term depen-
dencies. It was initially proposed by Hochreiter and Schmidhu-
ber [14]. Since then, there have been many modifications to the
original LSTM cell for different applications, but the changes
to the standard architecture are minimal and their effects on
the overall prediction accuracy are negligible.

This work will focus on the optimisation of the standard
LSTM but the proposed techniques can be applied to other
RNN and LSTM variants. We follow the implementation of
LSTM as used in [5, 15] and the equations are shown below,
where © is an element-wise multiplication:

it = o(Wi[zy, he—1] + b;)
fr = o(Wylze, hea] + by)
up = o(Wy [z, hi—1] + by)

= o(Wo[ws, he—1] + bo)
e =frOci1+ir Ouy
hy = o4 © tanh(c;)

Ot

i, f,u and o represent the input, forget, update and output gate
respectively. We combine the input vector and hidden vector
so that W represents the single weight matrix for both input
and hidden elements and b represents the bias.

The input gate controls which elements are entered into the
memory cell; the forget gate controls which elements are no
longer remembered; the update gate controls which elements
in the memory cell are updated; the output gate controls which
elements from the memory cell are output. The output ¢; is
the cell state and h; is the output of the cell, also called the
hidden state, which is passed to the next layer. In an LSTM
network, the output from the last layer is usually fed into the
h;—1 input of the cell of the next timestep, and the same input
vector x; is used across layers in the same timestep.

B. Related Work

There has been much previous work on FPGA based
LSTM implementations using on-chip memory to store all
the weights. Ferreira et al. proposed an FPGA accelerator
of LSTM in [7] for a learning problem of adding two 8-bit
numbers with weights stored in on-chip memory. Rybalkin et
al. [8] presented the first hardware architecture designed for
BiLSTM for OCR. The architecture was implemented with
5-bit fixed-point numbers for weights and activations which
were stored in on-chip memory. In addition, their later work
[9] used 1-8 bits as the quantized implementation which can
surpass a single-precision floating-point accuracy for a given
dataset. The weights were still stored in on-chip memory.
In [16] C-LSTM was proposed to reduce LSTM inference
weight matrices using block circulant matrix and apply FFT
algorithm to accelerate computation intensive block circulant
convolution. Brainwave [10] proposed a single threaded SIMD
architecture for CNN/RNN. Its high performance was through

pinning neural networks - the idea that model weights could
be pinned onto on-chip memory in order to achieve the
necessary high memory read bandwidth. These FPGA based
implementations stored all the weights in the on-chip memory,
however this is expensive and limits the size of models that
can be deployed.

Many works are focusing on model compression and weight
pruning to reduce the weights size so that LSTM models can
be stored in the on-chip memory to achieving good perfor-
mance and efficiencies. [4] employed a pruning technique that
compressed a large LSTM to fit the on-chip memory of an
FPGA and improved inference efficiency. While in [17], Gao
C. et al. proposed the DeltaRNN which was based on the Delta
Network (DN) algorithm that skips dispensable computations
during network inference The work in [18] proposed Bank-
Balanced Sparsity (BBS) that could both maintain model accu-
racy and enable an efficient FPGA accelerator implementation.
Such work is orthogonal to our proposed strategy. We provide
another approach using the blocking-batching technique with
a stall-free hardware architecture to optimise the throughput
of LSTM systems on FPGA devices.

There has also been much previous work using off-chip
memory for LSTM on FPGAs. In [19], Chang et al. presented
an FPGA-based hardware implementation of LSTM on the
Xilinx Zynq 7020 with 16-bit quantization for weights and
input data. Both of the weights and input data were stored in
off-chip memory which had been identified as the performance
bottleneck. Guan et al. [5] proposed a smart memory organisa-
tion with on-chip double buffers to overlap computations with
data transfers. And later in [13] they proposed an automated
framework for mapping CNN or RNN on FPGAs. The matrix
multiplication kernel was proposed to process LSTMs. How-
ever, [13] did not explore data dependence issue of LSTMs.

In [9, 12, 13], the batching technique is introduced to
improve performance of LSTM inference, however without
a proper blocking method they still need a large on-chip
memory to store all the weights for efficient calculation.
Otherwise high memory bandwidth memory is needed, like
in the ASIC platform [12]. In addition, a framework that
comprised of an approximate computing scheme in small tiled
manner, together with a novel FPGA-based architecture for
LSTMs, was presented in [20] with a focus on latency-critical
applications.

Zhang et al. [21] implemented LRCN (Long-term Recurrent
Convolutional Network) [15] using FPGA but the feature
number, which was the size of input vectors for LSTM, had
been reduced to 256 from 4096. This limits the effectiveness
of the recurrent model and prevents the system from working
with larger models. With our blocking-batching strategy, small
FPGAs can still process a large RNN model efficiently. This
is exactly the motivation of this work which focuses on the
acceleration of large LSTM models stored in the off-chip
memory of FPGA.
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Fig. 1. Matrix-vector multiplication, showing the data dependency
ITI. DESIGN AND OPTIMIZATION

Since most of the calculations within LSTM cells lie in the
matrix-vector multiplication with complex data dependencies,
this work will mainly focus on optimising this operation for
high throughput. The element-wise operations in the LSTM
tail can work under the shadow of the matrix-vector multiplica-
tions. In this section, an improved architecture is first presented
to reorganise the multiplications to optimise data dependency
and reduce stalls, thereby increasing the throughput of the
system. Then a new blocking-batching strategy of reusing
the LSTM weights to enhance the throughput of large LSTM
systems is described via 3 scenarios. In addition, the optimised
values of settings such as the best blocking number and batch
sizes are introduced.

A. Overcoming Data Dependency

The traditional implementation of the matrix-vector mul-
tiplication involves the entire vector of (x;, h;—1) and a
whole row of the weights at a time. However, this approach
imposes additional stalling as the system needs to wait for new
computed hidden units vector before starting the next time-
step. This is mainly due to the data dependency between the
output from the current time-step and the vector for the next
time-step as shown in Fig. 1, where W, and W), represent
the weights for the input vector and the weights for the
hidden vector respectively. That implies that the whole system
pipeline needs to be emptied to get the new computed hidden
units before the new matrix-vector operations can start.

We propose a new technique that can alleviate this problem
by calculating the matrix-vector operations in a different
manner. At the beginning, only a few elements from the z;
vector are used while h;_q is not touched, but all the elements
in the corresponding columns of the weights matrix are used
to do the operations, as shown in Fig. 2. The number of the
involved elements in the z; vector each cycle depends on
the parallelism of system. In this way, the calculation of the
new inference of (x4y1, h¢) can start without waiting for the
system pipeline to be emptied to get the h;, which means that
the system can be fully pipelined without stall. Each hidden
vector can finish the computation in the shadow of processing
x; before it is used.

B. New Blocking-Batching Strategy

Many LSTM designs on FPGA share the same problem
where all the weights need to be stored on-chip because of
the slow latency to the off-chip memory. This approach is
inapplicable for large machine learning models or a small
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Fig. 2. New matrix-vector multiplication method using columns
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Fig. 3. Blocking of the weights matrix and input activation vectors

FPGA. Even after model compression and weights pruning,
the designs can still suffer from insufficient on-chip memory
for large compressed model. To solve this problem, we propose
splitting the weight matrix into multiple blocks while batching
the input activations vectors so that we can process the
calculations block by block with weight reuse. This technique
can be used for general LSTM model, or incorporated with
the technique proposed in Section III-A. It seems similar
to classic block matrix-matrix multiplications, however our
proposal also considers the data dependence in LSTMs. With
multiple vectors organised in a batch, the system can now
reuse the same weights for the next matrix-vector operation
without the full input vector being ready. Since memory
accesses are expensive we want to reduce the number of loads
from memory. This method can reuse the weights on more
input vectors before reloading new weights from memory. This
approach is especially useful in an embedded system where
FPGA size and memory resources are both limited.

In our approach, the matrix includes parameters from all
kinds of gates. In addition, the gate weights are interlaced in
the matrix. Furthermore, we slice the weights matrix along
the column, so the number of columns in each block is
1/(Blocking_Number of the original number of columns in
the weights matrix), while the number of rows is the same as
the original number of rows, as shown in Fig.3. So each block
includes parameters from all kinds of gates.

Typically the transfer time of the weights is much larger
than the computation time. By processing multiple time-steps
of the input vector in a batch, we can use the weights
multiple times before reloading, which reduces the number
of memory accesses. Assuming the number of processing
elements is fixed, increasing the batch size will also increase
the computation time. We can find a batch size such that the
computation time is equal to or larger than the transfer time
to hide memory latency. In this way, we convert memory-
bound applications to compute-bound ones and improve the



TABLE I
BLOCKING-BATCHING PARAMETERS

Mop Number of matrix operations
Npe Number of processing elements
Ny Number of elements transferred each cycle
Ny Number of blocks
Ly, Ly, | Number of elements in x and h vectors respectively
[e] Ly

Lo+Lp
B Batch size
P 1 Per formance

2x frequenc

q Y

1 performance is in terms of throughput while 2 means each data

need both multiplication and accumulation operations.

performance.

In addition, we make use of a double buffering architecture
which stores two blocks on-chip. Whilst calculating one block
we can transfer the other block to maximise efficiency by
reducing the stalling time.

C. 3 Scenarios

There are 3 cases in this blocking-batching strategy:

1) The hidden unit weights can be stored in one block

2) The hidden unit weights can be stored in two blocks

3) The hidden unit weights can be stored in more than two

blocks

We define a few parameters, as shown in Table I for later
calculations. Ideally we would like the calculation time for
each block to be equal to the transfer time, but in reality
usually one is significantly longer than the other. Let us assume
the calculation time for one block is longer than the transfer
time for one block.

Calculation Time > Transfer Time

M,,B M, Npe
> = B> —— 1
NyNpe = NpNy - M M

This gives us the constraint B > NT”: when the calculation
time is greater than or equal to the transfer time. Similarly we
can derive the constraint B < ¢ when calculation time is

Ny
less than the transfer time.

Case 1 — In this case, the performance is almost dictated
by having to store all weights in the on-chip memory. If
the maximum performance is P,,, then this case can achieve
P,,. This is due to the novel stall-free blocking-batching
architecture that ensures we are always calculating and there
is no stalling.

The ideal timing diagram for this case is shown in Fig. 4,
where there is no idle time. TO is transfer time for BlockO
while CO is computation time for BlockO. As shown in Fig.4,
CO can start when TO has finished. In practice, we find that
there are some special cases where we must stall the pipeline
to wait for the final block to finish calculating. Normally we
can ignore the system latency because we can start processing
the = part of the final block before we reach the h elements,
as illustrated in Fig. 2; by the time we reach the h elements
they will be ready. If the hidden input vector occupies a large
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Fig. 5. Roofline performance model for case 1&2 (left) and case 3 (right)

amount of the block, then we will have to wait for the system
pipeline to finish processing the last vector, which will cause
stalls. We find that these stalls cause the calculation of the
final block to take about 10% longer time. The calculations
below consider the simple case when there are no stalls.

We can calculate the effect on performance by considering
the total number of operations that must be done against the
time spent. The performance depends on the time we spend
transferring each block versus the calculation time of each
block, as shown in the following equations and Fig. 5.

M,,B Npe
P= W = Npe when B Z Nt (2)
M,,B Npe
P = &Opp = BN, when B < ]\Z 3)
Ny

The blocking number, NV}, can be increased to reduce the
on-chip memory needed. Due to storing two blocks on-chip,
we only need N% as much memory as storing all weights on-
chip. This means we can process a model many times larger,
or process the same model using a fraction of the on-chip
memory. Of course there are some drawbacks to increasing
the block size, which are covered in cases 2 and 3.

Case 2 — In this case we must wait for both of the last blocks
to be in the on-chip memory before starting computation,
because the next hidden vector in the batch has a dependency
on the previous. Fig. 6 shows the timing diagram for this case,
where the red arrows indicate the extra time we must wait.
In theory there is a small overlap at the beginning where
we can begin to compute the first sub-vector, and also at the
end when we can start transferring while working on the last
sub-vector in the last vector of the batch. Since this is equal to
double the time to process one sub-vector, it will be negligible
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compared to the total time and we shall leave this out of our
approximations.

The Eerformance calculation is done in a similar way when
B = J\Z ; we consider that each matrix element must be
transferred and the transfer time is equal to time for processing
all the M,,, but the hidden weights also have the added
processing time which takes up 2 blocks in all N, blocks.

M,,B Npe Ny
P = 2 =B “)
M,,B | 2M,,B
Npe Npre Nb + 2
Case 3 — In the most complex case we have multiple blocks

due to a large LSTM model and/or a small FPGA. In this case
the hidden vector will be split across more than two blocks,
so we cannot store it all on-chip at the same time.

Due to the data dependency between sub-vectors we must
reload the last few blocks where the hidden vector is. This
must be reloaded N, number of times to finish each vector in
the batch.

The performance calculation is more complex but follows
the same pattern as before. We consider each case, when the

x, input and weights takes longer to transfer, then oMop s
oM,y B
NP

larger than as shown in equation (6), or when the

calculation takes longer than aMopB a5 shown in equation (5).
Conversely, the hidden input and welghts always spend more
time transferring since each calculation is only one sub-vector
from the batch, yet all the weights need to be transferred each
time. The final roofline model is shown in Fig. 5.
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Although this case seems to offer poor performance because
of the limitation of memory bandwidth, we should remember
that this is similar to the standard method without processing
using columns. We would need to load each block into
memory B times and each sub-vector would be processed
individually. With our new architecture, we re-use the weights
as much as possible for the independent part of the vector,
and only need to reload the weights for the dependent part
of the vector with the hidden weights. Furthermore, if there
are more on-chip memory on the target FPGA then this case
will be changed to case 1 which becomes compute-bound with
high performance.

IV. SYSTEM ARCHITECTURE
A. System Overview

Fig. 8 shows the overall system on a FPGA board while Fig.
9 shows the architecture of the Stall-free Blocking-batching
Engine (SBE). This system consists of SBE units, with a CPU
and DDR3 DRAM as the off-chip memory. All the weights and
input activations (CNN-extracted features) are stored in the
off-chip memory. The Reg Ctrl unit, which is connected to the
AXI4-lite bus, is used to transfer the control commands while
data communication is managed by the DMA units which are
connected to the PCle bus or AXI4 bus. The CPU is used
to send configurable parameters to the SBE and control the
transmitting of the weights and receiving the results when the
hardware finishes processing, which is all done via the Reg
Ctrl unit.

B. SBE Architecture

The details of the SBE architecture is shown in Fig. 9. As
mentioned, only one block is transferred from the off-chip
memory to the FPGA on-chip memory in each iteration of
computation. The partial weights will be stored in bufferO and
buffer] which work as a double buffer. In addition the partial
batch_size activations of the input x vectors are also stored
in a double buffer. With a carefully chosen batch size, these
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buffers work to overlap the time of data communication with
LSTM inference computation.

The processing elements (PE) perform the matrix-vector
operations that work as the LSTM gates. They multiply one
element from the partial input vector by all the corresponding
weights. The partial result of one partial activation will be
accumulated via the inter-block linking and finally stored into
the small Blocking-Batching(BB)-FIFO to be used in the next
block. Each partial activation in the batch will generate one
result and will be stored in the BB-FIFO. Therefore, the depth
of the BB-FIFO is equal to the batch_size.

Consolidating of the block computations is done via the
BB-FIFO in the PE units. When the new block computation
begins, the value in the BB-FIFO will be read via the Exter-
Block link and used as the initial value for the accumulator.
After the new block computation, the partial results of the
new block will be accumulated into the former partial results
and finally stored into the BB-FIFOs. When all the blocks are
processed, the final result across all blocks for the batch will
be generated on the LSTM interconnection unit, where they
will be reshaped for later processing.

The post processing (PP) units are used to perform other
functions after the matrix-vector multiplications in the LSTM
cell and they work under the shadow of the PEs. Their
parallelism is configurable to improve the performance and
reduce the latency depending on the FPGA resources available.
The batch normalization (BN) [22] unit, which is optional and
can be turned off via the controller, performs the batch nor-
malisation on the results of the matrix-vector multiplications.
The Sigmoid/Tanh are the non-linear modules which apply the
activation functions. We implement these activation functions
using a piece-wise linear approximation [23], which is shown
to have little impact on accuracy during LSTM-RNN inference
[5]. The outputs will be buffered in the output buffer while
waiting to be transferred via DMA.

V. EVALUATION
A. Experimental Setup

Many variants of LSTM have been proposed which are
suitable for different tasks. In this work, the LRCN [15] for
video activity recognition is used to demonstrate our approach.
Typically, the LRCN is implemented using a CNN to extract
a fixed-length vector of features which are then passed into
a recurrent sequence learning module, such as an LSTM.
In this work, the features of each frame in the video come

TABLE 11
RESOURCE UTILIZATION

LUT  LUTRAM FF BRAM  DSP

_— Avail. | 218600 70400 437200 545 900

7342 Used | 165668 49224 150451 5175 900

Uall. | 75.8% 69.9% 344%  949%  100%

Virexy |_Avail_| 433200 174200 866400 1470 3600

6o0T | _Used | 203549 71478 221576 1070 2060

Uah. | 47% 1% 25.6%  128% 5%

from the average pool layer of the Inception-v3 which has
been pre-trained on the ImageNet dataset. An additional Fully
Connected layer is applied to transfer the features number
to 1792 and then fed to our LSTM system. We retrain the
LSTM network to get the top-1 accuracy of 72.97% and top-
5 accuracy of 89.61% which are higher than the accuracy of
67.37% in the original LRCN design [15].

To recognise the performance and limitations of the pro-
posed LSTM hardware acceleration, we implement the hard-
ware system for the LSTM part in LRCN for the RGB model,
where the LSTM-256 model has 256 hidden units. Each
LSTM-256 gate weights matrix is 2048%256 and there are four
gates. The target platform is Xilinx ZC706, which consists of
a XC7Z045 FPGA and dual ARM Cortex-A9 processor. 1
GB DDR3 RAM is installed on the platform as the off-chip
memory. The on-chip memory of the XC7Z045 is 19.2Mb
while the weights in this LSTM model are more than 32Mb
which are too large to store in the on-chip memory of the
FPGA. We also implement the LSTM-512 model which has
512 hidden units using the Virtex 7 VX690T FPGA.

B. Resource Utilisation

Table II shows the resource utilisation for our stall-free
BPE design on the Zynq 7045 FPGA. The number of PEs,
Npe, is configured to 1024 targeting LSTM-256 while the
batch size is 64. N; is 16 when the DMA data bus is 256-
bit with a 16-bit LSTM datapath. If the DMA data bus is
512-bit then the proper batch size is 32. IN; needs scaling
if DMA data bus works under a different frequency with
computation engines. For our system on Zynq, almost all the
FPGA'’s hardware resources are utilised. A few multiplication
units are implemented using LUT because there are only 900
DSP elements in our system. Note that the number of PEs,
Npe, is configured to 2048 for LSTM-512 targeting Virtex
7 VX690T FPGA because this device has an abundance of
DSPs.

The best batch size. The best batch size is determined
by balancing the computation time and communication time
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from the off-chip to on-chip memory. For case 1 and 2, the
best batch size on Zynq can be easily calculated from equation
(1), which shows that B = N,./N; = 64. However, for case
3, the performance equations (5) and (6) are complex, but we
can still get 64 as the proper batch size, as illustrated in Fig. 5.
The performance is not related to B when B > ”f as shown
in equations (2) and (5), which means increasing the batch
size does not increase performance beyond a certain point,
but only wastes the on-chip memory.

The proper blocking number. For a given LSTM model,
when the blocking number increases, the block size decreases,
and then the required on-chip memory decreases, because we
will only store two blocks on the FPGA. This means that
we can process a large LSTM system efficiently even with
a small FPGA. However, for a given system, the blocking
number cannot be too large because performance can be
reduced as shown in case 3. The performance of the LRCN
with different blocking numbers on the Xilinx ZC706 platform
is shown in Fig. 10. P, is the ideal performance when
all the weights are stored in the on-chip memory without
external DRAM accesses. It is the highest performance that
the system can achieve. From Fig. 10, the proper blocking
number is 16, which is the sweet point with only 1/8 on-chip
memory required compared to previous research which put
all the weights in the on-chip memory. It is the best trade-
off between on-chip memory size/usage (or FPGA device)
and performance. For a given application and performance
requirement, the proper blocking number and blocking size
will help us to choose the proper FPGA device. We do not
need to select a large and expensive FPGA with large on-
chip memory before the blocking-batching strategy is applied.
When the blocking number decreases from 16 to 8, the
performance can still be boosted by about 10%. However, a
larger and more expensive FPGA with double on-chip memory
will be required. Furthermore, if the user can bear with a
reduced performance then they can choose a smaller and
cheaper FPGA as shown in Fig. 10.

C. Performance and Efficiency Comparison

To compare the performance of the proposed design on
FPGA with other platforms, we implement the LRCN on
Intel Xeon E5-2665 CPU and NVIDIA X Pascal GPU based

PERFORMANCE COMPARISON OF THE FPGA DESIGN VERSUS CPU AND

TABLE III

GPU
CPU GPU This Paper | This Paper
Platform Intel Xeon | TITAN X Virtex 7 Zynq
E5-2665 Pascal VX690T 72045
Frequency 2.4 GHz 1.62 GHz 125 Mhz 142 MHz
Technology 22 nm 16 nm 28 nm 28 nm
Power(W) 93 159 26.5 10.6
Precision 32 bit float 16 bit fixed
Model Slze1 21921% 256
per Frame
T
e pet 14.45 0.78 0.38 0.61
Sample“(ms)
Energy per
1343 124.02 10.05 6.47
SampleX(m])
1 Combing the four matrices of i, f, o, ¢ gates.
2 Each sample/video has 32 frames.
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Fig. 11. Throughput depending on Batch Size on ZYNQ 7045

on Tensorflow(r1.12) framework. The CuDNN libraries are
used for optimizing the GPU solution. Both CPU and GPU
implementations run with batch size set to 32 samples, which
are 1024 frames in total. Compared with the LRCN on CPU
and GPU, our Zynq FPGA design is 23.7 and 1.3 times faster
and consumes 208 and 19.2 times less power respectively as
shown in Table III.

We have demonstrated parameterisable performance scaling
for different LSTM sizes and batch size approaches, see
Fig.11. With very large LSTM models, our design can achieve
1.60-5.41 times higher performance than the ones without
SBE, as shown in Fig.12. In addition, the performance scaling
for different blocking number is shown in Fig.10. The results
show flexible customizability of the architecture for different
scenarios.

To illustrate the benefits of our proposed approach, some

6

541
Non SBE ~ #2048%1024 4096*2048
3 m4096¥1024 m8192¥4096 m8192%2048
R, m8192%1024
= wn
=
£5
g ¢ 1.85
= ¥ 2
F
3
w1

1 I
0
Fig. 12. Throughput of our design v.s Non SBE Design for Very Large LSTM
Systems on ZYNQ 7045



TABLE IV
COMPARISON WITH PREVIOUS IMPLEMENTATIONS OF DENSE LSTM
MODELS USING OFF-CHIP MEMORY

2017 ESE FP-DNN This This
(51 [4] [13] Paper Paper
FPGA Virtex7 Kintex | StratixV Virtex7 Zynq
VX485T | KU060 | GSMD5 | VX690T | 72045
Model Storage off-chip
Prec. (bits) 322 12 ;ga 16 16
No. of b
Used DSP 1176 1504 2072 2060 900
Freq. (Mhz) 150 200 150 125 142
Perf. (GOPS) 7.26 282 gé? 356 221
Power Effi. 12.63
(GOPS/W) 0.37 6.87 3440 13.48 20.84
Resource Effi.€ 0.153
(GOPS/DSP) 0.006 0.188 0.0422 0.173 0.246

 Floating point
b One Intel FPGA DSP includes two 18*18 multipliers

¢ To make a fair comparison, the number of used DSPs is used to calculate
GOPS/DSP when evaluating LSTM accelerator

existing FPGA-based LSTM-RNN accelerator designs are
compared with ours in Table IV. For a fair comparison, We
only show the previous work with detailed implementation
of the LSTM system storing the weights in external memory
of FPGA. We list the FPGA chips, model storage, precision,
run-time frequency, throughput, power efficiency and resource
efficiency. The table contains a range of designs across this
parameter space for comparison. Our design achieves power
efficiency as 20.84 GOPS/W and resource efficiency as 0.246
GOPS/DSP which are the highest with respect to state-of-the-
art implementations on FPGAs operating on a dense LSTM
model with weights stored in off-chip memory. With a similar
number of DSP resources to [13], our system using Virtex 7
achieves 356 GOPS which is the highest performance among
all the FPGA implementations of LSTMs storing weights in
the off-chip memory. Because of routing congestions, our
Virtex 7 design only runs at 125Mhz.

With our weights reusing SBE, small FPGAs can still pro-
cess a large RNN model efficiently. Note that our comparison
does not cover recent approaches [9, 17, 18] about LSTM
acceleration using model compression and weight pruning to
fit in on-chip memory. Such techniques are orthogonal to our
proposed approach. Since useful inference results may not be
possible when the FPGA has insufficient memory to store an
accurate compressed model, it can still suffer from insufficient
on-chip memory of FPGAs for large compressed models.
Our technique complements these approaches for improving
efficiency. Future work will explore pruning methods to allow
large, sparse models to run on FPGAs.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a Stall-free Blocking-batching Engine
(SBE) architecture to accelerate the inference of LSTM-RNN
systems on FPGAs. We focus on deploying large machine
learning models on FPGAs, where resources are at a premium.
We have implemented the proposed accelerator on Zynq and

Virtex-7 FPGAs with excellent performance and efficiency
which shows the effectiveness of our approach. Further re-
search could look into combining the proposed SBE with
pruning methods to allow large, sparse models to run on
small embedded FPGAs, and the complete automation of the
resulting approach to enable rapid development of efficient
LSTM designs.
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