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Abstract—This paper presents SLATE, a fully-managed, het-
erogeneous Function-as-a-Service (FaaS) system for deploying
serverless functions onto heterogeneous cloud infrastructures.
We extend the traditional homogeneous FaaS execution model
to support heterogeneous functions, automating and abstract-
ing runtime management of heterogeneous compute resources
in order to improve cloud tenant accessibility to specialised,
accelerator resources, such as FPGAs and GPUs. In particular,
we focus on the mechanisms required for heterogeneous scaling
of deployed function instances to guarantee latency objectives
while minimising cost. We develop a simulator to validate and
evaluate our approach, considering case-study functions in three
application domains: machine learning, bio-informatics, and
physics. We incorporate empirically derived performance models
for each function implementation targeting a hardware platform
with combined computational capacity of 24 FPGAs and 12
CPU cores. Compared to homogeneous CPU and homogeneous
FPGA functions, simulation results achieve respectively a cost
improvement for non-uniform task traffic of up to 8.7 times and
1.7 times, while maintaining specified latency objectives.

I. INTRODUCTION

In the last decade, cloud computing has shaped the in-
formation technology landscape, with increasing numbers of
businesses and researchers offloading their computation needs
to cloud data centres to drastically reduce their operating
costs. Cloud IaaS (Infrastructure-as-a-Service) systems, such
as Amazon EC2 [1], provide on-demand virtual resources,
such as servers, routers and storage. Since physical resources
can be shared across different virtual instances, clients are
able to save costs and providers can maximise resource util-
isation. With IaaS, however, cloud tenants may still need to
load-balance their computing resources, and to dynamically
readjust allocated resources according to demand in order to
save costs. In contrast, PaaS (Platform-as-a-Service) systems
automate these efforts, managing provisioned resources subject
to allocation and scaling rules provided by tenants.

Recently, a new cloud model has emerged called FaaS
(Function-As-A-Service), which simplifies pricing, manage-
ment, and deployment over both PaaS and IaaS. FaaS is event-
driven, centred around requests for code execution (functions).
This code runs inside stateless containers, and can be triggered
by different event types such as web requests, database events,
queuing services, and monitoring alerts. With FaaS, clients
pay for each serviced request (Fig. 1(b)), offloading resource
allocation and balancing responsibilities to the provider. This
pricing model differs from IaaS and PaaS models, in which
tenants pay for allocated cloud resources for the period in
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Fig. 1. Comparison between (a) resource-oriented cloud models, (b) homo-
geneous FaaS, and (c) heterogeneous SLATE FaaS.

which they have them, regardless of whether they are used or
are idle (Fig. 1(a)). FaaS has found its place in major cloud
platforms (e.g. AWS Lambda [2], Microsoft Azure Func-
tions [3], and Google Cloud Functions [4]), supporting real-
time data processing (batch and stream processing), Internet
of things (IoT), and edge computing.

In this paper, we present SLATE (HeterogeneouS cLoud
mAnagement for FuncTion-as-a-service SystEms), a novel
heterogeneous FaaS approach (Fig. 1(c)) designed to leverage
heterogeneous cloud compute resources, such as CPUs and
FPGAs, in order to provide further performance and cost
benefits over traditional homogeneous FaaS approaches. SLATE
is designed for scenarios where functions have very different
computational requirements and latency (timing) objectives.
In particular, current FaaS offerings are limited to horizontal
scaling: users identify a single resource configuration to serve
any given request, and the system spawns replicas of the same
configuration unit according to demand. While this approach
is well-suited for web applications which scale uniformly
with one type of resource, it does not address performance
and pricing concerns when considering requests with different
computational requirements in domains such as High Perfor-
mance Computing (HPC) and Artificial Intelligence.



The main contributions of this paper are as follows:
1) The SLATE FaaS architecture and management mecha-

nisms (Section II);
2) The implementation of a simulated FaaS prototype with

the above architecture (Section III-A);
3) An evaluation of our prototype targeting three applica-

tion domains, namely machine learning, bioinformatics,
and physics, on FPGA and CPU resources. We compare
our heterogeneous FaaS system to current FaaS systems
in terms of performance (Section III-C) and cost (Sec-
tion III-D).

II. APPROACH

A. Overview

Let us consider a scenario where an application employs
two cloud functions that perform Machine Learning (ML)
tasks, namely: training and inference. Model training requires
sending large chunks of data at regular time intervals, while
inference tasks are smaller and happen irregularly according
to user demand. In this example, we have two distinct task
types with specific performance requirements: training tasks
process bulk data and are more computationally intensive,
while inference tasks are smaller and have lighter computation
requirements.

Current FaaS solutions are not designed to support such
scenarios, in which tasks have very different computation
requirements. In particular, users must identify a single re-
source configuration (e.g. a 4 core CPU with 512MB of
RAM) to service every incoming request. Every time a request
is submitted, the FaaS platform uses a replica of the same
resource configuration instance to execute that task, and clients
pay per request serviced. So, in the case where we have
heterogeneous traffic with both small (low computationally-
intensive) and large (high computationally-intensive) tasks, the
following applies with current FaaS solutions:

a) clients may ensure they have a large enough configuration
to service both types of tasks, however this leads to over-
provisioning and thus over-paying for smaller tasks;

b) if a resource configuration is heterogeneous (for example,
includes both a CPU and an FPGA), clients need to
manually load-balance traffic to distribute task workloads
to the appropriate resource, for instance, sending smaller
tasks to the CPU and larger tasks to the FPGA;

c) clients may try to identify the cheapest resource config-
uration that meets latency requirements for each type of
task, however this requires expertise.

In general, when considering heterogeneous computations,
there is no single resource configuration that works best for
all types of workloads, and determining the best configuration
for each scenario is not obvious. For instance, smaller jobs
may perform faster on CPUs since data movement and offload
overheads would dominate otherwise, while sufficiently large
streaming and data-parallel workloads may perform better
on FPGAs and GPUs, respectively. Moreover, data-types and
numerical representations may also drastically affect relative

performance. For instance, FPGAs tend to excel with integer-
based operations, while CPUs and GPUs are designed to
work with double-precision operations. Thus, management
techniques based solely on horizontal scaling do poorly to
leverage the benefits of heterogeneous computation.

The lack of support for heterogeneity in cloud computing
in general, and FaaS in particular, can be attributed to the
complexity of its runtime management. In addition to bal-
ancing task requests horizontally across devices to service as
many requests as possible in parallel, it becomes necessary to
scale requests vertically according to the device type that is
best suited to service it. With new accelerators appearing in
the market every year, management logic needs to be flexible
and generic to support legacy and new devices. Knowledge
about the suitability of each resource to different workloads
is necessary, but acquiring and maintaining such knowledge is
challenging, particularly as platforms grow.

We have designed SLATE, an FaaS approach that supports
heterogeneous tasks and resources, and addresses the above
scenarios. First, clients need to specify the functions that
they wish to execute, and how fast each function needs to
run (latency requirement). Clients can optionally restrict the
domain for each function, which may reduce the number
of candidate resource configurations and reduce pricing. Our
FaaS system will then automatically identify the cheapest
resource configurations that can meet the timing constraints for
each function. Note that function domains are automatically
segmented to find the most appropriate resource configuration
for each sub-domain. When submitting a function request,
our system will automatically map that task to the most
appropriate resource configuration, spawning a new instance
if there is none currently available. In this way, we meet
timing constraints in a cost efficient manner for every task
executed. The following sections outline the SLATE design and
the mechanisms that enable our heterogeneous FaaS approach.

B. Execution

In this section, we focus on the key components of the
SLATE architecture and its execution.

We begin with the definitions used throughout the remainder
of this paper. A cloud function is a computation available for
execution by the FaaS system. A function request defines a
task that we we wish to execute, for instance matmul(A,B)
where A and B are N ×N matrices. Requests are resource-
oblivious. Each request is serviced by a function instance,
which is resource configuration allocated by the FaaS system
to service that task. Each instance has an associated function
type, (N,PE, f,D), where N and PE specify the resource
configuration (quantity and type of processing element), f
specifies the cloud function, and D specifies the supported
input domain. Note that we can combine multiple processing
elements (N > 1) into a single instance in order to acquire
more computational power. Finally, each resource type is
associated to a cost. The pricing is determined by the cloud
provider and may dynamically change due to supply and
demand considerations.
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Fig. 2. Key components of the SLATE FaaS Architecture. SLATE allocates a
function instance to service each request f(x), where f is the cloud function
and x is the input data.

Before execution, clients configure the SLATE system by
submitting an application manifest. The manifest contains
the list of all required functions, domains, latency (timing)
requirements, and optional allocation rules. From the applica-
tion manifest, SLATE determines the list of candidate function
types, which are used during the life-cycle of the FaaS system.
Once the system is configured, it is ready to service incoming
requests and execute functions. We cover the configuration
phase in more detail in II-C. For the remainder of this section
we cover function execution.

The key components of the SLATE architecture are depicted
in Fig. 2. The gateway serves as an interface for users
and a single point of entry to the underlying FaaS resource
management platform. To execute functions, users submit
function requests to the gateway. The requests are forwarded
to the task scheduler for execution, and to the auto-scaler for
monitoring and scaling. The instance group contains all the
allocated instances. Instances in the group are either idle and
can be immediately employed by the task scheduler, or are
busy executing a task. The task scheduler is responsible for
mapping each request to a suitable instance in the group to
meet latency constraints and minimise cost. The auto-scaler,
on the other hand, is responsible for scaling the instance group
to ensure the right resources are available, in quantity and type,
for task execution. Next, we describe these processes in more
detail:

• Task Scheduler. The task scheduler is responsi-
ble for mapping each request to an available, suit-
able instance in the group. An instance of type
(N,PE, f,D) is suitable to execute a request f(x) if
x ∈ D. For example, a function instance with type
(2, GPU,matmul, (1000, 100000)) can execute a matrix

multiplication function using two GPUs, accepting N×N
input matrices with 1000 ≤ N ≤ 100000. During
execution, the task scheduler selects a suitable instance
from the group to execute the task, forwards the request
to that instance for execution, and marks the instance as
busy for the duration of execution.

• Auto-Scaler. The auto-scaler is responsible for adjusting
the quantity and type of instances deployed in the instance
group. It ensures that instances of suitable types are
available to service incoming requests effectively. Auto-
scaling is critical not only to maintain request throughput,
but also to reduce the cloud provider’s cost by minimising
idle resources. The auto-scaler monitors each request and
identifies suitable function types from the candidate list.
If there are no available (i.e. not busy) suitable instances
in the group, the auto-scaler spawns a new one.
Furthermore, the auto-scaler maintains a log of the time
and instance selected for every request. This log is
checked periodically to determine each instance’s idle
time, i.e. the time since the last request for that in-
stance type. If an instance’s idle time is greater than the
idle time threshold specified in the allocation rules (see
Section II-C), and the instance is not currently busy, it
is removed from the group. This contrasts to the auto-
scaling mechanisms implemented in ORIAN [5] and
other PaaS systems [6][7], which monitor incoming traffic
and perform scaling events based on a window of past
traffic (i.e. not at every request).

There are three important considerations in our system:

• Zero-Scaling. SLATE allows users to specify whether or
not they want zero-scaling enabled. If zero-scaling is
enabled, the system can scale an instance type down to
zero replicas. If zero-scaling is disabled, SLATE ensures
there is always one of each candidate instance type in the
group to avoid start-up latency associated with spawning
a new replica and initialising the function code.

• Pricing. The pricing models of current FaaS systems
consist of two costs: (1) a request cost, which is a fixed
rate per request, and (2) an execution cost which depends
on the duration and resources used (e.g. memory and
CPU) to execute a task. Unlike PaaS, tenants are not
charged for allocated instances that are not used. With
SLATE, the request cost is 0 when zero-scaling is enabled,
and $(1%×min group cost) otherwise.

• Performance Modelling. Access to performance models
is vital to make allocation decisions at runtime. In order to
automate the modelling process, we use a generic offline
method to collect samples for each function instance.
The method is based on two assumptions: (1) throughput
eventually saturates (stops changing) as we increase prob-
lem size, and (2) the implementation domain is known.
Once profiles are collected, samples are cleaned using
common data-processing techniques to remove outliers,
and finally least squares regression is used to derive
performance models.
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Fig. 3. The four stages of SLATE FaaS Configuration (Section II-C).

C. Configuration

The configuration phase is a crucial and a novel aspect of
our approach, designed to reduce decision-making overhead
at execution time. Fig. 3 depicts the four key stages in
configuration of a SLATE FaaS system:

(1) User submits the application manifest: The application
manifest lays out the user’s requirements, including a list
of functions in the application and an optional set of
allocation rules. For each function, the user specifies the
domain that needs to be supported and a latency (timing)
objective (i.e. a maximum latency target for that function
with any input size). The optional allocation rules tune the
behaviour of the auto-scaler, and include the following:
a) Scale down idle time threshold (e.g. remove an

instance if its idle time > Ns)
b) A zero-scaling flag (i.e. True if scaling to zero is

allowed, False if not)
(2) Candidate function types are determined: The list of

candidate function types specifies all types considered
by the auto-scaler during execution (Section II-B). De-
termining this list is a critical aspect of SLATE, since
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Fig. 4. During the configuration phase, users can establish the timing objective
for each function. SLATE automatically segments the input domain and
identifies the candidate instance types to be used during execution.

pruning the search space by restricting our system to a set
of candidate types removes significant decision-making
overhead at execution time.
Each function may have multiple implementations target-
ing different resource configurations, (N,PE). As previ-
ously mentioned, performance models for each available
function implementation are derived offline and used to
determine candidate instance types.
For this purpose, we generate a graph for each function
and corresponding latency objective in the manifest,
plotting predicted execution times for all implementations
and inputs in the specified domain. See the example in
Fig 4. The best resource configuration, (N,PE), for
each input in the domain is determined. That is, the
configuration which meets the latency objective with the
minimum execution cost. Candidate types are identified
for each function based on these ‘best’ configurations for
each range of inputs: (N,PE, f, (min,max)). Note that
changing the latency objective can affect the number of
candidate function types.
In this way, the domain is automatically segmented into
different sub-domains suited to different function types.
So, during execution, when a function request is sub-
mitted at runtime, the task scheduler can immediately
identify the most suitable instance.

(3) Minimum instance group and request cost is deter-
mined: If zero-scaling is enabled, the minimum instance
group is an empty set. If zero-scaling is disabled, the
minimum resource group contains one instance of each
candidate function type i.e. there will always be at least
one instance of each candidate deployed in the instance
group.

(4) A SLATE FaaS system is initialised: When a user accepts
the minimum group cost, the system is initialised: a
function instance is created for each type in the starting
group if zero-scaling is disabled; the task scheduler is
initialised with access to the instance group; and the auto-
scaler is initialised with access to the instance group, the
candidate types, and the allocation rules.



III. EVALUATION

A. Experimental Setup

We validate our heterogeneous FaaS approach by simulating
our SLATE architecture using empirically derived performance
models for various case-study applications. We consider appli-
cations with implementations targeting multi-CPU and multi-
FPGA resource configurations. Using our models, we can pre-
dict the latency of executing each application with a specified
input workload on a given resource configuration. Note that
although our evaluation focuses on FPGA and CPU resources,
our approach supports other types of processing elements,
such as GPUs, as long as implementations and associated
performance models are available.

We currently support three case-study functions in different
domains: (1) AdPredictor [8], advertisement click prediction
(machine learning); (2) Exact Align [9], sequence alignment
(bioinformatics); and (3) N-body Simulation [10], particle
simulation (physics). These case studies are examples of HPC
applications that are not well-supported by current cloud
platforms (PaaS and FaaS). We consider optimised multi-
CPU and multi-FPGA implementations for each, developed to
target a platform with 12 CPU cores and 24 Max4 Dataflow
Engines (DFEs) [11]. A DFE is a complete compute device
system developed by Maxeler [12], which contains an FPGA
as the computation fabric, RAM for bulk storage, logic to
connect the device to a CPU host, and all necessary interfaces,
interconnects, and circuitry. Our CPU implementations are
programmed in C++, while the DFE implementations are writ-
ten in MaxJ, a Java DSL used to describe dataflow programs.

We set the following pricing model for our simulations:
1 CPU-s costs $0.00002 and 1 DFE-s costs $0.00008. 1 CPU-s
corresponds to an execution for one second on a CPU, con-
versely 1 DFE-s corresponds to an execution for one second
on a DFE. Each request costs $(1% ∗min group cost). So,
for 10,000 requests, each executed for 10s on (2, DFE)
configurations, with a minimum group containing a (2, DFE)
instance and a (1, CPU) instance, the user would be charged:

• Request cost: 104×(2×$0.00008+1×$0.00002) = $1.80
• Execution cost: 104 × 10s× (2× $0.00008) = $16.00
• Total cost: $17.80

This model is based on the FaaS pricing for AWS Lambda [2],
where the request cost is $0.0000003, and the average execu-
tion cost is $0.00002 per second when serviced by one CPU
instance with 1 GB of RAM. Our DFE cost is based on AWS
EC2 FPGA-optimised instances compared to general-purpose
CPU instances, where a f1.2xlarge instance costs roughly
4 times more than an m4.2xlarge instance [1].

To validate our empirical performance models and thus our
simulation results, we compare observed execution latency to
model-predicted latency for various tasks. The average model
errors are included in Table I. In general, the observed error is
less than 10%, but up to a maximum of 12.3% for Exact Align
DFE implementations due to latency variations observed for
the execution of the same tasks.

TABLE I
AVERAGE ERROR IN PERFORMANCE MODELS

Application and Average
Resource Configuration Error

Exact Align ([1,2,4,6,8], CPU) 0.3%
Exact Align ([1,2,4,8], DFE) 12.3%
AdPredictor ([1,2,4,6,8], CPU) 0.9%
AdPredictor ([1,2,4,8], DFE) 1.4%
N-Body Sim ([1,2,4,6,8], CPU) 6.1%
N-Body Sim (1,DFE) 2.7%

B. Identifying Candidate Function Types

In order to compare SLATE heterogeneous function groups
to homogeneous function groups, we first need to derive candi-
date function types which will be employed during execution.
Using our performance models and the approach outlined in
Section II-C, we generate the graphs in Fig. 5 to identify
candidate types for each case-study application’s input domain
according to latency requirements (see Table II).

As previously explained, SLATE automatically segments the
domain to classify inputs corresponding to the function type
they are suited to. For instance, if we set an objective of 300ms
for every Exact Align task, SLATE automatically identifies
three sub-domains (task types) and the function types that
will execute them, namely: s (small) tasks are suited to
(1, CPU, align, s) functions, m (medium) tasks are suited to
(1, DFE, align,m) functions, and l (large) tasks are suited
to (2, DFE, align, l) functions.

Based on these candidate function types, we run experi-
ments using the function groups outlined in Table II. For each
case-study, we consider:

a) A heterogeneous SLATE function group: with heteroge-
neous candidate types determined in Fig. 5.

b) A homogeneous CPU function group: suited to s traffic.
c) A homogeneous DFE function group: suited to l traffic.

Note that for N-Body simulation, there is one function
type which is best for all workloads, (1, DFE, nbody, {s, l}),
hence, we do not consider a homogeneous CPU function type
for our N-Body Simulation experiments.

TABLE II
HETEROGENEOUS AND HOMOGENEOUS FUNCTION GROUPS

Functions Candidate Types Cost of 106

Requests

SLATE

Exact Align
(Obj=300ms)

(1, CPU, align, s)
(1, DFE, align,m)
(2, DFE, align, l)

$0.26

AdPredictor
(Obj=120ms)

(1, CPU, adp, s)
(1, DFE, adp, l)

$0.10

N-Body Sim.
(Obj=400ms) (1, DFE, nbody, {s, l}) $0.08

Homog. CPU Exact Align (1, CPU, align, {s,m, l}) $0.02
AdPredictor (1, CPU, adp, {s, l}) $0.02

Homog. DFE
Exact Align (2, DFE, align, {s,m, l}) $0.16
AdPredictor (1, DFE, adp, {s, l}) $0.08
N-Body Sim. (1, DFE, nbody, {s, l}) $0.08
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Fig. 5. Determining candidate function types for each case-study: Exact Align ((1, CPU, align, s), (1, DFE, align,m), (2, DFE, align, l)), AdPredictor
((1, CPU, adp, s), (1, DFE, adp, l)), and N-body Simulation ((1, DFE, nbody, {s, l})).

C. Performance Evaluation

To evaluate the performance of SLATE heterogeneous func-
tions, we compare the execution latency of an individual
task with a SLATE-selected function instance to each homoge-
neous function instance in Table II. The latency using SLATE
functions takes into consideration the overhead of the task
scheduler selecting an instance type. In practice, this overhead
was observed to be on the order of 1µs. This overhead is
negligible due to the offline and configuration stages, which
allows the task scheduler to perform one-to-one mapping
decisions at runtime.

Table III presents the speedup of execution using SLATE
compared to employing homogeneous instances, as well as the
corresponding improvements in cost. Homogeneous function
instances achieve the same latency and execution cost as
SLATE for task types to which they are suited. That is, s
AdPredictor and Exact Align tasks executed on homogeneous
CPU instances, l AdPredictor and Exact Align tasks executed
on homogeneous DFE instances, and all N-Body Simulation
tasks executed on homogeneous DFE instances. That is, 1.0
times speedup and cost decrease.

For task types to which homogeneous instances are not
suited, the latency differs from the SLATE-selected instances,
and SLATE is more cost effective. That is, s AdPredictor and
Exact Align tasks executed on homogeneous DFE instances,
and l AdPredictor and Exact Align tasks executed on homo-

TABLE III
LATENCY SPEEDUP AND EXECUTION COST DECREASE OF SLATE
COMPARED TO HOMOGENEOUS FUNCTIONS FOR DIFFERENT TASKS

Task type
SLATE Speedup (Cost Improvement)
Homog. CPU Homog. DFE

align(5000) s 1.0× (1.0×) 0.7× (5.5×)
align(10000) s 1.0× (1.0×) 0.7× (5.5×)
align(500000) l 59.0× (7.4×) 1.0× (1.0×)
align(1000000) l 63.5× (7.9×) 1.0× (1.0×)
adp(5000) s 1.0× (1.0×) 1.4× (5.6×)
adp(10000) s 1.0× (1.0×) 0.7× (2.8×)
adp(500000) l 38.4× (9.6×) 1.0× (1.0×)
adp(1000000) l 43.2× (10.8×) 1.0× (1.0×)
nbody(4096) s - 1.0× (1.0×)
nbody(8192) s - 1.0× (1.0×)
nbody(32768) l - 1.0× (1.0×)
nbody(65536) l - 1.0× (1.0×)

geneous CPU instances. In these cases, whether the latency
is greater or less than the SLATE-selected instance, execution
is more costly. For instance, for align(5000), SLATE incurs a
slowdown (1/0.7 = 1.4 times) but achieves a much greater
corresponding cost decrease (5.5 times). Since the SLATE-
selected instance is guaranteed to meet a specified latency
objective, it is sufficiently performant and more cost effective
than any homogeneous instance.

In general, since SLATE is able to tune instance type
selection individually for every task, SLATE functions achieve
the most cost effective performance overall. For functions with
multiple task types, homogeneous function instances will only
achieve cost effective performance for one task type.

D. Cost Efficiency Evaluation

To evaluate the cost efficiency of our approach, we compare
the costs of executing sequences of 1000 tasks using SLATE
functions to each homogeneous function group in Table II,
where the fixed cost for 1 million requests is included in the
last column.

As mentioned, FaaS pricing models include an execution
cost, based on the duration of the task, as well as a fixed
cost per request. Since our approach automatically selects
function instances that are the most cost effective for each
task, the improvements in execution cost are implicit, as
explained in the previous section. However, per our pricing
model (Section III-A), heterogeneous function groups with
multiple candidate workers typically have higher fixed request
costs than homogeneous groups. We therefore need to consider
the total cost of executing sequences of multiple tasks to effec-
tively compare the cost efficiency of SLATE to homogeneous
functions groups.
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TABLE IV
COST IMPROVEMENT OF SLATE FUNCTIONS COMPARED TO

HOMOGENEOUS FUNCTIONS FOR DIFFERENT TASK SEQUENCES

Function Traffic Type SLATE Cost Improvement
Homog. CPU Homog. DFE

Exact Align

uniform s 0.5× 3.1×
uniform l 7.2× 1.0×
random 6.4× 1.2×
spike of s 7.0× 1.0×
spike of l 4.8× 1.7×

AdPredictor

uniform s 0.5× 2.1×
uniform l 9.2× 1.0×
random 7.7× 1.2×
spike of s 8.7× 1.0×
spike of l 5.2× 1.5×

N-Body Sim.

uniform s - 1.0×
uniform l - 1.0×
random - 1.0×
spike of s - 1.0×
spike of l - 1.0×

For each function, we consider s or l task types and
sequences with uniform traffic (1000 tasks of the same type),
random traffic (a random sequence with 500 tasks of each
type), and spiked traffic (mostly one type with a spike of 200
of the other type). Examples of these traffic types are depicted
in Fig. 6 for AdPredictor. The cost decrease achieved by SLATE
compared to each homogeneous function group is included in
Table IV, where a value < 1 indicates a cost increase.

For uniform sequences with tasks to which homogeneous
instances are suited, the homogeneous groups are equally
or more cost effective than SLATE. For instance, uniform s
AdPredictor and Exact Align sequences executed on homoge-
neous CPU instances are 2 times less expensive than SLATE,
while uniform l AdPredictor and Exact Align sequences
and all uniform N-Body Simulation sequences executed on
homogeneous DFE instances are equal in cost to SLATE. In
the cases where there is homogeneous s traffic, the significant
reduction in fixed costs by using homogeneous instance groups
leads to a reduction in overall cost of the sequence.

For uniform sequences with tasks to which homogeneous
instances are not suited, the homogeneous groups are more
costly than SLATE due to increased latency and thus execution
costs as explained in the previous section. SLATE costs 7.2
times less than homogeneous CPU functions for uniform l
Exact Align traffic, and 3.1 times less than homogeneous DFE
functions for uniform s Exact Align traffic.

For non-uniform task sequences with heterogeneous traffic
(random or spiked), SLATE is more or equally cost effective
than the homogeneous groups in all cases. SLATE costs 8.7
times less than homogeneous CPU functions for AdPredictor
traffic with a spike of s tasks, and 1.5 times less than
homogeneous DFE functions for AdPredictor traffic with a
spike of l jobs. The only cases where SLATE is equal in
cost to the homogeneous DFE group (i.e. does not show an
improvement) is for AdPredictor or Align sequences with a
spike of s tasks amongst mostly l tasks, since the prevalence
of higher latency l jobs dominates the overall cost.

E. Discussion

Based on our evaluation, we expect that in scenarios with
heterogeneous traffic comprised of tasks that have very differ-
ent computational requirements, SLATE is likely to provide cost
and performance benefits over homogeneous FaaS. However,
in cases where there is predictable uniform traffic, it is better
to use homogeneous functions with a resource configuration
tuned to all traffic. For example, with N-Body Simulation,
there is no benefit of using heterogeneous SLATE functions
over using homogeneous DFE functions.

For cases with heterogeneous traffic, an expert user may
determine function types best suited to each traffic type, and
deploy separate homogeneous function groups for each type of
task. This might avoid increased fixed costs of heterogeneous
SLATE groups, but requires effort and expertise to segment
traffic into types and tune instances to each. On the other hand,
non-expert users are unlikely to know which instance types are
best suited to each task type. Therefore, the ability of SLATE
to automatically identify suitable candidate function types and
to segment function domains accordingly is beneficial to both
experts (saving effort) and non-experts alike.

Finally, our simulation calculations do not currently take
into account the overhead of initialisation and spawning new
function instances (including dynamic reconfiguration), how-
ever we applied the same assumption to both heterogeneous
and homogeneous groups in our evaluation. We intend to
study the mechanisms for reducing this spawning overhead,
for instance, by pre-allocating instances according to traffic
patterns, in future work.

IV. RELATED WORK

Table V summarises the current, key approaches in managed
PaaS and FaaS cloud systems. Commercial PaaS frameworks
(Microsoft Azure App Services [6], Google AppEngine [7],
and AWS Elastic Beanstalk [13]) automatically manage and
elastically scale application resources. However, they have
limited support for hardware accelerators and heterogeneity.
Applications can only scale horizontally using a single type
of resource. ORIAN [5] extends the PaaS execution model
to support hardware accelerators and heterogeneity. However,
PaaS is resource-oriented, requiring effort in terms of appli-
cation deployment as well as paying for resources even when
they are idle.

These shortcomings of PaaS are addressed by FaaS, where
users pay only for serviced function requests. This simplifies
deployment, orchestration, and pricing. None of the three most
popular commercial offerings (AWS Lambda, Microsoft Azure
Functions [3], and Google Cloud Functions [4]) support hard-
ware accelerators. They are limited to homogeneous, CPU-
based function types, with users only able to select an amount
of memory and CPU. Furthermore, auto-scaling is limited to
replication of homogeneous function instances. SLATE FaaS,
on the other hand, supports functions that can scale with
arbitrary resource configurations and accelerator types based
on user-supplied objectives and rules.



TABLE V
COMPARISON BETWEEN DIFFERENT PAAS AND FAAS APPROACHES

Approach Type Scaling Service
Azure App Services [6] Commercial Uniform PaaS
Google App Engine [7] Commercial Uniform PaaS
AWS Beanstalk [13] Commercial Uniform PaaS
ORIAN [5] Open Source Heterogeneous PaaS
AWS Lambda [2] Commercial Uniform FaaS
Google Functions [4] Commercial Uniform FaaS
Azure Functions [3] Commercial Uniform FaaS
OpenFaas [14] Open Source Uniform FaaS
OpenWhisk [15] Open Source Uniform FaaS
Kubeless [16] Open Source Uniform FaaS
SLATE Open Source Heterogeneous FaaS

Outside of commercial FaaS offerings, frameworks like
OpenFaaS [14], OpenWhisk [15] and Kubeless [16] aim to
provide a flexible environment in which users can build their
own FaaS systems. Such systems provide greater flexibility
to developers, allowing them to implement and deploy their
own function types and control certain resource management
mechanisms. However, they are still limited to homogeneous
auto-scaling, and employing a single instance type.

Finally, there are various research projects dedicated to mak-
ing accelerators and other heterogeneous resources available
in the cloud. For instance, the work of [17] virtualises FPGAs
by mapping accelerators to regions of FPGAs managed by
runtime managers on local processors. FPGAVirt [18] proposes
a hardware/software co-design framework focused on abstrac-
tion, sharing, and isolation using an overlay to divide FPGAs
into ‘virtual functions’ with a management service that maps
computations to available regions. Our SLATE work can make
use of these virtualisation efforts on hardware accelerators, as
long as performance is isolated and deterministic, in order to
make effective use of performance models.

V. CONCLUSION

We present SLATE, a fully-managed Function-as-a-Service
(FaaS) system for deploying serverless functions onto hetero-
geneous cloud infrastructures. SLATE improves the accessibil-
ity of specialised, heterogeneous resources to cloud tenants by
extending the traditional homogeneous FaaS execution model
to support heterogeneous functions, with abstracted, automatic
runtime management of multiple resource types, such as CPUs
and FPGAs. We have simulated our approach, considering
case study functions in three application domains (machine
learning, bio-informatics, and physics), with implementations
targeting FPGA and CPU resource configurations. Compared
to homogeneous CPU and FPGA functions, simulation results
achieve respectively a cost improvement for non-uniform task
traffic of up to 8.7 times and 1.7 times, while maintaining
individual task latency (timing) objectives.

Current and future work includes extending our simulator
into a full prototype, supporting a compilation path to allow
user-defined computations to be managed, and targeting other
application domains and accelerator types, such as GPUs and
application-specific devices.
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