2790

1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

Optimizing Finite Volume Method
Solvers on Nvidia GPUs

Jingheng Xu™, Haohuan Fu“, Member, IEEE, Wayne Luk, Fellow, IEEE, Lin Gan*, Member, IEEE,
Wen Shi, Wei Xue, Member, IEEE, Chao Yang™, Member, IEEE, Yong Jiang,
Conghui He™, and Guangwen Yang, Member, IEEE

Abstract—As scientific applications are increasingly ported to GPUs to benefit from both the powerful computing capacity and high
throughput, accelerating explicit solvers for GPU-based finite volume methods is gaining more and more attention. In this paper, based
on the detailed analysis of the FVM algorithm, we present a set of novel optimization methods, including the explicit data cache
mechanism, optimal global memory loading strategy, as well as the inner-thread rescheduling method, which derives a suitable mapping
from the solver algorithm to the underlying GPU hardware architecture, so as to remarkably improve the solving performance of
structured mesh based FVM. We demonstrate the impact of our tuning techniques on two widely-used atmospheric dynamic kernels (3-D
Euler and 2-D SWE) on five kinds of mainstream GPU platforms, and make a detailed analysis of the different tuning methodologies so as
to demonstrate how to select the proper tuning strategy to different applications on various GPU platforms. Specifically, 93.9x speedup is
achieved for the 3D Euler solver on Nvidia V100 over one 12-core Intel E5-2697 (v2) CPU, which is a 77 percent improvement compared
with the original speedup without adopting the tuning techniques presented in this work.

Index Terms—Finite volume method, GPU, performance optimization, scientific applications

<+

INTRODUCTION

IN the past few decades, constrained by the physical limits
such as heat dissipation and power consumption, going
purely for clock speed is no longer the best strategy in pro-
cessor design. As a result, the increasing of processor fre-
quency has come to a stop. To meet the growing demand of
computing power, many-core and reconfigurable architec-
tures, such as GPUs, MICs, and FPGAs, are developed so as
to promote the performance-power ratio and to keep the con-
tinuous increase of the computing power. Among these new
computing architectures, GPU is one of the most popular
accelerators and is being widely used nowadays in both
national laboratories and industry fields. Compared with
general-purpose CPU platforms, GPU is equipped with a
larger number of computing units with simplified control
mechanisms inside each chip, making it more efficient when
dealing with throughput-oriented algorithms.

e J. Xu, H.Fu, L. Gan, W. Shi, W. Xue, and G. Yang are with the Tsinghua
University, Beijing 100084, China. E-mail: {18653236889, shiwensmile}
@163.com, {haohuan, xuewei, ygw)@tsinghua.edu.cn, lin.gan27@gmail .com.

o W. Luk is with the Imperial College, London SW7 2AZ, United Kingdom.
E-mail: wi@doc.ic.ac.uk.

o C.Yangis with the Peking University, Beijing 100080, China.

E-mail: yangchao@iscas.ac.cn.

o Y. Jiang is with the Graduate School at Shenzhen, Tsinghua University,
Shenzhen, Guangdong 518055, China. E-mail: jiangy@sz.tsinghua.edu.cn.

o C. Heis with the Computer Science and Technology, Tsinghua University,
Beijing 100084, China. E-mail: heconghui@gmail.com.

Manuscript received 16 Apr. 2018; revised 23 June 2019; accepted 25 June
2019. Date of publication 2 July 2019; date of current version 8 Nov. 2019.
(Corresponding author: Lin Gan.)

Recommended for acceptance by D. Arnold.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2019.2926084

The finite volume method (FVM) is a numerical method
for solving partial differential equations that calculate the
values of the conserved variables averaged across the vol-
ume [1]. As one of the most commonly used numerical
method, FVM is widely used in the solving approach of
many scientific applications, such as atmospheric modeling
[2], room acoustics modeling [3] and hydraulic erosion simu-
lation [4]. However, as one of the hot spots in these pro-
grams, the explicit FVM solver algorithm is suffering from
the low flop-to-byte ratio and irregular memory access
issues, thus to remarkably decrease the utilization rate of the
high-density computing devices. At the same time, with the
rapid increase of computing power demands, scientific
applications (including the FVM-based scientific applica-
tions) are increasingly ported to GPUs to benefit from both
the powerful computing capacity and the high throughput.
Thus, to boost the performance of scientific applications on
GPU, an accelerated FVM solver is in urgent demand.

Aiming at providing a GPU-based FVM solver that can
fully take advantage of the hardware characteristics, first
we should identify the features of the FVM-based solver.
The explicit FVM solver mainly contains two time-con-
suming parts, the state reconstruction step and the Rie-
mann solver part. The complexity of the solver algorithm
can be summarized into three folds: 1) The huge amount of
memory access caused by the stencil iteration leads to
a low Flop-to-Byte ratio of the state reconstruction step.
2) Long latency operations within the Riemann solver part,
such as sgrt() and pow(), introduce further complexities
for achieving high instruction throughput. 3) Instruction
dependency and branches are unavoidable in FVM solv-
ers, which would result in both irregular memory access

1045-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7311-9924
https://orcid.org/0000-0001-7311-9924
https://orcid.org/0000-0001-7311-9924
https://orcid.org/0000-0001-7311-9924
https://orcid.org/0000-0001-7311-9924
https://orcid.org/0000-0002-6982-2235
https://orcid.org/0000-0002-6982-2235
https://orcid.org/0000-0002-6982-2235
https://orcid.org/0000-0002-6982-2235
https://orcid.org/0000-0002-6982-2235
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0001-7426-6248
https://orcid.org/0000-0001-7426-6248
https://orcid.org/0000-0001-7426-6248
https://orcid.org/0000-0001-7426-6248
https://orcid.org/0000-0001-7426-6248
https://orcid.org/0000-0001-8697-695X
https://orcid.org/0000-0001-8697-695X
https://orcid.org/0000-0001-8697-695X
https://orcid.org/0000-0001-8697-695X
https://orcid.org/0000-0001-8697-695X
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

and imbalanced workload distribution among different
threads.

For the underlying GPU architecture, related to the above
algorithmic issues, there are also challenges that pro-
grammers need to face: 1) the limited space of GPU’s on-
chip fast buffer when performing memory-oriented optimi-
zations for FVM; 2) the warp model for scheduling and exe-
cuting threads when dealing with the frequent branches; 3)
the performance issue caused by long latency instructions,
such as sgrt() and pow(), combined with execution depen-
dency problems.

To resolve the above algorithmic and architecture through
a suitable mapping of FVM to GPU, in this paper, we propose
a set of general optimization methods, and analyze how to
identify its optimal implementation choice in different situa-
tions, and evaluate their effectiveness on two real-world
applications by comparing the preliminary optimized version
that adopts up to six existing tuning techniques and the fully-
optimized version that adopts our proposed approaches. The
experimental results indicate that by employing the FVM tun-
ing methods presented in this work, remarkable performance
speedup could be achieved on almost all kinds of modern
GPU platforms.

The main contributions of this paper include:

e A high-level analysis of the finite volume method and
its implementation on mainstream GPU platforms,
identifying state reconstruction step as the hot-spot of
the explicit FVM solver; employing up to 6 tuning
techniques (including coalesced access, kernel split-
ting and so on) as the first-round optimization to
provide an optimized GPU version for further com-
parison and effectiveness evaluation;

e DPresenting a set of novel optimization methods that
can fully combine the algorithm features with the
hardware architecture, by performing algorithmic
modifications of the original FVM solver, including
an explicit cache mechanism and optimal global
memory loading strategy to reduce redundant com-
putations and global memory access, as well as an
inner-thread rescheduling method to handle work
balance versus synchronization tradeoffs;

e Employing these optimization methods to typical
atmospheric dynamic solvers (2D SWE solver and
3D Euler solver) so as to exam the effectiveness of
these tuning techniques on all kinds of mainstream
GPU platforms nowadays (Fermi, Kepler, Pascal and
Volta), and making a detailed analysis of the differ-
ent tuning methodologies so as to demonstrate how
to select the optimal tuning strategies to different
FVM solvers on various GPU platforms.

2 RELATED WORK

As FVM-based scientific applications are becoming increas-
ingly complicated nowadays due to the consideration of
accuracy and flexibility, to meet the rapid increasing per-
formance demand, a huge amount of work has been done
to accelerate the FVM solver on different kinds of high-
performance processors, including but not limited to GPU
([5], [6]), Knight Landing ([7], [8]) and FPGA ([9], [10]).

2791

Specifically, in 2016, Yang et al. accelerated the FVM-based
Shallow Water Equations on Sunway TaihuLight supercom-
puter [2]. In this work, the authors performed systematic
optimizations on different hardware levels to achieve best
utilization of the heterogeneous computing units and sub-
stantial reduction of data movement cost, and successfully
scaled the solver to the entire system and achieved a 7.95
PFLOPS performance in double-precision. This work won
the Gordon Bell Prize of that year [13].

With the fast development of GPU nowadays, to improve
the overall performance of FVM-based applications on mod-
ern GPU platforms, a couple of optimization methods have
been proposed to reduce the impact of the resource conflicts
between the FVM algorithm and the underlying hardware
architecture ([4], [11], [12]). For instance, in work [4], an effi-
cient FVM-based physically-based hydraulic erosion algo-
rithm is presented and implemented completely on a
GeForce 9,400 GPU to simulate the dynamic erosion process.
In work [12], a parallelization of a FVM-based shallow water
numerical scheme suitable for GPU architectures (GTX 580
and Tesla M2070) is presented. However, through remark-
able performance benefit is able to be achieved, these works
are targeting at optimizing specific scientific applications but
not the FVM algorithm in general. Thus, it is hard to scale
these tuning methods on different applications.

Based on the experience of specific-application perfor-
mance tuning on GPU, people manage to summarize the
general GPU optimization techniques towards a set of com-
monly used problems ([14], [16], [17], [18], [46]). Specifically,
in [14], the author presents a GPU parallelization technique
of the 3D finite difference computation. The method could be
widely used on almost all kinds of applications adopting
finite difference method, and experimental results demon-
strate the great effect of this technique. Inspired by these
exciting achievements, we would like to explore the possibil-
ity of providing some generalized GPU optimization meth-
ods for FVM-based solver but not a specific application.

To design a generalized GPU-based FVM solver, Langguth
etal. [19] accelerate the unstructured-mesh based FVM solver
on Tesla K20 GPU platform and adopt a set of hardware tun-
ing techniques to explore the upper bound of this kind of
application. Within this work, mainstream GPU tuning tech-
niques such as shared memory, coalesced access and read-
only cache are involved, and result in a better performance
compared with the 16-core CPU version. It is a good attempt
to optimize FVM algorithms on the GPU platform, however,
only one generation of GPU is involved in this work, and the
performance benefit achieved in this work is mainly contrib-
uted by the ever-increasing computing capability of the hard-
ware, but no algorithmic modification is included. Thus, the
performance results (around 40 GFlops on Tesla K20c) are
not as good as we expect, and the upper bound provided in
the work is no longer effective once we change the solver
algorithm according to the hardware. To fully unleash the
performance potential of the FVM solvers, we expect to pro-
pose a set of tuning techniques that can fully combine its algo-
rithmic features and hardware characteristics of all kinds of
mainstream GPU platforms.

In this paper, targeting at providing generalized GPU
optimizations to programs that employ structured-mesh
based finite volume methods, we present a set of generalized

2792

L1/SMEM
— INEEEEEN
EEEEEEEN
L1/SMEM
m L]
EEEEEEEN
L1/SMEM
mLLLLLLT]
EEEEEEEN
L1/SMEM
 {IEEEEEEN
EEEEEEEN

L2 Cache

cPU PCle

Fig. 1. A high-level hardware architecture of GPUs.

optimization methods that provide a suitable mapping
between the algorithmic property and the hardware architec-
ture, including an explicit cache mechanism and the recogni-
tion of optimal global memory loading strategy to reduce
global memory access and redundant computations, as well
as an inner-thread rescheduling method to handle boundary
processing approaches so as to balance the computation time
of each thread and the effective thread number. Compared
with the conference paper [6], the modifications are mainly
focused on three parts: 1) At the optimization method part,
while the conference paper proposed two generalized tuning
techniques to fully combine the algorithmic properties of the
FVM solver and hardware architectures of Fermi and Kepler
GPUs, in this journal work we employ some new tuning tech-
niques (such as register shuffle and shared-memory partition
techniques based on newer GPU platforms) and provide a set
of tuning strategies, instead of one optimization choice, to fit
into different FVM-based solvers on all kinds of mainstream
GPU platforms (including Fermi, Kepler, Pascal and Volta) in
scientific computing area; 2) At the testbed and application
part, to provide a fair performance evaluation, before the
adoption of tuning techniques presented in optimization
method part, we first employ some hardware-based tuning
methods to provide a baseline performance. To achieve this
goal, while conference paper only focuses on the Fermi and
Kepler oriented hardware-based tuning techniques, in this
work we choose the most suitable hardware-based optimiza-
tion methods for the four generations of GPU platforms. 3) At
the content level, more comprehensive related work, more
sufficient technique explanation and more detailed analysis
are adopted in this paper, thus to expose the challenges and
look into the nature of different tuning strategies. In the end,
the performance comparison of the original GPU version, the
basic optimized version and the fully optimized version
prove the effectiveness of the tuning techniques presented in
this paper, and the analysis of how to select optimal strategy
would further benefit the performance tuning approach of
similar applications. To the best of our knowledge, this is the
first FVM tuning approach that fully combines the FVM algo-
rithmic feature with the hardware character of GPU.

3 BACKGROUND

In this section, we present the necessary background of this
paper, including a brief introduction of GPU and CUDA, as
well as an overview of the finite volume method and its
implementation based on CUDA.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

TABLE 1
Main Hardware Parameters of GPU and Contemporaneous CPU
CPU GPU
(Intel E5-2697 v2) (Nvidia Tesla K40)
Peak Performance 0.52TFl | 43TF
(Double Precision) N . i N
Clock Rate 2.7GHZ 745MHZ
(Base Mode) ’ .
12- / chi
_ cofes / ¢up 15 SMXs / Chip
Physical Cores and | Supporting 24 threads 192 cores / SMX
Maximum Threads by employing hyper- .
. 2880 cores / Chip
threading

How to Deal with
Hyper-threading and Warp scheduling b
Execution yper-tareading an arp scheduling by

Dependency out-of-order technique

context switching

Register: 1KB * 12
L1-d cache: 32KB * 12

Register: 256KB * 15

On-chip Memory L1-cache & SMEM: 64KB

L2-cache: 256KB * 12 *15
Main Mem: Flexible, Global Mem: 12GB,
Off-chip Memory 768GB in maximum, 288GB/s

Size and Access 59.7 GB/s off-chip-cache(L2): 1.5MB
Speed off-chip-cache(L3): Read-only Memory: 64KB
30MB Constant Memory: 64KB

3.1 GPU and CUDA Programming Framework
Aiming at dealing with throughput-oriented tasks, the cur-
rent generation of GPUs have thousands of processing cores
that can be used for parallel computing, as well as a set of
memory modules with limited size which provide the space
for data storage. The basic architecture of GPU is demon-
strated in Fig. 1.

Take the typical Tesla Kepler GPU as an example [21],
inside each computational chip there are multiple (usually
12 to 15) Streaming Multiprocessors (SMXs), each of which is
equipped with hundreds of (192 or 256) Stream Processors
(SPs). Within each SMX, there are several kinds of fast-mem-
ory space including registers (256 KB or 512 KB) to store local
variables of threads, constant caches for broadcasting of
reads from a read-only memory, and on-chip memory (64
KB or 128 KB) which could be accessed both explicitly as
shared memory or implicitly as L1 cache. In addition to the
on-chip memory within each SMX, each GPU chip also intro-
duces a L2 cache (around 1.5 MB) as well as a read-only data
cache (around 64 KB).

On the hardware side, the schedulable execution unit on
GPU is named as warp which is combined with 32 continu-
ous threads. A warp is considered to be ready for execution
only if all of its operands in each thread are ready for execu-
tion. Even there is only one operand is not ready (mainly
caused by execution dependency), a process called context
switching takes place which transfers control to another
warp. This scheduling mechanism ensures the parallelism
to the most extent.

Table 1 demonstrates the main hardware parameters of
Nvidia Tesla K40 GPU and the contemporaneous Intel E5-
2697 v2 CPU. There are two remarkable differences in per-
spective of the hardware architecture. First of all, though
equipped with smaller on-chip memory spaces and lower
clock rate, each GPU chip applies thousands of processor
cores. This difference indicates that while CPUs are good at
dealing with sequential codes where latency matters, GPUs

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

Thread

i

Thread Block

§

T
E

1-f

Fig. 2. Correlation between software concepts and hardware units.

Processor Core

Streaming Multiprocessor

Executed by

Executed by

GPU Chip

Executed by

could achieve high performance for parallel codes on condi-
tion that throughput meets demands. Second, as CPUs are
using a few register files to decrease operation latency,
GPUs use large amount of register files which have a capac-
ity even higher than L1 and L2 caches. This feature ensures
the low overhead of context switching between different
threads and guaranteed the high-efficiency warp schedul-
ing mechanism of GPU platform.

Programming on GPU was not easy until Nvidia released
Compute Unified Device Architecture (CUDA), one of the
most efficient and commonly used GPU programming
frameworks nowadays. By using CUDA, programmers can
arrange threads into thread-block which is essentially a
group of threads that can coordinate among each other by
synchronizing their execution streams via employing barrier
instructions, and do not need to care about the execution in
perspective of hardware [22]. With such features, pro-
grammers can schedule hardware resources easily by
employing CUDA languages and calling CUDA libraries,
rather than use the complex graphical APIs as before. Fig. 2
indicates the correlation between software concepts (e.g.,
CUDA thread, thread block, etc.) and hardware units of
GPUs.

3.2 Finite Volume Method and Solving Approach
The finite volume method (FVM) is a common approach
used in computational fluid dynamics simulations ([11], [23],
[24]). Compared with other numerical algorithms such as
finite difference method and finite element method, FVM
has advantages in both memory usage and computation per-
formance, especially for large-scale problems such as atmo-
spheric modeling [25]. The core concept of FVM could be
summarized as follows: first, by employing the divergence
theorem, the FVM algorithm converts the volume integrals
in a partial differential equation that contains a divergence
portion into surface integrals; second, evaluate the portions
as fluxes at the surface of each finite volume. From the
description above we could demonstrate that the finite vol-
ume inside FVM refers to a small volume surrounding each
node point on a mesh.

Take the general conservation law problem as an exam-
ple. This problem could be represented by the following
partial differential equation:

N T fuydo =0,

ot W

2793

where u represents a vector of states and f represents the
corresponding flux tensor. By adopting the finite volume
method, we can further divide the spatial domain into finite
volumes or cells. For a certain cell i, we take the volume
integral v; over the total volume of the cell, which yields

/—dv—i—/}jv-f(u)dv:

Integrating the first part over v; and applying the Gauss
divergence theorem to the second term into Equation (2),
we achieve the following:

v w) - ndS =
+éﬂ)n 0,

where S; represents the total surface area of the cell and n is
a unit vector normal to the surface and pointing outward.
Dividing v; in both two sides we can derive the following
form that is equivalent to Equation (3):

()

(3)

%

ot “

f()-ndS = 0.

To generate FVM solvers based on modern microproces-
sors, the Riemann solver is commonly used in estimating
numerical fluxes of FVM [26]. To get the reconstruction val-
ues of the Riemann solver, we need to reconstruct the bound-
ary values of the computational mesh based on the values of
central points, so as to calculate the numerical flux. This com-
putation step is called state reconstruction, which generally
uses a piecewise linear reconstruction method as follows (Q
is an intermediate variable detailed in [26])

Q (zulm)
QA+(xt/k7 t) =

Lk i) + L”@mm

% Qij(t) + T Qi+2,j(t)v
(5)

where « € [0,1). This method is widely employed in real-
world applications such as Euler equations [27] and shallow
water equations (SWEs) [25]. In particular, x = 0,1/2 and
1/3 lead to the Fromm scheme [28], the QUICK scheme [29]
and the QUICKEST scheme [29] respectively.

In consideration of the performance of FVM algorithm on
modern GPUs, applying the state reconstruction step prop-
erly is of vital importance. While other parts of the FVM
solver mainly consist of computational tasks, the state recon-
struction step is combined with huge amount of global mem-
ory access which would cause long-latency load problems.
To make things worse, the solving approach of this part takes
huge amount of on-chip memory spaces on GPU and drives
the useful data out of register files and caches, which remark-
ably slows down the FVM solver. Besides the serious cache
pollution, the state reconstruction step also takes 46.5, 59.3
and 54.2 percent of the total time in 2-D SWE, 3-D regional
Euler and 3-D global Euler respectively according to the
experimental results based on Tesla P100, which indicates
the state reconstruction step is no doubt the hot-spot of
FVM-based solvers on GPU.

Algorithms 1 and 2 demonstrate the simplified imple-
mentation of 3-D and part of 2-D state reconstruction step.

Qll()
Q1+1/()

Point (k, j, i+1)

z-axis
awlo] qe(1] qwlo] qe[1]
voode B i Bam
qw[1] ael0] qw([1] qe[g_]axis

Fig. 3. Demonstration of local variables inside each mesh point. Physi-
cally, we could prove the value of quw[0] of Point (k,j,i+1) equals to the
value of ge[1] of Point (k,j,i).

From these two algorithm we could figure out that within
the state reconstruction step, each mesh element keeps 4
local variables to store fluxes in each axis, no matter in 2-D
or 3-D version. Take the Kernel 1 of the 3-D version as an
example, the [0] in qw[0] (or or [1] in qw[1]) refers to the
flow that comes into (or out of) the point, while w indicates
the direction to the west, as shown in Fig. 3.

Since finite volume schemes are conservative as cell aver-
ages change through the edge fluxes, we could prove that
the flow that comes out of point (k,j,i) in the right direction
is exactly the same as the flow comes into point (k,j,i+1) on
the left side. For instance, the qw[0] of point (k,ji+1) and
qe[1] of point (k,j,i) shown in Fig. 3 are identical. This consid-
eration indicates that the calculation of qw[0] and ge[l] is
employing an identical rule on different elements from
input array x, while the calculation of qw[0] and ge[0] are
applying different rules on identical elements. These fea-
tures offer us great potential for optimizing the FVMs.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

3.3 Assumptions and Restrictions

The techniques discussed in this paper are based on the fol-
lowing assumptions about the targeted applications and
platforms. First of all, since the optimization of FVM based
on unstructured meshes has been presented in 2014 [20], in
this paper only structure-mesh-based FVM are discussed.
Second, we assume a second-order piecewise linear recon-
struction is employed in the solving approach of the explicit
FVM solver, since a certain reconstruction method would
result in a relatively fixed algorithm format, which is benefi-
cial for us to express our optimization methods. Third, each
thread of GPU is processing one element per time step,
which is a common choice to initialize huge number of
threads inside GPU platforms. Finally, as the hardware
architecture of AMD and Nvidia GPUs is similar but not
totally the same, in this work we take Nvidia GPUs as exam-
ples to demonstrate the optimization methods.

4 OPTIMIZATIONS

In this section, we present a set of novel tuning techniques
to improve the performance of the FVM solvers on main-
stream GPU platforms. As stated earlier, the tuning tec-
hniques presented in this part would mainly focus on
identifying a suitable mapping between algorithmic features
and hardware characteristics, rather than directly employ-
ing hardware-based tuning techniques (such as coalesced
access). A full-scale optimization approach, which adopts

Algorithm 1. Demonstration of 3D State Reconstruction Step

Kernel 1: X-axis original code:

10 qwl0] = (co*xIk,j,il + cr*x[k,ji-1] + eo*x[k,ji+1] + cs*(xIk,j+1,i] + x[k,j-1,i] + x[k+1,j,il + x[k-1,ji)) / do;

2: ge[0] = (eo*xIk,j,il + e *xIk,j,i+1] + co*xIk,j,i-1] + c5*(xIk,j+1,i] + xI[k,j-1,i] + x[k+1,j,i] + x[k-1,j,i)) / dp;

3. ge[l] = (eo*xIk,ji+1] + er*x[k,jil + co*x[k,j,i+2] + c3*(x[k,j+1,i+1] + x[kj-1,i+1] + x[k+1,j,i+1] + x[k-1,j,i+11)) / do;
4: qu[l] = (co*xlk,j,i-11 + e *xIk,j,il + co*x[k,j,i-2] + c3*(x[k,j+1,i-1] + x[k,j-1,i-1] + x[k+1,j,i-1] + x[k-1,j,i-1D) / d;

Kernel 2: Y-axis original code:

1 gs[0] = (co*x[k,jil + cr*x[k,j-1,i] + eo*x[kj+1,i] + e3*(x[k,ji+1] + x[k,ji-11 + x[k+1,j,i] + x[k-1,j,i])) / do;

2: qn[0] = (co*xIk,jil + 1 *xI[Kk,j+1,i] + eo*x[k,j-1,i] + c3*(xIk,j,i+1] + x[k,j,i-1] + x[k+1,j,i] + x[k-1,j,i])) / d;

30 gn[l] = (co*x[kj+1A] + er*x[k,jil + co*x[kj+2,i] + e3*(x[kj+1,i+1] + x[k,j+1,i-1] + x[k+1,j+1,i] + x[k-1,j+1,i])) / dy;
4: gs[1] = (co*xIk,j-1L,i] + 1 *xIk,j,i] + o*x[k,j-2,i] + c3*(x[k,j-1,i+1] + x[k,j-1,i-1] + x[k+1,j-1,i] + x[k-1,j-1,i])) / dy;

Kernel 3: Z-axis original code:

1. qb]0] = (co*xlk,jil + er*x[k-1,ji] + co*x[k+1,ji] + c5*(x[kj+1,i] + x[kj-1,4] + x[k,j,i+1] + x[k,j,i-1])) / do;
2: qt[0] = (co*xlk,j, il + e *x[k+1,j,i] + co*x[k-1,j,i] + c5*(xk,j+1,i] + xIk,j-1,i] + x[k,j,i+1] + x[k,j,i-1D) / dy;

30 qt[l] = (co*x[k+1,jA] + er*x[k,jil + co*x[k+2,ji] + e3*(x[k+1,j+1,i] + x[k+1,j-1,1] + x[k+1,j,i+1] + x[k+1,j,i-11)) / do;
4: gb[1] = (co*xIk-1,j,i] + c1*xIk,j,Al + co*x[k-2,j,i] + c3* (x[k-1,j+1,1] + x[k-1,j-1,i] + x[k-1,j,i+1] + x[k-1,j,i-11)) / d;
Note: There must be % = 1, namely ¢y + ¢1 + ¢2 + 4 * ¢3 = dj in all of the equations above.

Algorithm 2. Code Segment of 2-D State Reconstruction

X-axis original code in 2-D state reconstruction step

1 qL[0] = (co*x[jil + c1*x[j,i-1] + eo*x[ji+1] + es*(x[j+1,i] + x[j-1,i])) / do;

2: ¢R[0] = (co*x[jAl + cr*xIj,i+1] + co*xj,i-1] + e3*(x[j+1,4] + x[j-1,iD) / do;

30 qR[1] = (eo*x[i+1] + er*x[j1] + eo*x[,i+2] + eg*(x[j+1,i+1] + x[j-1,i+11)) / do;

4: L[] = (co*xIj,i-11 + e *x[j 1] + eo*xlj,i-2] + c5* (x[j+1,i-1] + x[j-1,i-11)) / dy;

Note: There must be W = 1, namely ¢y + ¢; + ¢2 + 4 x ¢3 = dj in all of the equations above.

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

Original Algorithm
Step1: Calculate qL[0]

SMEM Algorithm
Step1: Calculate sh_LOR1 (One extra element)

2795

Register Shuffle Algorithm
Step1l: Calculate qL[0] (One extra element)

Step2: Calculate qR[1]

Step2: Pass the value to qL[0] and gR[1]

Step2: Pass the value to qR[1]

Fig. 4. An explicit cache mechanism. By employing shared memory or registers as data depot, both the global memory access and computations are
saved. However, since there is a one-element offset between qL[0] and gR[1], one extra element in boundary should be calculated.

the hardware-based tuning techniques as the first-round
optimization and then employs tuning methods indicated
in this part as comparison, would be demonstrated in
Sections 5.3 and 6 so as to indicate the effectiveness of tun-
ing techniques presented in this section. In addition, due to
the similarity of code segments of 2-D and 3-D module,
here we only take Algorithm 2 as an example, and the same
approach could be directly deployed in similar kernels of
both the two algorithms.

This section includes the basic optimizing idea and trade-
offs of on-chip resources as well as the different organization
methods of GPU threads. The contents of this section could
be summarized as follows: 1) Identifying the optimizing
potential of FVM algorithmic features on modern GPU plat-
forms, proposing basic ideas of algorithmic modification.
2) Presenting a customizable data caching mechanism to find
out the best data depot for intermediate data, so as to cut
both the calculation and the memory access by half (or even
75 percent after step 3). 3) Recognizing the optimal global
memory loading strategy to further eliminate unnecessary
global memory access and increase its accessing speed.
4) Adopting inner-thread rescheduling to balance the com-
putation time of each thread and the effective thread number.
According to the experimental results of the five kinds of
mainstream GPU platforms, compared with the performance
of GPU base version, while adopting the hardware-oriented
optimizations has already achieved 3-6 times performance
speedup on different platforms for both Euler and SWE
solver, an additional 62 to 102 percent (or 9 to 36 percent)
performance benefit is able to be achieved for the Euler solver
(or SWE solver) by properly use the hardware-software co-
design methods presented in this section.

4.1 Observation of Algorithmic Feature

Global memory access in GPU is an expensive operation
which could stall the execution pipeline for a long time. Pro-
grammers have every reason to minimize global read and
write by adopting on-chip memory access on GPU, since
access latency of on-chip memory is usually two orders of
magnitude lower than that of global memory [30].

By analyzing the physical features of FVM as well as the
code segment shown in Algorithm 2, elements used in the
calculation of qR[1] are only one step forward of qL[0]. In
other words, the value of qR[1] of mesh point (j,i) is abso-
lutely the same with the value of qL[0] of point (j,i+1), as indi-
cated in Fig. 3. However, this feature is not being used on
CPU-based FVM solvers since CPUs are equipped with huge
amount of cache spaces and the related data would be stored
in cache automatically thus to minimize global memory
access. In this case, each mesh element (such as point (j,i) and

point (j,i+1)) need to calculate all the four values indepen-
dently, and do not interconnect with other elements. How-
ever, since the on-chip memory space is very limited on GPU
devices, data used in the calculation can not be fully loaded
into fast memory spaces. As a result, the long latency global
memory access will occur which would remarkably hit the
performance of the FVM solver.

To fully take advantage of the algorithmic feature indi-
cated above, if there is a proper data depot which could be
used to store the computational results of qL[0] for each
mesh element, we could load qR[1] for these mesh elements
from the depot when we need their values, rather than
recalculate them as before. In this case, we could minimize
the global memory access of the state reconstruction step
and reduce the computational overhead at the same time,
which is exactly what we need on GPU devices.

4.2 Customizable Data Caching Depot

To find a suitable data depot on GPU devices, first we should
identify the requirements. First of all, since each thread needs
to load the value calculated by its neighbors (as shown in
Figs. 4 and 7), the depot should be shared by a group of
threads, and the more threads could access the buffer, the
fewer depots are needed, resulting in less boundary process-
ing overhead. In addition, the access speed of the data depot
should be much faster than that of the global memory, thus
memory-latency would not become the stall reason for the
whole program.

Among the memory hierarchy of GPU, shared memory
(SMEM) meets all these features well. All threads inside one
thread-block could access the SMEM with a very low mem-
ory latency, making SMEM a perfect choice of being the data
depot. By employing shared memory, all threads inside one
thread-block write their own qL[0] into shared memory at
time ¢ and load the value from shared memory into qR[1] at
time step ¢ + 1 with a one-element offset, as shown in the
middle of Fig. 4.

According to the conservation law, there are four groups
of components could adopt the offset feature in 2-D FVM
solver (and five groups for 3-D cases). Thus, there are two
considerable choices about how to adopt shared memory as
data depot. Take the 2-D case as an example, we could either
adopt one group of shared memory as a reusable data depot,
and move the computational results into registers after each
round of computation (choice 1 of Fig. 5), or employ 4 groups
of shared memory to store data arrays of each component
(choice 2 of Fig. 5).

Compared with the original program without adopting
the data cache mechanism, by employing 4 groups of SMEM,
around 50 percent (75 percent after adopting method

2796
(Choice 1 Choice 2)
Load into c1_qw
Compute q_h Compute q_h
Step1: | storesin SMEM_1 Lowd TifoeT. Stores in SMEM_1
Load into c2_qw
Compute q_hu Compute q_hu
Step2: | storesin SMEM_1 Stores in SMEM_2
Load into c2_ge
Load into c3_qw
Step3:| _Compute q_hv < Compute q_hv
Stores in SMEM_1 Stores in SMEM_3
Load into c3_ge -
Stepd: Compute q_b Load into c4_qw Compute q_b
ps: Stores in SMEM_1 Stores in SMEM_4

Load into c4_qge

Fig. 5. Two choices of taking advantage of shared memory inside each
streaming multiprocessor.

presented in Section 4.3) global reads of the input array could
be saved in each round of state reconstruction step, at the
cost of using 17KB SMEM for each 256-thread block and add-
ing one more __synchthreads() after the whole step. On the
other hand, if we adopt SMEM as a reusable data depot as
shown in choice 2, to reduce 50 percent (75 percent after
adopting method presented in Section 4.3) global reads of
array X, 5 KB SMEM space, 32 more 64-bit register files, 4
__synchthreads() and more loading steps are needed inside
each thread.

Besides adopting SMEM as data depot, aiming at effi-
ciently executing some commonly-used computational pat-
terns such as reduction, a new instruction set called register
shuffle was introduced with the advent of Kepler GPUs. This
technique enables a thread to directly read a register from
another thread in the same warp without going through
shared (or global) memory, and this function exactly meet
our demand of data depot. Thus, we could also implement
the algorithm adjustment indicated above by using register
shuffle, as demonstrated in Part 3 of Algorithm 3.

Compared with the shared-memory based implementa-
tion, register shuffle has lower latency than shared memory
access and does not consume shared memory space for data
exchange, so this can present an attractive way for applica-
tions to rapidly interchange data among threads [31]. How-
ever, more register files are needed when we employ register
shuffle, which may decrease the GPU kernel occupancy and
hit the performance when huge number of register files have
been already adopted in the program.

Specifically, in the case of the FVM solver, compared with
the first choice of the SMEM, we could figure out that while
same percentage of memory access and computation are
saved, the register shuffle method employs the same number
of registers but no shared memory is involved. Thus, we
could affirm that register shuffle must be better than the
choice 1 of shared memory. However, when compared with
the SMEM choice 2, different kinds of resources are adopted.
Thus, though both ways could take advantage of the algo-
rithmic features and result in a better performance compared
with the original algorithm, a set of experiments should be
taken to identify the best strategy for specific applications on
certain platforms.

4.3 Optimal Global Memory Loading Strategy
Through the optimization steps mentioned above, we have
reduced the amount of calculation by half and alleviated

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

(qL[o]) aR[1]
([| [| A
HR HE
SO EECCO0
0 HR HE
m m m C . . J
OO0OO0OO ; .
Oom u N
o HE]
qL[0], aL[1] SO E OO0 E|
qRI0], qR[1] HCH]
L [| [|)
___ 9RI0] J qlL[1]

[Mesh elements which would not be accessed during the step

\ Mesh elements that would be used during the computational step

Fig. 6. Yellow points are mesh elements needed to be accessed for get-
ting corresponding state variables. To minimize the total number of
points that need to be accessed, qL[0] and gR[0] are chosen among the
four choices, since in this case only five elements are needed.

the pressure of global-memory access to some extent. We
could further reduce global-memory access by choosing the
optimal element pattern to compute.

In order to provide a clear description, here we introduce
the term ‘element pair’ to describe relationships between qL
[0] and gR[1]. Originally, there are two ‘element pair’ need to
be calculated for each thread, i.e., qL[0], qR[1] and qL[1], qR
[0]. By adopting the suitable data depot (SMEM or Register),
inside each element pair, only one element needs to be calcu-
lated for each thread, as shown in Fig. 6. Among the four
choices, we should choose qL[0] and qR[0] as computational
patterns that need to be solved, since in this case only five
mesh elements are needed, rather than access 11 mesh ele-
ments originally.

In addition, since mesh elements employed in the calcula-
tion of qL[0] are the same of qR[0], we employ static variables
to avoid redundant memory access so as to take benefits
from their locality, as shown in Part 1 of Algorithm 3.
Besides, since division is an expensive operation for GPU,
and all of the coefficients (cy, c1, ¢o, c3 and dy) we need in the
whole step are fixed, the division operation could be done
outside of the FVM solver. In the following steps, we could
directly employ the calculation results of the reconstruction
step, as r; to r, shown in Part 2 and 3 of Algorithm 3.

Moreover, to achieve the best performance in the y-axis
(and z-axis in the 3D case), once the thread-block size is set-
tled, the following two principles should be adopted: (1)
ensuring the number of threads on the z-axis is a multiple
of 16, in consideration of ‘warp execution’ of the GPU pro-
cessor. (2) making the number of threads along the ‘acting
dimension’ as large as possible. For instance, in a 3-D FVM
solver whose thread-block size is 256, if the kernel is acting
on the y-axis, a (16,16,1) thread-block would be chosen so
that we could achieve the best performance.

4.4 Inner Thread Rescheduling Tradeoff

Though a significant performance boost could be achieved
up to now, we should notice that the real case is not as sim-
ple as described above. Since there is an one-element offset
between qL[0] and qR[1], we need to load the halo part

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS 2797

|<— threadDim.x + 2*halo —-l

(&= Per Stencil S P

T ‘ ‘ Boundary Precedmg Element Halo
. — Threads Folloving Tasis
g Effective
9 Area i >
E Other Waiting Following Tasks
l Thl’eads asks rocessing
[To|Te|T2]T3] [T30[T31] .
1 l l (&= Per Stencil Sweep —————————>
T P
5 Threads Tasks :
g Effective
=4
b i i Threads L

|¢——— threadDimx —|

Fig. 7. By adopting halo threads, all threads are liberated from waiting at the cost of wasting the computational ability of halo threads in the following
steps (Riemann solver step in our case) This method could be extremely useful for stencil computation with small halos.

(yellow area of Fig. 4) into shared memory (or register files).
However, since the thread number is the same as the array
size, some threads have to focus on both their own compu-
tations and the halo processing (as shown in the top of
Fig. 7). This approach will lead to the workload imbalance
between different threads within each warp.

Algorithm 3. Optimized State Reconstruction Step

Part 1: Avoid Redundant Memory Access

1: t_curr = x[jil;

2: tleft =xl[ji-11;

3: trigt = x[ji+1];

4: trest = x[j+1i] + x[j-1,i];
Part 2: Shared-Memory Implementation
sh_LOR1[j,i] = r*t_curr + ry*t_left + r3*t_rigt + r4*t_rest;
: sh_ROL1[ji] = ri*t_curr + ro*t_rigt + r3*t_left + r,*t_rest;
__syncthreads();
: ¢L[0] = sh_LOR1[j,il;
¢ ¢R[1] = sh_LOR1[j,i+1];
: ¢R[0] = sh_ROL1[jil;
: qL[1] = sh_ROL1[j,i-1];

__syncthreads();

rt 3: Register Shuffle Implementation

qL[0] = ri*t_curr + ro*t_left + r3*t_rigt + r4*t_rest;
: qR[0] = ri*t_curr + ro*t_rigt + r3*t_left + r4*t_rest;
__syncthreads();

Qm%wwfm@w¢m%wwf

: qL[1] = __shfl up(qRI[0], 1, 32);
: qR[1] = __shfl down(qL[0], 1, 32);
__syncthreads();

For instance, suppose two dimensions of our thread-block
are 8, 32 respectively on the y-axis and z-axis, an array of 8*
(32+1) needs to be created in order to handle the one-element
offset of each element pair, which would result in branching
statements inside or outside the warp. As a result, while
some threads focus on boundary processing, the others have
to wait due to the synchronization. According to the experi-
mental results on five GPU platforms, such wait time could
take 21-29 percent of the overall time (namely nearly half of
the time consumption of the whole state reconstruction step),

which is very expensive. The whole process could be demon-
strated as Algorithm 4.

Algorithm 4. Code Segment before Thread Rescheduling

Inside each GPU Kernel
1: int j = blockDim.y * blockldx.y + threadldx.y + WIDTH;
2: inti = blockDim.x * blockldx.x + threadIdx.x + WIDTH;
3: Preceding tasks

5: Shared-memory computation (or register shuffle);
6: if threadld < halo_width
7 left-halo element computation;
8: else if threadld > (blockDim.x — halo_width)
9: right-halo element computation;
10: end if
11: __synchronous()
12: ========= State Reconstruction End ========
13: Following tasks

To avoid divergence in Algorithm 4, one choice for us is to
set some threads as ‘halo threads’ that specifically take
charge of boundary processing, as shown in Fig. 7. These
halo threads do exactly the same work as other threads do
before the element processing step and keep idle afterwards.
By adopting these halo threads, we could eliminate the
branch statements (line 6 to line 10) in Algorithm 4.

The new algorithm and its workflow are summarized as
Algorithm 5 and Fig. 7 respectively. Compared with the origi-
nal algorithm, we suppose each thread need to spend ¢; and
to to deal with the two times of State ReconstructionStep and
the one step of Followingtasks shown in Algorithm 4 respec-
tively. To finish the computation of one time step, without
applying this inner-thread rescheduling method, each warp
(32-thread) need to spend T =t; + t5 to finish the whole task.
After adopting the new technique, T} = 5—32— * (4 +) are
needed. After simplifying the equation, we could find out 7 -
Ty = 7577 [(8 — halo) * t; — halo x to]. If this number is posi-
tive, it means the original algorithm takes more time than the
new program does, which indicates that the new algorithm
(adopting inner-thread rescheduling method) is better.

2798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019
TABLE 2

Key Architectural Parameters of the Evaluated Platforms
Description Fermi C2070 Tesla K40 Tesla K80! Tesla P100 Tesla V100>
Chip GF100 GK110 2*GK210 GP100 GV100
TPCs 16 15 215 28 40
SMs 16 15 215 56 80
FP64/SM 16 64 264 32 32
FP64 / GPU 256 960 27960 1792 2560
Clock Rate (base/boost) 1150 MHz 745 MHz /875 MHz 562 MHz /875 MHz 1328 MHz/1480 MHz Unknown /1370 MHz
Peak FP64 Perf (TFlops) 0.51 1.68 291 5.3 7.0 (V100 for PCle)
Memory Interface DDR5 DDR5 DDR5 HBM2 HBM2
GMEM Size 6 GB 12 GB 2"12 GB 16 GB 16 GB
Bandwidth 144 GB/s 288 GB/s 27240 GB/s 732 GB/s 900 GB/s
L2 Cache 768 KB 1536 KB 2*1536 KB 4096 KB 6144 KB
SMEMSize/ SM (KB) 16/32/48 16/32/48 80/96/112 64 Up to 96
Register Size /SM (KB) 128 256 512 256 256
Register Size /GPU (KB) 1920 3840 2"7680 14336 20480
Inter connect PCle 2.0 PCle 3.0 PCle 3.0 PCle 3.0 + NVLink PClIe 3.0 + NVLink
ARCH-FBR® 3.58 5.83 6.06 7.24 7.96

1 Though each GK210 contains 15 SMs, due to the power limitation, Tesla K80 could only start 2*13 SMs at the same time.

2 The Tesla V100 GPU adopt here is Tesla VI0O for PCle.
3 Architectural Flop to Byte Ratio equals to Peak Performance | Bandwidth.

This inner-thread rescheduling method could be widely
used in GPU solvers aiming at optimizing stencil computa-
tions employed register shuffle or shared memory, and
according to the conclusion indicated above, this technique
would be extremely effectual when the halo area is small.
Still take Algorithm 2 as an example, in this case the halo
equals one and the value of ¢; is around 2 times of that of ¢,.
Thus, Ty - T = % x (Txt; —tg) = % * 19, it is definitely a posi-
tive number. Thus, we could declare that the new algorithm
which adopts inner-thread rescheduling method is better
then the original one, and experimental results shown in
Section 6 proves our judgement.

Algorithm 5. Code Segment after Thread Rescheduling

Inside each GPU Kernel
1: int j = blockDim.y * blockldx.y + threadldx.y + WIDTH;
2: inti = (blockDim.x-2) * blockldx.x + threadldx.x + WIDTH;
3: Preceding tasks

5: Shared-memory computation (or register shuffle);
6: __synchronous()

8: if ((threadldz.x > = halo_width) && (threadldr.x <
blockDim.x — halo_width))
9: Following tasks
10: end if

5 TESTBED AND APPLICATIONS

In order to make the evaluation of customized FVM tuning
techniques presented in this paper (Section 4) more fair and
convincing, the main way to highlight the effectiveness of
the tuning methods is to compare the performance of the
same generation GPU before and after using the optimiza-
tion methods, and the CPU performance is mainly adopted
as a standard unit to indicate the performance relationship
between different GPUs. Therefore, in this section we first
provide a brief introduction of the four generations (Fermi,
Kepler, Pascal and Volta) of GPU platforms as well as

the target atmospheric simulation programs. Then, a set of
GPU-based general-used hardware optimization methods
are adopted to the two test applications so as to provide a
hardware-optimized performance as the baseline in future
comparison (while only the general CPU optimization meth-
ods such as MPI, OpenMP, compiler-based optimization and
SIMD are used as it is not the key point of this work). Finally,
summarization and performance metrics are provided to
prepare for the performance evaluation and analysis shown
in the next section.

5.1 Evaluated Platforms

To provide a full scale analysis of the optimization methods,
in this work we measure the performance of the optimized
code on 5 kinds of mainstream GPU devices which are
widely used to accelerate scientific applications nowadays,
including Fermi C2070, Tesla K40, Tesla K80, Tesla P100
and Tesla V100. Table 2 demonstrates the key architec-
tural parameters of these platforms, in which only double-
precision related features are listed.

Though the Fermi GPU is released in 2009 and quite out-
of-date, it is one of the most successful template of modern
GPUs and is still equipped in many Top500 supercomputers
such as Tianhe-1A [32] and Nebulae [33]. As a great innova-
tion compared with previous GPU platforms, many efficient
designs are first adopted in Fermi architecture, resulting in a
remarkable performance boost in some cases compared to
general-purpose CPUs. When it comes to Kepler GPUs, to
achieve higher performance, additional execution and mem-
ory resources (more CUDA cores, registers and caches) are
employed. Such feature significantly increases the perfor-
mance of Kepler GPUs when compared to Fermi. In Tesla
K80, Nvidia further doubled the on-chip memory spaces of
each computational chip. That is of vital importance for
latency-bound programs such as FVM-based solvers. There-
fore, among four kinds of Kepler GPUs we select K40 and
K80 as test platforms in this work.

While Maxwell GPUs are not good at dealing with dou-
ble precision scientific applications, Tesla Pascal and Volta
architectures enable the extreme performance for both

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

Xi+1,j+1

Xi i1 4,J+1 i+1,5+1
Cij Tijk
Xij Xi,j Xit1,j

Xit1,5

Fig. 8. A coordinate transform between the physical mesh and the
computational mesh.

scientific programs and deep learning applications. The key
innovations of Tesla P100 and V100 includes: 1) Extreme
performance of its computational chip (GP100 and GV100)
2) Fast global memory interface (HBM2) 3) High speed
interconnect (NVLink) 4) Deep learning oriented features
and architectures (such as tensor cores inside GV100). Due
to the extreme performance potential and balanced ability
for both scientific applications and deep learning tasks,
Tesla P100 and V100 are chosen as the accelerator processor
for huge number of top supercomputers of Green500 [37]
and even upcoming fastest supercomputers (such as Sum-
mit [35] and Sierra [36]). Since this work mainly focuses on
the algorithmic optimization within computational chips of
GPU, we will only pay attention to the scientific-applica-
tion-relative innovations within GP100 and GV100. Such
differences are summarized as follows:

First of all, compared with computational chips of previ-
ous GPU architectures, GP100 and GV100 adopt new high-
performance manufacturing processes (16 and 12 nm FinFET,
compared with 28 nm for Kepler and Maxwell) thus to pro-
vide better power efficiency. As a result, with similar power
consumption, each GP100 (or GV100) is equipped with more
computational units (namely FP64/FP32 cores) and has
higher clock rate when comparing with previous generation
GPU chips such as GM200 and GK110. Therefore, when we
move our program from previous GPU platforms onto Tesla
P100 or V100, in most cases remarkable performance benefit
can be achieved even without the modification of the code.

Second, the SM architecture within P100 and V100 are
redesigned to provide extreme performance for both Al
and scientific applications. 1) In the view of on-chip me-
mory (L1 cache, SMEM and register files), the ratio of its
capacity to computational unit (FP64 cores) keeps increasing
from version to version, such feature matches the increa-
sing fast memory demand for modern complex applications.
2) Though the global memory access speed and L2 cache size
are remarkably higher than previous GPUs, the growth rate
of such features is lower than that of computational units.
Combining these two features, sophisticated manual designs
are required so as to fully take advantage of the fast memory
spaces on P100 and V100. 3) Some new attempts are made to
explore the optimal design of modern GPUs, such as the
combination mode between L1 cache and shared memory,
the execution strategy of INT32 and FP64, and the new
thread scheduling mechanism. Under the circumstances,
specialized tuning is required thus to fully unleash the per-
formance potential of new GPU architectures.

5.2 Atmospheric Simulation Applications
3D Euler equations and 2D shallow water equations
(SWE) are two most essential dynamic components for

2799

non-hydrostatic atmospheric modeling. Compared with
physical schemes such as WSM5 in WREF [38] and the short-
wave radiation parameterization in CAM [39], dynamic
core is inherently more difficult to achieve performance
benefits from heterogeneous platforms. Investigating the
performance potential of these two atmospheric equation
solvers is of vital importance in terms of improving the
overall performance of atmospheric model based on hetero-
geneous platforms.

In this part we take the 3-D compressible Euler equation
as an example ([11], [25], [27]), the equation could be written
as

9Q F oG
0@ OF 06 sy,

ot dr 0z ©

We define a nonsingular mapping M as #; — x;; fori=0,
1...n1andj=0,1,...ny denote Cj; as a mesb cell formed
by mesh pOil’ltS Lijy Lit+1,55 Tit1,j+15 Tij+1 and C[j as a mesh
cell formed by mesh points @, ;11 j, i41 j+1, Zij+1 as shown
in Fig. 8.

By adopting cell-centered finite volume scheme, we
could define the approximate solution at time f as

1
Q) =1 L Q. @

wherei=0,1,...,n1 —1,7=0,1,...,no — 1. Then we have
3Qi;(t) 1
+ (F(Q(z,t))ne + G(Q(w,1))n.)ds
|Gyl Jac, (®)

+ Si(t) =0,

where (nm,nZ)T is the unit outward normal of 3Cj;. The
boundary of C;; should be further decomposed into four
segments, ie., 9C;; =U}_ [, in order to evaluate the
numerical fluxes of F and G. On I';j, we denote the unit out-
ward normal vector as n = (n,,n.)" and correspondingly
the unit tangent vector as t = (—n., n,)T As a result, a new
Cartesian coordinate could be formed by vector n and .
Based on the new Cartesian coordinates, given a state vari-
able Q, we could express it as ¢ = Tj;QQ where T}, = diag
{1, L”]” 1} and Lg;k = (n, 7.').

Based on the new Cartesian coordinates, the second term
in Equation (8) becomes

| (PG 0)ns+ 6@).)ds

_ 9
:szlg ©

/ F(TQ(x, 1))ds

Tijk

~ Ty Uil F(q(wiji, 1))

The numerical flux F'(q(x;j, t)) in Equation (9) is then esti-
mated by employing a Riemann solver together with state
reconstruction step. On heterogeneous platforms, in order to
achieve a balanced task division between host and device,
there are several intra-node partition methods available for
us, such as process-level partition ([40], [41]), function-parti-
tion ([42], [43]) and so on. Among these choices, we choice
the adjustable inner-outer partition method as indicated in
[11]. The hybrid domain decomposition algorithm and the

2800

computational structures of these two stencils are shown
below (Algorithm 6 and Fig. 11).

Algorithm 6. CPU-GPU Hybrid Euler Algorithm

1: CPU Begin
2: Data Initialization for CPU(x,xs,xs1,xs2,xs3 and f)
3: Data Initialization for GPU(inputx,inputxs,and so on)
4: for (k,7,1) < (0,0,0) to (nzl,nyl,nzl) do
5: if(k, j, 1) e Boundary then;
6: Halo Updating and Boundary Process
7 end if
8: else
9: ============GPU Begin============
10: Calculate Coordinate
11: Calculate Fluxes{
12: State Reconstruction
13: Riemann Solver}
14: Compute Source Terms
15: ============GPU End=============
16: end else
17: end for
18: CPU End

5.3 Hardware Based Optimizations

As indicated in Section 1, there are three main challenges we
need to face when we optimize the two programs on hetero-
geneous CPU-GPU platforms, as most dynamic parts do in
atmospheric models: 1) low data communication bandwidth
between CPU and GPU; 2) low Flop-to-Byte ratio of the state
reconstruction step; 3) low IPC (instruction per cycle) caused
by the long-latency operations within the Riemann solver
step. To make things worse, since there is execution depen-
dency between the state reconstruction step and the Riemann
solver step, we need to accelerate both parts so as to achieve
extreme performance. In order to solve the above challenges,
taking the 3D Euler solver as an example, the general
used GPU-based hardware optimization methods could be
summarized as follows:

5.3.1 Minimizing Access Latency of Global Memory

1. L1/Shared Memory Confiquration. Based on the memory
hierarchy of GPU platform, the first level cache, whose total
space is fixed, can be configured as two types of cache-like
memories: the L1 cache and shared memory (SMEM). For
high dimensional complex stencil computations, general
shared memory usage may lead to a performance drop [45].
This conclusion is approved by the experimental results
when we applying the general used 3-D and 2.5-D [14]
shared memory buffering method to our Euler solver. To
take full use of on-chip memory spaces of GPU, we maximize
the L1l-cache space by employing ‘preferL1” option in our
Euler solver, at the cost of minimize the space of shared
memory. At the same time, since L1 cache is no longer used
for DRAM load caching by default since Kepler GPUs, to
eliminate the disadvantages caused by this feature, on some
GPU platforms (such as Tesla K40 or K80) we could employ
-Xptxas -dlcm=ca’ flag to take the Fermi style caching of
both global and local loads [44].

2. Coalesced Access. In all kinds of GPU platforms men-
tioned in this work, global memory access within one warp

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

can be coalesced into one memory transaction, as long as
the data is continuously accessed. In the original code of
Euler solver, array of structure (AoS) is adopted for data
storage in order to facilitate the code implementation. How-
ever, the access of this kind of data structure is not able to
be coalesced, which would greatly increase the memory
access latency on GPU platform.

To achieve coalesced access of global memory, we refor-
mat the data structure on the GPU side from Array of Struc-
ture (AoS) to Structure of Array (SoA). According to the
profiling result shown by nvvp (NVIDIA Visual Profiler),
both global memory access speed and L1 global hit rate are
increased by adopting this approach, resulting in more than
30 percent performance boost.

3. Read-Only Cache. Read-only data from global memory
could be loaded by Read-only cache in a relatively high band-
width compared with global memory accesses, cause it is a
separate cache line with special memory pipe and relaxed
memory coalescing rules. Read-only cache could be explicitly
employed by annotating arrays with the _ Idg intrinsic. In
our Euler solver, we put the un-coalesced read-only variables
into the read-only cache to improve the overall performance.

5.3.2 Tuning the Register Usage within Each Thread

Register usage of each thread is a key factor of the tradeoff
between memory latency and thread-level parallelism. Since
register is a limited resource that all threads residing on a
multiprocessor must share, if one thread uses too many regis-
ters, the number of active warps (namely, thread groups) that
can reside on a multiprocessor would be reduced, thus lower-
ing the occupancy of the multiprocessor.

In our Euler solver, 256 registers (which is the maximum
number in Tesla GPUs) are needed in each thread by
default. Accordingly, the occupancy of our program is less
than 25 percent, which significantly reduces the thread con-
currency. To determine the optimum balance of register
usage and occupancy, we write a script to find out the SM-
level optimal register size within each thread respectively in
different kinds of GPUs.

5.3.3 Kernel Splitting and Streaming Concurrency

Kernel splitting is another optimizing options for applica-
tions stalled by execution dependency, as it can decrease the
usage of local memory and achieve higher occupancy and
cache hit rate of the kernel. According to the algorithm of
Euler solver, computations along three different dimensions
are independent with each other. Thus, we split the kernel
into 3 parts to further reduce register usage of each kernel, at
the cost of subtle increase of memory transactions. Accord-
ing to the experimental results, a more than 15 percent per-
formance benefits could be achieved via this approach.

Concurrent kernel execution could partially overlap the
kernel execution with the data transfers. As the stencil com-
putations along the three dimensions are independent, we
employ different streams to deal with these three kernels to
achieve a further speedup.

5.4 Summarize and Performance Metrics

To fully explore the performance of these programs on mod-
ern GPUs, the two dynamic cores are rigorously optimized

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

[11:12-core cPU [5: Register Adjust
[]2:GPU Base B 5: Kernel Splitting 450

500

2801

900 1600

_
wn
E‘ B 800 o 1400 =
& []3:SMEM/LL I 7: Other Opt 400 ! 700 P10 i
~. [4: A0S ->SoA [__la: Fully Opt Version 350 ! 600 i i
R
= i I 1000
= 50 250 o ! 500 ! i
= 250 i ! 800 !
< 40 200 = ! 400 i i
] r i 200 i) | 600 i
£ 0 ey 190 | i 300 i =
£ 20 T (N i 0 i 400 H
= :] 00 = : 100 = 200 = =
S 10 |— ™ ’——‘I 1! 50 III 1 - H 100 1 200 0
— [l] = 1 : 5 ﬂ i 0 H L
E o Ll i | [——— L, o L_, o] i
12345678 12345678 12345 8 12345678 1234567
Fermi C2070 Tesla K40 Tesla K80 Tesla PlOO Tesla V100

Fig. 9. Euler performance tuning by employing tuning techniques based on five kinds of GPU platforms. Mesh size: 484*232*116. Bar 7 indicates the
best hardware optimized version, and Bar 8 shows the optimal performance result after adopting tuning techniques indicated in Section 4.

[J1:12-core cPU [5: Register Adjust

500

700 1600

m

2 [J2:GPUBase I 5: Kernel Splitting 450 - == 1400

- A 1 600 ! =
£ [Jasvewa1 EEMT: Other Opt 400 i P oo i

= I~ 50(
< []4:AoS ->SoA I is: Fully Opt Version 350 i S0 1 o0 i
= 300 i . i 0C f
= 11 a0 i i
S 80 200 - 250 E | E 800 i
g 60 - 190 LS i 300 i 600 i
g i1 10 i1 150 i1 20 i Ny i
= il R i i o i
= 2 11 50 i - { 100 i 200 H
<ol M RN - TR |
> 0 L] o M LJ o M1 L p M L 0 .— [
~ 12345678 12345678 12345678 12345 8 12345678
Fermi C2070 Tesla K40 Tesla K80 Tesla P100 Tesla V100

Fig. 10. SWE performance results by employing tuning techniques based on five kinds of GPU platforms. Mesh size: 1024*1024. Bar 7 indicates the
best hardware optimized version, and Bar 8 shows the optimal performance result after adopting tuning techniques indicated in Section 4.

by determining the best choice of preferring SMEM or L1 for
kernels that have data elements accessed by more than one
thread within a block (Bar 3 of Figs. 9 and 10), ensuring all
off-chip GMEM access are coalesced (Bar 4), maintaining
optimal occupancy to ensure enough active warps in flight
(Bar 5), employing read-only cache and kernel splitting to
improve memory accessing speed (Bar 6), reducing redun-
dant calculations by properly use of registers, and adopting
automatic adjustment programs to identify the optimal
parameters such as block size and thread number in each
dimension (Bar 7). As demonstrated in Figs. 9 and 10, by
adopting these hardware-based tuning methods, a 53.0 and
64.3 times speedup could be achieved on Tesla V100 over the
original 12-core CPU results based on Intel E5-2697 (v2) for
Euler and SWE respectively (Bar7 versus Barl), and the per-
formance of the optimized version is 3 to 6 times faster than
the GPU base version on different GPU platforms for both
Euler and SWE (Bar 7 versus Bar 2).

As for the evaluation of the performance, employing per-
formance as the metric of evaluating kernel efficiency is the

Fig. 11. Left: 2-D 13 points stencil in shallow water equations (SWE).
Right: 3-D 25 points stencil in Euler equation.

simplest option. However, the framework presented in this
paper is not designed to track the change of the computa-
tions. What we really care about is the number of mesh ele-
ments processed per second. A more effective method is to
use a simple model based on empirical measurement of the
number of points we could process (Points/s) and operation
numbers of the original kernel. According to the testing
results of the base version, the number of operations of
Euler and SWE are 1,588 and 839 respectively.

Furthermore, as the FVM solver is combined with the
memory-bound state reconstruction step and the computa-
tion-bound Riemann solver step with execution dependency
between them (detailed in Section 3.2), to the best of our
knowledge there is no existing performance model could
provide the accurate performance evaluation for such case.
For instance, the most commonly-used Roofline model [47]
is a good way to estimate the performance of memory-bound
or compute-bound programs (such as stencil, LBM, FFT,
CNN). However, to the best of our knowledge it cannot han-
dle the programs with both memory-bound and compute-
bound properties and execution dependency between the
two parts (such as WRF, CESM, COSMO, etc.), cause the
upper bound provided by such model will never be able to
even get close. Specifically, still take the Euler solver as an
example. If we insist on using the Roofline Model to measure
the performance of the program, for each grid element there
are 1,588 operations within each time step, and to finish the
computation of each time step, an averaged 40 input ele-
ments and 5 output elements are need to be accessed if fast-
memory buffer (such as shared-memory, L1-cache and read-
only cache) are properly used. As a result, the arithmetic

2802

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

DHW Optimized Version [CIMulti-SMEM Version [l Reg Shuffle Version [inner Thread Multi-SMEM [l Inner Thread Reg Shuffle

2 Euler Solver

n
o o
o o

Performance (Unit:

40 ~[THEN HHIII H III

Tesla K40 Tesla K80 Tesla P100 Tesla V100

1600

1400 SWE Solver
1200]
1000

800

600

400 I II

200

* ol | [Al
Tesla K40 Tesla K80 Tesla P100 Tesla V100

Fig. 12. Performance (GFlops) of the four kinds of optimized versions of Euler equations (Euler Solver) and shallow water equation (SWE Solver) on
four mainstream GPU platforms. Mesh size of Euler and SWE are 484*232*116 and 10241024 respectively.

intensity of the complete Euler solver is 1588/ (45*sizeof(dou-
ble)) = 4.41. However, as most of the data loading is needed
for the state reconstruction step, the arithmetic intensity of
state reconstruction step is only 240/(40*sizeof(double)) =
0.75, and during such state reconstruction step no other com-
putation operations could be executed. This will make our
estimation results have a huge gap with the actual situation.
Therefore, in this work we adopt the speedup of hardware
themselves and the time-to-solution as metrics to measure
the performance improvement, like most works do in the
field [48], [49].

6 PERFORMANCE EVALUATION AND ANALYSIS

Fig. 12 demonstrates the performance of Euler and SWE after
adopting different kinds of optimization strategies based on
four mainstream GPU platforms, from Kepler to Volta. (On
Fermi GPU, since register shuffle is not supported, we only
demonstrate the results of inner-thread SMEM strategy, as
shown in the Bar 8 of Figs. 9 and 10). In this section, we will
analyze these experimental results in the following two folds:
1) discuss why the best strategy varies among the four strate-
gies (select proper data depot and determine whether should
we use inner-thread rescheduling method, as indicated in
Section 4) with the program and platform changes, and how
to choose the optimal strategy accordingly. 2) compare the
optimal performance (after adopting the best choice of
Section 4) with the performance of hardware optimized ver-
sion, so as to provide a full-scale analysis for the optimization
methods in both the application side and the platform side.

TABLE 3
SWE and Euler Speedups after Employing the
Optimization Methods

Program 12-coreE5- Fermi Tesla Tesla Tesla Tesla

Version 2697 CPU C2070 K40 K80 P100 V100

Fggfma(')’f N 291x 550« 1568x | 343x 530x

Euler ofY) 202¢ 10.13x 3164x | 554x 939K
oSoby ‘ 0.69x 184x 202x 162x 177x
%a';?mal"f N 353 911x 18x | 289x 64.3x

SWE OE‘;'('gl) 310x 1132x 2442x | 322x 704
ey PR ‘ 0.88x 124x 136x 111x 1.09x

First we would like to discuss how to identify the optimal
choice among the four versions of optimized program. From
Fig. 12 we could figure out that inner thread rescheduling
method could benefit both SWE and Euler on all Kepler,
Pascal and Volta platforms, which indicates that for one-ele-
ment halo FVM programs, no matter complex or simple it
is, it is highly probable to get performance benefit by adopt-
ing the inner thread rescheduling method. This conclusion
is in perfect accordance with the calculation presented in
Section 4.4.

As for choosing the optimal data depot, for 3-D Euler solv-
ers employing multiple groups of shared memory would
come up with a better performance, while for the 2-D SWE
programs, adopting register shuffle would be a better choice
in most cases. Through further analysis we could find out
that within the complex Euler solver, huge number of regis-
ter files have already been used before we adopt register
shuffle, thus the register file rather than shared memory
becomes the determinant factor of the GPU kernel occu-
pancy. While in the 2-D SWE solver, less than 50 register files
are used before we adopt register shuffle, thus the adoption
of register shuffle will not have an immense impact on the
GPU kernel occupancy. These results indicate that a set of
experiments should be conducted in order to find out which
kind of memory space is the optimal data depot for specific
application kernels on certain platforms, but generally the
register shuffle method should be selected unless it would
significantly decrease the occupancy of GPU computational
kernels, as it happens in our complex 3-D Euler solver.

Following we will regard the four optimizing strategies
presented in Section 4 as a union (namely regard the best
result as the final-optimized performance, no matter which
of the four strategies it is), and analyze its effectiveness in
both program side and platform side. To make it more intui-
tive, Table 3 summarizes the performance comparison of the
CPU version, GPU hardware optimized version and GPU
fully optimized version (Bar 1, Bar 7 and Bar 8 of Figs. 9 and
10). In this table, while the HardwareOpt shown in Table 3
aims at solving the three challenges indicated in Section 5.3,
the Speedup brought by the tuning techniques presented in
Section 4 will only be related to memory access latency and
complex computation operations.

In aspect of different computational programs, the more
complex a program is (in other words, more mesh elements
stored out of GPU on-chip memory), the more benefits we
could get by using the optimization methods. In the Euler

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

based dynamic core, a 3-D 25-points stencil is employed in
each computational step following by the solving approach
of a complex 3-D Riemann solver. In such case, some local
variables are inevitable to be driven out to global memory
originally, leading to a significant speedup after adopting
the optimization methods. However, when it comes to the
2D shallow water equations, almost all mesh elements inside
the 13-points stencil have already been stored in register files
or L1 cache originally (and even half of the of-chip memory
are idle after adopting kernel splitting), as a result, employ-
ing the optimizations could only bring us a limited perfor-
mance enhancement. This feature also indicates that a larger
space of on-chip memory is of vital importance for modern
many-core accelerators.

In terms of various GPU platforms, our tuning techniques
come out with a poor speedup ratio on Fermi GPUs (even
less than 1) for both Euler and SWE. The reason is that on
Fermi GPUs, there is no enough on-chip memory resources
to perform as a data depot. Things become much better
when it comes to K40 platform, since the streaming multi-
processors of GK110 both increased the on-chip memory size
(within each SM) and the computation ability for complex
operations. In this case, adopt our tuning techniques would
have remarkable benefits for both memory access latency
and complex computation operations. As for Tesla K80, the
remarkable performance boost is mainly benefited from the
higher capacity of both shared memory and registers inside
each Texture/Processor Cluster (TPC). Such device adjust-
ment improves the occupancy of application, and leads
to a significant performance speedup. Similar results are
achieved on Tesla P100 and V100, however, the performance
benefit of the algorithm adjustment is not as good as before,
cause the hardware-based version has already taken great
benefits from the new architectural feature of GP100 and
GV100. As a result, the computation benefit brings by our
tuning methods would not be as significant as before. How-
ever, even in this case remarkable performance boost is still
able to be achieved (mainly due to the memory access benefit
bring by our tuning techniques), which fully proves the
effectiveness of the tuning techniques presented in this work.

To summarize, based on the experimental results of the
five kinds of mainstream GPU platforms, compared with the
performance of GPU base version, while adopting the hard-
ware-oriented optimization methods has already achieved
3-6 times performance speedup on different platforms for
both Euler and SWE solver, an additional 62 to 102 percent
performance benefit is able to be achieved for the Euler
solver by properly use the hardware-software co-design
methods presented in this work. Similar experimental results
are obtained for the optimization of the simpler 2D shallow
water equation solver, and 9 to 36 percent further perfor-
mance speedup is able to be achieved compared with the
hardware-optimized version.

7 CONCLUSION

Scientific HPC applications are increasingly ported to GPUs
to benefit from both the high throughput and the powerful
computing capacity. Many of these applications, such as
atmospheric modeling, room acoustics modeling and hydrau-
lic erosion simulation, are adopting the finite volume method

2803

as the solver algorithm. However, large amount of communi-
cations within these applications decrease the Flop-to-Byte
ratio of these applications, resulting in an insufficient resource
usage of GPU platforms.

In this paper, we formulate structured-mesh based FVM
tuning on GPU platforms as an optimization task, and
introduce a set of general optimization methods that pro-
vide a suitable mapping between the algorithmic property
of FVMs and the GPU hardware architecture. While the
explicit cache mechanism and the optimal global memory
loading strategy could cut the global memory transactions
by around 75 percent in the state reconstruction step, the
inner-thread rescheduling method is able to eliminate unnec-
essary wait within execution warps. To provide best optimi-
zation for different applications and platforms, four kinds of
tuning strategies are provided, and experimental results indi-
cate that applying these tuning methods could avoid execu-
tion stall of the explicit FVM-based solver to the most
extent.

To the end, we evaluate these optimization methods by
using two dynamic kernels of real-world atmospheric mod-
els, namely 3-D Euler and 2-D SWEs. According to the experi-
mental results on five kinds of mainstream GPU platforms,
the fully optimized programs upgrade the hardware utiliza-
tion and 93.9x speedup and 70.4x speedup is achieved for the
3-D Euler and 2-D SWE solver respectively on Nvidia V100
over one 12-core Intel E5-2697 (v2) CPU, which is a great
promotion compared with the original speedup without
adopting the tuning techniques presented in this work. By
comparing the results of different strategies as well as the per-
formance boost on both application and platform side, we
could claim that our generalized optimization methods are
able to achieve significant performance boost on all kinds of
Kepler, Pascal and Volta GPU platforms.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research & Development Plan of China (grant no.
2016YFA0602200, and 2017YFA0604500), by the National Nat-
ural Science Foundation of China (Grant No. 51761135015), by
the Basic Research Discipline Project of Shenzhen (Grant No.
JCYJ20180508152204044), by the Key Science & Technology
Laboratory Project of Shenzhen (Grant No. ZDSYS201
40509172959989) and by Center for High Performance Com-
puting and System Simulation, Pilot National Laboratory for
Marine Science and Technology (Qingdao).

REFERENCES

[1] E. W. Weisstein, “Finite volume method,” From MathWorld-A
Wolfram Web Resource. 2019. [Online]. Available: http://
mathworld.wolfram.com/FiniteVolumeMethod.html

C. Yang, W. Xue, H. Fu, et al.,, “10M-core scalable fully-implicit
solver for nonhydrostatic atmospheric dynamics,” in Proc.
Int. Conf. IEEE High Perform. Comput. Netw. Storage Anal., 2016,
pp- 57-68.

B. Hamilton and C. J. Webb, “Room acoustics modelling using
GPU-accelerated finite difference and finite volume methods on a
face-centered cubic grid,” in Proc. Digit. Audio Effects Workshop,
2013, pp. 336-343.

M. Long and D. He, “Hydraulic erosion simulation using finite
volume method on graphics processing unit,” in Proc. Int. Conf.
Inf. Eng. Comput. Sci., 2009, pp. 1-4.

[2]

[3]

[4]

http://mathworld.wolfram.com/FiniteVolumeMethod.html
http://mathworld.wolfram.com/FiniteVolumeMethod.html

2804

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.12, DECEMBER 2019

M. Boubekeur, F. Benkhaldoun, and M. Seaid, “GPU accelerated
finite volume methods for three-dimensional shallow water flows,”
in Proc. Int. Conf. Finite Volumes Complex Appl., 2017, pp. 137-144.

J. Xu, H. Fu, L. Gan, etal., “Generalized GPU acceleration for appli-
cations employing finite-volume methods,” in Proc. 16th IEEE/ACM
Int. Symp. Cluster Cloud Grid Comput., 2016, pp. 126-135.

A. Heinecke, A. Breuer, M. Bader, et al., “High order seismic sim-
ulations on the Intel Xeon Phi processor (knights landing),” in
Proc. Int. Conf. High Perform. Comput., 2016, pp. 343-362.

A. Breuer, A. Heinecke, and Y. Cui, “EDGE: Extreme scale fused
seismic simulations with the discontinuous Galerkin method,” in
Proc. Int. Supercomput. Conf., 2017, pp. 41-60.

L. Gan, H. Fu, O. Mencer, etal., “Chapter four-Data flow computing
in geoscience applications,” Advances Comput., vol. 104, pp. 125-158,
2017.

Z. Nagy, C. Nemes, A. Hiba, et al., “Accelerating unstructured
finite volume computations on fieldgate arrays,” Concurrency
Computation: Practice Experience, vol. 26, no. 3, pp. 615643, 2014.
C. Yang, W. Xue, H. Fu, et al., “A peta-scalable CPU-GPU algo-
rithm for global atmospheric simulations,” ACM SIGPLAN Noti-
ces, vol. 48, no. 8, pp. 1-12, 2013.

M.]. Castro, S. Ortega, M. De la Asuncion, et al., “GPU computing
for shallow water flow simulation based on finite volume schemes,”
Comptes Rendus Mcanique, vol. 339, no. 2/3, pp. 165-184, 2011.

ACM Gordon Bell Prize Organizing Committee Chinese Research
Team that Employs High Performance Computing to Understand
Weather Patterns Wins 2016 ACM Gordon Bell Prize. 2016. [Online].
Available: https://www.acm.org/media-center/2016/november/
gordon-bell-prize-2016

P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proc. 2nd Workshop Gen. Purpose Process. Graph. Process.
Units, 2009, pp. 79-84.

Y. Chen, X. Cui, and H. Mei, “Large-scale FFT on GPU clusters,”
in Proc. 24th ACM Int. Conf. Supercomput., 2010, pp. 315-324.

A. Magni, C. Dubach, and M. F. P. O’Boyle, “A large-scale
cross-architecture evaluation of thread-coarsening,” in Proc.
Int. Conf. IEEE High Perform. Comput. Netw. Storage Anal., 2013,
pp. 1-11.

S. W. Skillman, M. S. Warren, M. J. Turk, etal., “Dark sky simula-
tions: Early data release,” arXiv:1407.2600, 2014. [Online]. Avail-
able: https://core.ac.uk/display /25041440

M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-
bound GPU applications,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2014, pp. 191-202.

J. Langguth, N. Wu, J. Chai, et al., “Parallel performance model-
ing of irregular applications in cell-centered finite volume meth-
ods over unstructured tetrahedral meshes,” |. Parallel Distrib.
Comput., vol. 76, pp. 120-131, 2015.

J. Langguth and X. Cai, “Heterogeneous CPU-GPU computing for
the finite volume method on 3D unstructured meshes,” in Proc.
20th IEEE Int. Conf. Parallel Distrib. Syst., 2014, pp. 191-199.

Nvidia Tesla Kepler Tuning Guide. 2019. [Online]. Available:
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
E. Lindholm, J. Nickolls, S. Oberman, et al., “NVIDIA tesla: A uni-
fied graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39-55, Mar./Apr. 2008.

L. Gan, H. Fu, C. Yang, et al., “A highly-efficient and green data
flow engine for solving euler atmospheric equations,” in Proc.
24th Int. Conf. Field Programmable Logic Appl., 2014, pp. 1-6.

L. Gan, H. Fu, W. Luk, et al, “Solving the global atmos-
pheric equations through heterogeneous reconfigurable plat-
forms,” ACM Trans. Reconfigurable Technol. Syst., vol. 8, no. 2, 2015,
Art.no. 11.

C. Yang, J. Cao, and X. C. Cai, “A fully implicit domain decompo-
sition algorithm for shallow water equations on the cubed-
sphere,” SIAM |. Sci. Comput., vol. 32, no. 1, pp. 418438, 2010.

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynam-
ics. Berlin, Germany: Springer Verlag, 1999, isbn 3-540-65966-8.

C. Yang and X. C. Cai, “A scalable fully implicit compressible Euler
solver for mesoscale nonhydrostatic simulation of atmospheric
flows,” SIAM]. Sci. Comput., vol. 36, no. 5, pp. 523-547, 2014.

J. E. Fromm, “A method for reducing dispersion in convective
difference schemes,” J. Comput. Physics, vol. 3, no. 2, pp. 176-189,
1968.

B. P. Leonard, “A stable and accurate convective modelling proce-
dure based on quadratic upstream interpolation,” Comput. Meth-
ods Appl. Mech. Eng., vol. 19, no. 1, pp. 59-98, 1979.

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

Nvidia CUDA C Programming Guide. 2019. [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html

Nvidia Kepler Tuning Guide. 2019. [Online]. Available: http://
docs.nvidia.com/cuda/kepler-tuning-guide/index.html

X. J. Yang, X. K. Liao, K. Lu, et al., “The TianHe-1A supercom-
puter: Its hardware and software,” |. Comput. Sci. Technol., vol. 26,
no. 3, pp. 344-351, 2011.

N. H. Sun, J. Xing, Z. G. Huo, et al., “Dawning Nebulae: A Peta-
FLOPS supercomputer with a heterogeneous structure,” J. Com-
put. Sci. Technol., vol. 26, no. 3, pp. 352-362, 2011.

Nvidia Tesla Pascal Architecture Whitepaper. [Online]. Available:
http://images.nvidia.com/ content/ pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf

Oak Ridge National Laboratory. 2019. [Online]. Available:
https:/ /www.olcf.ornl.gov/summit/

Lawrence Livermore National Laboratory. 2016. [Online]. Avail-
able: https:/ /computation.llnl.gov/computers/sierra

Green 500 List of Nov. 2017. 2017. [Online]. Available: https://
www.top500.org/green500/lists /2017 /11/

J. Mielikainen, B. Huang, H. L. A. Huang, et al., “GPU accelera-
tion of the updated Goddard shortwave radiation scheme in
the weather research and forecasting (WRF) model,” IEEE].
Select. Topics Appl. Earth Observations Remote Sens., vol. 5, no. 2,
pp- 555-562, Apr. 2012.

R. Kelly, “GPU computing for atmospheric modeling,” Comput.
Sci. Eng., vol. 12, no. 4, pp. 26-33, 2010.

I. Demeshko, N. Maruyama, H. Tomita, et al., “Multi-GPU imple-
mentation of the NICAM atmospheric model,” in Proc. Eur. Conf.
Parallel Process., 2012, pp. 175-184.

T. Shimokawabe, T. Takaki, T. Endo, et al., “Peta-scale phase-field
simulation for dendritic solidification on the TSUBAME 2.0 super-
computer,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2011, pp. 1-11.

W. Xue, C. Yang, H. Fu, et al.,, “Enabling and scaling a global
shallow-water atmospheric model on Tianhe-2,” in Proc. IEEE
28th Int. Parallel Distrib. Process. Symp., 2014, pp. 745-754.

W. Xue, C. Yang, H. Fu, et al., “Ultra-scalable CPU-MIC accelera-
tion of mesoscale atmospheric modeling on Tianhe-2,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2382-2393, Aug. 2015.

Nvidia CUDA C Best Practices Guide. 2019. [Online]. Available:
https:/ /docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.
html

A. Nguyen, N. Satish, J. Chhugani, et al., “3.5-D blocking optimi-
zation for stencil computations on modern CPUs and GPUs,” in
Proc. ACM/IEEE Int. Conf. High Perform. Comput., 2010, pp. 1-13.

B. Hamilton, C. J. Webb, A. Gray, et al., “Large stencil operations
for GPU-based 3-D acoustics simulations,” in Proc. Int. Conf. Digit.
Audio Effects, 2015, pp. 292-299.

S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, pp. 65-76, 2009.

H. Fu, J. Liao, W. Xue, et al., “Refactoring and optimizing the com-
munity atmosphere model (CAM) on the sunway TaihuLight super-
computer,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., SC, 2016, pp. 969-980.

P. H. Worley, A. P. Craig, and J. M. Dennis, et al., “Performance of
the community earth system model,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2011, pp. 1-11.

Jingheng Xu received his PhD degree in the
Department of Computer Science and Technology
at Tsinghua University. His research interests
include the state-of-art of computing architectures
(such as Intel/IBM CPUs, Nvidia GPUs and Sunway
processors) as well as high performance computing
of scientific applications (such as atmospheric simu-
lation and seismic modeling). His research mainly
focuses on finding the best computing solutions
based on the combination of architecture, algorithm
and application. He has got the Chinese National
Scholarship for Graduate Students.

https://www.acm.org/media-center/2016/november/gordon-bell-prize-2016
https://www.acm.org/media-center/2016/november/gordon-bell-prize-2016
https://core.ac.uk/display/25041440
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.olcf.ornl.gov/summit/
https://computation.llnl.gov/computers/sierra
https://www.top500.org/green500/lists/2017/11/
https://www.top500.org/green500/lists/2017/11/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

XU ET AL.: OPTIMIZING FINITE VOLUME METHOD SOLVERS ON NVIDIA GPUS

Haohuan Fu received the PhD degree in comput-
ing from Imperial College London. He is a professor
with the Ministry of Education Key Laboratory for
Earth System Modeling, and the Department of
Earth System Science, Tsinghua University, and
the deputy director of the National Supercomputing
Center in Wuxi. His research interests include high-
performance computing in earth and environmental
sciences, computer architectures, performance
optimizations, and programming tools in parallel
computing. He has been awarded the ACM Gordon
Bell Prize (2016, 2017), Tsinghua-Inspur Computational Geosciences
Youth Talent Award (2015), and the most significant paper award by FPL
2015. He is a member of the IEEE.

Wayne Luk received the doctorate degree in
engineering and computing science from the Uni-
versity of Oxford. He is a professor of computer
engineering with Imperial College London and the
director of the EPSRC Centre for doctoral training
in High Performance Embedded and Distributed
Systems. His research focuses on theory and
practice of customizing hardware and software for
specific application domains, such as genomic
data analysis, climate modeling, and computa-
tional finance. He is a fellow of the Royal Academy
of Engineering, IEEE, and the British Computer
Society.

Lin Gan is an assistant professor in the Depart-
ment of Computer Science and Technology at
Tsinghua University, and the assistant director of
the National Supercomputing Center in Wuxi. His
research interests include HPC solutions based on
state-of-the-art platforms such as FPGAs, GPUs,
and Sunway processors. Gan has a PhD in com-
puter science from Tsinghua University. He is the
recipient of the 2016 ACM Gordon Bell Prize, the
2017 ACM Gordon Bell Prize Finalist, the 2018
IEEE-CS TCHPC Early Career Researchers
Award for Excellence in HPC, the 2015 IEEE FPL Most Significant Paper
Award in 25 Years, and the 2017 Tsinghua-Inspur Computational Earth
Science Young Researcher Award, etc. He is a member of IEEE.

Wen Shi is working toward the master’'s degree
at Tsinghua University. She is familiar with paral-
lel computer architecture and programming. Her
research interests include accelerating scientific
application on platforms such as POWER and
GPU, focusing on improving the performance of
kernel and the whole program.

2805

Wei Xue received the PhD degree in electrical engi-
neering from Tsinghua University. He is an associ-
ate professor with the Department of Computer
Science and Technology, Tsinghua University. His
research interests include scientific computing
and uncertainty quantification. He has received
the ACM Gordon Bell Prize (2016, 2017) and
the Tsinghua-Inspur Computational Geosciences
Youth Talent Award. He is a member of the IEEE.

Chao Yang is a professor at Peking University and
Peng Cheng Laboratory. He received his BS in
mathematics from University of Science and Tech-
nology of China in 2002 and earned his PhD from
Institute of Software, Chinese Academy Sciences
in 2007. His research interests include numerical
analysis and modeling, large-scale scientific com-
puting, and parallel numerical software. He has
received the 2016 ACM Gordon Bell Prize, the
2017 CAS Outstanding Science and Technology
Achievement Prize, and the 2017 CCF-IEEE CS
Young Computer Scientist Award. He is a member
of IEEE, ACM and SIAM.

Yong Jiang received the BS and PhD degrees in
computer science and technology from Tsinghua
University, Beijing, P.R. China, in 1998 and 2002,
respectively. In 2002, he joined the Graduate
School at Shenzhen, Tsinghua University, P.R.
China, and he is currently a professor with the
Department of Computer Science and Technology,
Tsinghua University, P.R. China. His research
interests include computer architecture, network
coding, and compressed sensing.

Conghui He received the BE degree in software
engineering from Sun Yat-sen University. He is
working toward the PhD degree in the Depart-
ment of Computer Science and Technology,
Tsinghua University. His research interests
include GPU and FPGA-based solutions to explo-
ration geophysics and financial applications,
focusing on algorithmic development and perfor-
mance optimizations.

Guangwen Yang received the PhD degree in
computer science from Tsinghua University. He is
a professor with the Department of Computer Sci-
ence and Technology, Tsinghua University, and
the director of the National Supercomputing Center
in Wuxi. His research interests include parallel
algorithms, cloud computing, and the earth system
model. He has been awarded the ACM Gordon
Bell Prize (2016, 2017). He is senior member of the
CCF and a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

