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Abstract—The growing interest in using FPGAs to accelerate
convolutional neural network (CNN) workloads is driving the de-
ployment of FPGAs on cloud services such as Amazon AWS and
Microsoft Azure. Such current cloud-based FPGAs have serious
problems concerning data transfer bandwidth. In this paper, we
compress a transfer image using customized JPEG coding and
implement a customized image decoder architecture. We analyze
the trade-off between data transfer speed-up and recognition
accuracy drop. Based on this compression scheme, we design
a high-throughput CNN inference engine. Almost all existing
FPGA-based CNN accelerators are based with the same idea as
their GPU counterparts, where operations from different network
layers are mapped onto the same hardware units working in
a multiplexed way. Our fully pipelined architecture maps all
the network layers on-chip and transfers the computation from
different layers to their unit with independent optimization. We
apply two CNN optimization techniques to a residual network,
one is a channel shift and point-wise approximation, and the other
is a binary weight quantization. We implement the proposed CNN
inference accelerator on the Xilinx Virtex UltraScale+ XCVU9P
FPGA. Our system peak-performance achieves 2.41 TOPS. Our
compressed JPEG image transfer only consumes 4% of the
system resource, drops 0.3 points of accuracy and achieves
81,120 FPS which is 65.27 times faster than the conventional
straightforward RGB data transfer. Thus, our proposed data
transfer architecture is sufficient to increase system performance.
As for the system throughput, our system is 3.84-34.41 times
higher than existing FPGA implementations. Compared with the
Xeon CPU, it achieves 138.38 times higher throughput, and it
dissipates 1.2 times lower power, so its efficiency is 177.12 times
better. Compared with the Tesla V100 GPU, it achieves 9.48
times higher throughput, dissipates 3.9 times lower power, and
its efficiency is 37.52 times better. Thus, our parallel architecture
on an FPGA provides superior throughput for the acceleration
of a CNN.

I. INTRODUCTION

A. FPGA-based CNN Accelerator on the Cloud

Convolutional neural networks (CNNs) are widely used for
computer vision applications, such as segmentation [4], [10],
[29]; object detection [28], [35], [36]; and pose estimation [9],
[32], [41]. Further, they are used for different domains, such
as natural language processing [3], [23], [49]; acoustic signal
processing [34]; and AI for games [38]. These applications
require high accuracy; thus, modern CNNs contain millions
of floating-point parameters, and they require billions of
floating-point operations to recognize a single image. Fur-
thermore, recent CNNs tend to be large, as demonstrated by
AI researchers. Consequently, the computation of CNNs is
almost exclusively done on large clusters of GPUs. However,

Fig. 1. Image quality versus file size. q denotes the number of bits for a
constant JPEG quantization value (2q). We used 224× 224 pixel image.

Fig. 2. High-throughput inference system with a customized JPEG coding.

GPU platforms consume more power than CPU and FPGA
platforms. Moreover, modern CNNs involve many operations
on an image and thus CPUs are too slow.

The growing interest in using FPGAs to accelerate CNN
provides the driving force behind the deployment of FPGAs
on cloud services, such as Amazon AWS and Microsoft Azure.
The availability and flexibility of FPGAs in the cloud raise new
challenges in the design and implementation of deep learning
models on these platforms. The recent adoption of FPGA
demonstrates its great ability to run CNN-related applications
in both of the above cloud servers. This combination of
programmable hardware and DNNs has enabled many possi-
bilities to reshape the landscape of deep learning applications
for high throughput and high energy efficiency.

B. Customized JPEG Coding for a High-Speed Data Transfer

Current cloud-based FPGAs have a strict data transfer
bandwidth. In particular, communication between the accel-
erator card and the host is a bottleneck, and transfer tech-
nology (especially, the PCI express protocol) development is
slow, because this distance is the farthest than other communi-
cations (e.g., AWS F1 provides overall read/write at 6.5GB/s
from host CPU to FPGA [11]). In this paper, we compress
a transfer image using a constant quantization value 2q of
customized JPEG coding protocol. As shown in Fig. 1, there
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Fig. 3. Comparison of architectures.

is a trade-off between compression ratio (in other words,
the JPEG quantization (compression) value) and recognition
accuracy. Data transfer speed increases for a constant low
quantization value 2q , while recognition accuracy drops. To re-
cover the situation, we consider a scenario as shown in Fig. 2.
For both training and inference, we assume that the same
compression quality images are used. Therefore, such accuracy
decreases would be relaxed. Our proposed system sends such
a compressed data stream to the FPGA card which has a fully
pipelined architecture including a customized JPEG-decoding
component. We show less hardware overhead and accuracy
dropping for our designed JPEG coding process, and achieves
throughput improvement by considering the JPEG quantization
value for the ImageNet standard dataset.

C. Fully Pipelined CNN Architecture

Almost all of the existing FPGA accelerators are designed
with the same idea as their GPU counterparts. As shown in
Fig. 3(a), for achieving more generality, all operations from
different network layers are mapped onto the same hardware
units and working in a multiplexed manner. The result of
this is that different layers must be implemented with the
same parallelism, which is not flexible enough to take full
advantage of the customizability of FPGAs. It leads to a series
of conflicts with the inherent computing features of CNNs.
Meanwhile, as shown in Fig. 3(b), another implementation of
CNNs on an FPGA is a fully pipelined style, which maps all
the network layers on-chip, and the computation from different
layers is mapped to their hardware unit with independent
optimization. Previous work has tried this idea with extremely
low-precision (binary) CNNs [12], which use only a one-
or two-bit quantization strategy to reduce hardware size. It
is suitable for high-throughput system because FPGAs can
realize such low-precision design efficiently, whereas GPUs
cannot. Also, we propose several techniques to realize a fully
pipelined CNN inference engine including a binary weight
quantization, approximation by channel shift and point-wise
convolution operations, and their pipelined circuit.

The contributions of this study are as follows:
1. We propose an customized JPEG compression data

transfer for the CNN inference system to improve a
known bottleneck. Our compressed JPEG image transfer
only consumed 4% of the system resource, dropped 0.3
point of accuracy and achieved 81,120 FPS which which
is 65.27 times faster than the conventional straightfor-
ward RGB data transfer. Thus, our proposed decoder

Fig. 4. Proposed JPEG coding system.

architecture is sufficient to increase the system perfor-
mance.

2. We propose a mixed-precision CNN to fit a fully
pipelined architecture that takes full advantage of the
customizability of FPGAs. We also introduce a mixed
precision scheme and approximation by a channel shift
and a point-wise convolution operation.

3. We implement our system on the Xilinx VCU1525
acceleration card and compared it with existing FPGA
implementations. As for the system throughput, our sys-
tem 3.84-34.41 times higher than existing FPGA imple-
mentations. Compared with the Xeon CPU, it achieves
138.38 times higher throughput, and it dissipates 1.2
times lower power, so its efficiency is 177.12 times
better. Compared with the Tesla V100 GPU, it achieves
9.48 times higher throughput, dissipates 3.9 times lower
power, and its efficiency is 37.52 times better.

II. HIGH THROUGHPUT INFERENCE SYSTEM BY

CUSTOMIZED JPEG COMPRESSION

Fig. 4 shows the proposed JPEG coding system. With
a standard JPEG incoming image, customized encoding is
performed on the host PC, and the compressed data stream is
transferred to the accelerator. We implement a dedicated JPEG
decoding circuit on the FPGA and convert the transferred
stream to a YCrCb image 1. The proposed method reduces
the quantization value of all frequency components of the
JPEG image to 2q , and shares the same Huffman code table
to both the host PC and the accelerator. Thus, no header
information is required for the JPEG stream and there is no
need to decode the header information. There is a trade-off
between recognition accuracy and data transfer speed for the
quantization scheme. It is evident in the experimental results.
Here, details of each process will be described.

A. Pre-processing on a Host PC

We modify the libjpeg library to customize a JPEG image
compression. It extracts a Huffman coding table and a quanti-
zation table from an original JPEG image. Then, it decodes the
JPEG stream into an original RGB pixel stream and performs

1The standard JPEG decoder convert to YCrCb to RGB. From our ex-
periment, such conversion did not affect recognition accuracy. Thus, we use
YCrCb image for the CNN inference.
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Fig. 5. Huffman decoding and reverse quantization unit.

customization quantization with a 2q value. Next, it encodes
the compressed JPEG data stream by Huffman and run-length
codings for customized quantization.

B. Run-length and Huffman decoding circuit

Fig. 5 shows a run-length, Huffman decoding, and reverse
quantization circuit. First, it reads incoming compressed JPEG
streaming data, then stores into a shift register with run-length
decoding. Then, it converts a Huffman code to a quantized
value and a shift value which is sent to the shift register.
Next, it performs a reverse quantization and writes to the buffer
RAM in a zig-zag manner with a zig-zag patterm address from
a zig-zag pattern ROM.

C. 2D-IDCT (Inverse Discrete Cosine Transfer) Circuit

The following expression shows a 2D-IDCT.

f(y, x) =

7∑

v=0

C(v)

2

7∑

u=0

C(u)

2
F (v, u)

×(cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
), (1)

where C(i) = 1/
√

(2) (u = 0) and C(i) = 1 (u > 0),
and F (v, u) denotes a DCT coefficient. It processes 8 × 8 =
64 pixel values to generate 64 coefficients. Transforming an
8×8 pixel block would require 4,096 multiplications and 4,032
additions. To reduce the number of operations, we replace the
2D-IDCT with 16 1D-DCTs (eight 1D-DCTs with eight rows
and eight 1D-DCTs with eight columns) as follows:

F ′(u, y) =

7∑

y=0

C(v, y)F (y, v)

f(x, y) =

7∑

u=0

C(u, x)F ′(u, y),

where C(i, j) = C(i)cos 2πi(2j+1)
16 . Therefore, it includes only

1,024 multiplications and 896 additions to convert an 8 × 8
pixel block. Various methods for further reducing the number
of operations have been proposed. In this paper, we modify
the IDCT implementation method introduced in AP-922 [2].
Let γk be cos( 2πk16 ). Then, we have,

Fig. 6. 2D-IDCT unit.

C =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ4 γ4 γ4 γ4 γ4 γ4 γ4 γ4
γ1 γ3 γ5 γ7 −γ7 −γ5 −γ3 −γ1
γ2 γ6 −γ6 −γ2 −γ2 −γ6 γ6 γ2
γ3 −γ7 −γ1 −γ5 γ5 γ1 γ7 −γ3
γ4 −γ4 −γ4 γ4 γ4 −γ4 −γ4 γ4
γ5 −γ1 γ7 γ3 −γ3 −γ7 γ1 γ5
γ6 −γ2 γ2 −γ6 −γ6 γ2 −γ2 γ6
γ7 −γ5 γ3 −γ1 γ1 −γ3 γ5 −γ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The IDCT multiples by CT for each column and row of
F (u, v). We decompose CT as follows:

CT =
1

2
ATMTPT ,

where

PT =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

MT =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ4 γ2 γ4 γ6
γ4 γ6 −γ4 −γ2
γ4 −γ6 −γ4 γ2
γ4 −γ2 γ4 −γ6

γ1 γ3 γ5 γ7
γ3 −γ7 −γ1 −γ5
γ5 −γ1 γ7 γ3
γ7 −γ5 γ3 −γ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

AT =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 −1
0 0 1 0 0 0 −1 0
0 1 0 0 0 −1 0 0
1 0 0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We implement PT by just memory accessing of incoming
data F , MT by 4 × 8 = 32 multiplications and 3 × 8 = 24
additions, and AT by eight additions. Compared to directly
calculating Expr. (1), there are several advantages. In the
implementation, there is no need to transpose the columns for
pre-processing. Using two different one-dimensional IDCTs
eliminates the need for transposition. Fig. 6 shows a 2D-
IDCT unit consisting of two 1D-IDCT units. Since the CNN
computation is slower than the IDCT one, we implement a
custom processor that includes a register file, operators, and
a controller. It computes IDCT with ping-pong buffer RAMs.
Note that, as shown in the implementation result, since the
IDCT circuit is not a dominant for both hardware resource
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consumption and performance, we use a half (16-bit) precision
for the implementation.

III. DEFINITION OF CNN

A typical CNN consists of a group of L sequential layers in-
cluding a convolutional, a pooling, and a fully-connected (FC)
layers. We assume that a pre-trained CNN is available, and
the goal is to realize only inferences with high performance
and small hardware. In the following section, we present a
conventional technique used in the study.

A. Convolutional Operation

The forward two-dimensional (2D) convolution layer com-
putes the output Y by applying a set of m 2D kernels k × k
to c input feature maps X as follows:

y
(m)
ij =

∑

c

y
(m,c)
ij =

∑

c

k−1∑

s=0

k−1∑

t=0

w
(m,c)
s t x

(c)
(i+s)(j+t) + b(m).

B. Maximum Pooling

The forward 2D maximum pooling layer is a form of non-
linear down-sampling of an input feature map. 2D max pooling
partitions the input feature map into 2D sub-feature maps
along the dimensions k2, selects an element with the maximum
value in each sub-feature map, and transforms the input value
to the output feature map yij by replacing each sub-feature
map with its maximum element.

C. Global Average Pooling (GAP)

GoogLeNet [39] uses a GAP layer [25]. A conventional
CNN has this type of structure to obtain an output of 1000
class classifications by stacking multiple FC layers after the
convolutional layers. However, these FC layers require many
parameters, and this causes an over-fitting problem [47]. The
GAP layer performs an average pooling with a size similar
to that of the input feature map (the output size equals
1× 1×m). It constitutes best practice for modern CNNs for
classifications.

D. Batch Normalization

There is an impact from the difference in the distribution
of data on each batch (internal covariate shift); thus, the
convergence of the training tends to be slow, and the trainer
must carefully determine the initial value of the parameters.
These problems are solved by batch normalization [20], which
corrects the difference in the distribution by a shift and
a scaling operation. Furthermore, it is used for a low-bit
precision CNN to retain the hidden weight convergence.

E. Separable Convolution

Conventional convolution operation performs in both spatial
and channel directions of the input feature map at a time, while
separable convolution performs convolution independently in
spatial and channel directions. It is based on the hypothesis
that convolutions can be separated in these directions. Fig. 7
shows a separable convolution operation. Spatial convolution

1
1

m

m

c

c
n

…

k
k

m

m

c
n

Point-wise convolu�on Depth-wise convolu�on

Fig. 7. Separable convolution.

and channel direction convolution are also referred to as depth-
wise convolution and point-wise convolution, respectively.
Depth-wise convolution is a process of performing convolution
in the spatial direction independently for each channel of the
feature map, while point-wise convolution is applied to 1× 1
convolution. Consider c × n2 input feature map size and m
output feature maps. For k × k convolution, its computation
order becomes O(cn2k2m). Conversely, the computation order
for a depth-wise and a point-wise convolution are O(n2ck2)
and O(n2cm), respectively. By converting the conventional
k× k convolution to a separable convolution (a pair of depth-
wise and point-wise convolutions), its computation order can
be relaxed to O(n2ck2 + n2cm). Typically, m � k2 (e.g.,
k = 3 and m = 64); thus, the separable convolution can be
reduced by 1

k2

F. Channel Shift Operation

Unlike the convolutional operation, it only moves the value
of the neuron stored in the memory, so it requires no multi-
plications. Wu et. al proposed a ShiftNet [42], which replaces
a depth-wise convolution into a uniform shift operation which
requires no parameters. It is suitable for custom hardware
implementation.

G. Channel Split and Shuffle Operation

We use a channel split and shuffle operation [48] to improve
accuracy for the proposed CNN. First, separate in-coming
channels into two. Then, one of them is bypassed to the chan-
nel concat layer, while another one is handled by conventional
convolutional operations. It can be applied to the spatial down-
sampling layer as a pooling operation.

IV. OUR CNN MODEL TOWARDS ON-CHIP MEMORY

REALIZATION

Since we are implementing a fully pipelined circuit, it is
necessary to store all the parameters into on-chip memory.
We apply the following two optimization techniques to the
ShuffleNetV2 [48] based CNN.

A. Approximation by Channel Uniform Shift and Point-wise
Convolution

We replace all existing k × k convolutional operations
with shift and point-wise convolutional operations to reduce
computational complexity and parameter size. As shown in
Fig. 8, when we shift for all directions with k2 feature maps,
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Fig. 8. Channel shift and point-wise operations equivalent to the conventional
k × k convolution.

Fig. 9. Channel uniform shift and point-wise operations.

this replacement is equivalent to the original k2 convolution.
However, shift operations increase the number of channels by
k2. We introduce pruning to suppress the increase in the num-
ber of channels. It approximates weight values close to zero
and skips the convolution. However, typical pruning does not
consider the location of zero-weights, and the corresponding
addresses of the remaining weights must be held in additional
memory and this causes memory access overhead. In this
paper, we predetermine the shift direction before training (see
uniform shift operation as shown in Fig. 9).

B. Quantization Strategy

Both a trained weight and an activation value should ideally
be represented by a low-precision bit. However, error-rates
usually significantly increase especially for a single bit (bi-
nary). We train our low-precision model from scratch by
following several rules as follows: We apply scaling factors
for each layer with constant unlearned values equal to the
layer-specific standard deviations used for initialization [30];
we use an 8-bit precision layer for the first and the last layers
to keep information loss to a minimum [30]; we follow the
guidelines for low-precision network training [5]; we choose a
plain block (used in the original ResNet [17], not a bottleneck
one, and we appropriately increase the network width (the
number of feature maps).

C. Structure of Our CNN Model

Based on the ShuffleNetV2 [48], we apply proposed
hardware-friendly optimizations. Fig. 10 (a) shows a plain
block, while the bottom side shows a spatial down-sampling
block. Note that, PWConv denotes a point-wise convolution

Fig. 10. Building blocks used in our CNN model

TABLE I
STRUCTURE OF OUR CNN. IT CONSISTS OF 2.54 M PARAMETERS AND

0.616 GMACS. NOTE THAT, WE APPLY A TRAINING-AWARE

QUANTIZATION INCLUDING A BINARY WEIGHT AND 8-BIT ACTIVATION

VALUE EXCEPT FOR THE FIRST STAGE AND THE LAST STAGE (8-BIT FOR

BOTH A WEIGHT AND AN ACTIVATION).

Layer Output Kernel Stride #Output
size size Channel

Image 224 3
PWConv 224 1 2 24
Norm 224 1 1 24
ReLU 224 1 1 24
Shift 224 3 1 24
Maxpool 112 2 2 24
PWConv 112 1 1 24
Norm 112 1 1 24
ReLU 112 1 1 24
Shift 112 3 1 24
Maxpool 56 2 2 24
Stage 2 28 116
(4 repeats)
Stage 3 14 232
(8 repeats)
Stage 4 7 464
(16 repeats)
Ave. Global Pool 1 7 1 464
PWConv 1 1 1 1000

layer. We apply batch normalization (Norm) and a ReLU
activation function [31] for the output of a point-wise con-
volution layer. In the down-sampling layer, we use a point-
wise convolution with stride two and double the number of
channels.

We design a deeper and low-bit precision CNN because
a design space exploration has been reported that a lower-
bit precision deep network (ResNet-50 with 2-bit weights,
8-bit activations) outperforms a higher-bit precision shallow
network (ResNet-18 with 8-bit weights, 8-bit activations), both
in terms of lower compute cost and lower error rate [45].
Table I shows the overall structure of our CNN. At each
stage, we repeat the process with plain blocks, i.e., it consists
of one down-sampling block and many plain blocks. Our
ShuffleNetV2-based CNN consists of only point-wise convolu-
tion layers. Thus, the number of parameters and computational
complexities are less than those of the conventional CNN,
which has a conventional k × k convolution operation. It
consists of 2.54 M parameters and 0.616 GMACs. Note that,
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Fig. 11. Dataflow for a residual stage of a plain block.

Fig. 12. Layer unit for a 2D convolutional layer.

we apply a training-aware quantization including a binary
weight and 8-bit activation value except for the first stage and
the last stage (8-bit for both a weight and an activation).

V. FULLY PIPELINED CNN ARCHITECTURE

A. Fully Pipelining for a Residual Model

Fig. 11 shows a fully pipelined circuit for a residual struc-
ture. A typical Residual structure has a branching dataflow. No
operations are performed in one of them, and convolutional
operations are performed in another flow. Then, the flows
merge through a channel shuffling unit. To realize a fully
pipelined architecture consisting of a single branch, we insert a
wide pipeline buffer in which no operation is performed in half
of them. Although the area overhead is required to realize the
residual structure, our pipelining circuit has only a few lines
that corresponding to the pipeline processing. The number of
additional storage elements can be suppressed.

B. Architectures for Layer Units

As for the 2D convolutional layer, although we used a bina-
rized weight and multi-bit precision activation MAC operation
instead of a floating-point one, much hardware is consumed in
realizing the fully parallel MAC operation. Since the typical
CNN has a different number of feature maps in a layer, a
heterogeneous streaming architecture requires many LUTs for
large-size operations.

To realize high-performance with less hardware, we design a
parallel circuit supporting a streaming operation for each layer
as shown in Fig. 12. It consists of a weight memory (W.mem),
a line buffer for a feature map, a MAC operator, an adder tree,
a normalization unit (BN), and an activation unit. Note that,
our target is an inference operation, and we realize a BN unit
by using a multiplier and an adder with trained parameters.

Fig. 13. Layer unit for a maximum pooling layer.

Fig. 14. Layer unit for a global average pooling layer.

Since the used activation function is ReLU, we implement a
selector in the activation unit.

To further increase performance, we propose shared stream-
ing. We adjust parallel parameters c and p efficiently use
the available hardware resources and satisfy the performance
requirements. To have flexible access to all feature maps and
the weights, multiple on-chip BRAMs are used to realize
multi-port memories with high bandwidth memory access.
Since we use a binarized weight CNN, the memory size is
drastically reduced as compared with a non-binarized one.

Fig. 13 shows a maximum pooling unit. Since a binarized
maximum pooling operation is realized by a shift register and
a maximum value selector.

Fig. 14 shows an average pooling unit. We implement a
sequential manner to sum of all feature map values with a
register. Then, we multiplied by 1

n2 to obtain the average value
of one feature map.

The uniform shift operation can be realized by an additional
addressing to the next layer. In other words, it can be realized
by adding or subtracting each of the four directions in the
address space. When shifting in any direction is available, it
requires additional memory that can hold the shift direction
and its access cost. In the paper, we use a uniform shift which
does not cause such overhead because the shift direction is
determined in advance.

Similar to the shift operation, the shuffle layer can be real-
ized by additional addressing. We replace the set of channels
divided into the first half of channels and the second half
ones into even index channels and odd index channels. That
is, it can be realized only by replacing the most significant
bit (MSB) with the least significant bit (LSB) at the time of
channel access from the next layer.
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Fig. 15. Trade-off between accuracy and data transfer speed-up ratio for
different JPEG quantizations.

TABLE II
RESOURCE CONSUMPTION (XILINX VIRTEX ULTRASCALE+ XCVU9P).

Module # LUTs #FFs #DSPs #18Kb BRAMs #URAMs
JPEG Decoder
Huffman Decoder 6,794 2,378 0 0 0
2D-IDCT 4,881 4,278 34 2 0
Pipelined-CNN 263,120 266,784 2,336 2,744 0

Total† 274,795 273,440 2,370 2,746 16
(Utlized Ratio) (23.2%) (11.5%) (34.6%) (63.5%) (1.6%)
†(Including Buffer RAMs)

VI. EXPERIMENTAL RESULTS

A. Compression Ratio versus Model Parameters

We train our CNN using the ImageNet 2012 classification
dataset. Hyper-parameters including optimizer are the same as
ResNet implementation [19]. In the experiments, we used the
Intel Corei7 CPU, NVIDIA TITAN RTX (24 GB memory)
GPU, 64 GB main memory, and Ubuntu 18.04 LTS OS. We
used the PyTorch version 1.4.0 deep learning framework to
develop our CNN.

We assume that 224× 224 pixel images, and Fig. 15 shows
the trade-off between accuracy and data transfer speed-up
ratio for different JPEG quantizations. In Fig. 15, speed-up
denotes data transfer acceleration ratio compared with the
straightforward RGB image transfer considering our target
FPGA board, and Standard denotes a standard quantization
used in libjpeg library. From this experiment, we set a constant
quantization as q = 3 which only decreases 0.3 point of
accuracy and achieves 82.1 times speed-up of data transfer.
As shown in Fig. 15, recognition accuracy of our system for
q = 3 achieved 70.8% of top-1 accuracy.

B. FPGA Implementation Results

We implemented the proposed CNN inference accelerator
on the Xilinx Inc. Virtex UltraScale+ FPGA VCU1525 ac-
celeration development kit, which has the Xilinx Virtex Ul-
traScale+ FPGA (XCVU9P, 1,182,240 LUTs, 2,364,480 FFs,
4,320 18Kb BRAMs, 960 UltraRAMs, 6,840 DSP48Es). We
used the Xilinx Inc. SDAccel 2018.2. The host PC consists of
the Intel Xeon CPU E5-2690 v4 running at 2.60 GHz, whose
DDR4 memory size is 32 GB. The operating system is Ubuntu
18.04 LTS 64 bit version. Our implementation used 274,795
LUTs, 273,440 FFs, 2,746 18Kb BRAMs, 16 UltraRAMs
and 2,370 DSP48Es, and it operates at 300 MHz. Table II

TABLE III
COMPARISON WITH OTHER FPGA IMPLEMENTATIONS

Method AlexNet FINN-R Synetgy MobNet CloudDNN Ours
[24] [6] [46] V2 [43] [11]

FPGA StratixV Zynq Zynq Zynq VirtexUS+ VirtexUS+
ZU3EG ZU3EG ZU9EG XCVU9P XCVU9P

Throughput 864.7 200.0 96.5 809.8 123.1 3321.2
(FPS)
Top-1 Acc. 42.90% 50.30% 68.30% 68.1 — 70.8%
Top-5 Acc. 66.80% — 88.12% — — 90.1%
Precision 16/16 1/2 4/4 8/8 16/16 1/8
(W/Act)
Performance 1963.96 400 418 — 1828.61 2419.2
(GOPs)
Freq. (MHz) 150 220 250 333 214 300
Power (W) 26.2 10.2 5.5 — 49.25 75.0

shows the resource consumption. As shown in Table II, the
JPEG decoder part of the LUT was only 4.2% of total system
resource. Thus, our proposed decoder is not a bottleneck of
hardware consumption.

We measured total system power consumption which was
75 Watt including the FPGA board and the host workstation.
To implement the fully pipelined CNN, we used #pragma HLS
dataflow pragma and its interval time for the next image was
301,091 (ns). The system throughput was 3321.25 frames per
second (FPS) and its bottleneck was the first convolutional
layer (301,091 (ns)) and not the JPEG decoder part. Also, the
system performance was 2419.2 (GOPS) for a line parallel
convolution with 300 MHz operation clocks but it not included
the shuffle and shift, and JPEG coding operations. Our com-
pressed JPEG image transfer achieved 81, 120 FPS, while the
straight forward RGB data transfer was 1242.8 FPS. Thus, our
customized JPEG compression architecture was 65.27 times
faster and the proposed decoder architecture improved serious
problems concerning data transfer bandwidth.

C. Comparison with Conventional FPGA Implementations

Table III compares our accelerator with conventional FPGA
implementation for ImageNet classification. CNNs for Im-
ageNet classification are usually orders of magnitude more
complex than CIFAR10 classification. Therefore, we can only
compare accelerators targeting CNNs for ImageNet classifica-
tion with reasonable accuracy. Our work focuses on achiev-
ing competitive accuracy while improving inference speed
in terms of frames per second (FPS). Our training scheme
reduces accuracy degradation compared with other neural
network models and it is the only design achieving more than
70% of top-1 accuracy and 90% of top-5 one. As for system
throughput, our system 3.84-34.41 times higher than existing
FPGA implementations.

D. Comparison with Other Platforms

We compare our FPGA-based accelerator with other plat-
forms. We use the NVIDIA Tesla V100 desktop GPU and Intel
Xeon CPU E5-2690 v4 running at 2.60 GHz, whose DDR4
memory size is 32 GB. The Operating System used in the
experiment is Ubuntu 18.04 LTS with PyTorch version 1.4.0
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TABLE IV
COMPARISON WITH PLATFORMS FOR OUR CNN FORWARDING (BATCH

SIZE IS 128 AND INT8 PRECISION FOR THE CPU AND THE GPU).

Platform CPU GPU FPGA
Device Xeon Tesla Virtex US+

E5-2690 V100 XCVU9P
Clock Freq. 2.6 GHz 1.53 GHz 0.3 GHz
Memory 32GB 16GB 9.49 MB

DDR4 HBM2 BRAM
Throughput [FPS] 24.0 350.0 3321.25
Power [W] 95 295 75
Efficiency [FPS/W] 0.25 1.18 44.28

with an INT8 quantization. We measure the system throughput
and total power consumption for both platforms. To make
a fair comparison, we used the same workstation for every
platforms. Note that, for both the CPU and the GPU, we did
not use our JPEG compression scheme because such transfer
did not increase the system throughput.

Table IV compares our FPGA implementation with other
platforms. To ensure the comparison is fair, we use the same
CNN on all platforms. Compared with the Xeon CPU, it is
138.38 times higher throughput, and it dissipates 1.2 times
lower power, so its efficiency was 177.12 times better. As
for the Tesla V100 GPU, it is 9.48 times higher throughput,
dissipates 3.9 times lower power, and its efficiency is 37.52
times better. Thus, we show that our pipelined architecture
with a custom transfer data compression machine on the FPGA
has superior throughput for the acceleration of a CNN.

VII. RELATED WORK

Many FPGA-based CNN inference accelerators have been
studied, and these are covered in the surveys [15], [1].
Accelerators with low-bit precision were reported as a bi-
nary CNN accelerator [40] and ternary CNN fully-pipelined
implementations [8], [7]. A multi-bit fully pipelined design
was proposed [16]. The clock frequency is limited by the
routing between the on-chip SRAM and DSP units, and many
designs remain at 200-300 MHz. Xilinx researchers have used
different operating frequencies for the DSP and its routing-
channel. The DSP has been able to operate at peak operating
frequencies (Xilinx UltraScale (741 MHz), UltraScale+ (891
MHz)) on different speed-graded FPGA chips [44]. There
have been many reports of the optimization of CNN for
an FPGA implementation. For example, DiracDeltaNet [46]
combining shift operation, shuffle operation and point-wise
convolution, DoReFaNet [21] optimized for low-bit parame-
ters, MobileNetV2 combining separable convolution and resid-
ual structure [43], a binary precision VGG [6] and a binary
ResNet [14] have been reported.

As for FPGAs on a cloud system, there are design frame-
works for cloud FPGAs [11] and the implementation of a
scalable FPGA inference system by Microsoft [13]. Data-
mining is one of the promising applications. For example,
there is a report [26] that the accuracy of traffic volume
prediction is improved by image super-resolution processing

by a CNN. Features from images and texts are extracted by
a CNN in order to build a predictive model based on these
features [33].

As for the bandwidth problem, data compressors for algo-
rithms and FPGA implementations have been reported. Spe-
cially designed compression algorithms for floating-point (FP)
data achieved better performance than general-purpose ones
such as GZIP and BZIP [27]. In addition, prediction-based
compression algorithms have also been proposed, which pre-
dict the next input based on the previous input [18]. An
FPGA-based lossless compressor has been developed which
directly compressed floating-point data streams to enhance the
actual memory bandwidth of the lattice Boltzmann method
accelerator [22]. A design method of a parameterizable high-
performance decoder with variable-length FPGA packets has
been reported [37].

VIII. CONCLUSION

We compressed a transfer image introducing a constant
quantization value of JPEG coding protocol and designed
a customized image decoder architecture. We analyzed the
trade-off between data transfer speed-up and recognition ac-
curacy drop as for compression ratio. We implemented a fully
pipelined architecture, which maps maps the computation from
different layers to their own hardware unit with independent
optimization. We trained a customized CNN including a
channel shift and point-wise approximation. We also applied
a binary weight training-aware quantization to reduce on-
chip memory size. We implemented the proposed CNN infer-
ence accelerator on the Xilinx Inc. Virtex UltraScale+ FPGA
VCU1525 acceleration development kit, which has the Xilinx
Virtex UltraScale+ XCVU9P FPGA. Our compressed JPEG
image transfer only consumed 4% of the system resource,
dropped 0.3 point of accuracy and achieved 81,120 FPS which
is 65.27 times faster than the conventional straightforward
RGB data transfer. Thus, our proposed decoder architecture
is sufficient to increase the system performance. As for the
system throughput, our system 3.84-34.41 times higher than
existing FPGA implementations. Compared with the Xeon
CPU, it achieved 138.38 times higher throughput, and it dissi-
pated 1.2 times lower power, so its efficiency was 177.12 times
better. Compared with the Tesla V100 GPU, it achieved 9.48
times higher throughput, dissipated 3.9 times lower power,
and its efficiency was 37.52 times better. Thus, we showed
that our parallel architecture with transfer data compression
on an FPGA has superior throughput for the acceleration of a
CNN.
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