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Abstract—This paper presents novel reconfigurable architec-
tures for reducing the latency of recurrent neural networks
(RNNs) that are used for detecting gravitational waves. Gravita-
tional interferometers such as the LIGO detectors capture cosmic
events such as black hole mergers which happen at unknown
times and of varying durations, producing time-series data. We
have developed a new architecture capable of accelerating RNN
inference for analyzing time-series data from LIGO detectors.
This architecture is based on optimizing the initiation intervals
(II) in a multi-layer LSTM (Long Short-Term Memory) net-
work, by identifying appropriate reuse factors for each layer. A
customizable template for this architecture has been designed,
which enables the generation of low-latency FPGA designs with
efficient resource utilization using high-level synthesis tools. The
proposed approach has been evaluated based on two LSTM
models, targeting a ZYNQ 7045 FPGA and a U250 FPGA.
Experimental results show that with balanced II, the number
of DSPs can be reduced up to 42% while achieving the same
IIs. When compared to other FPGA-based LSTM designs, our
design can achieve about 4.92 to 12.4 times lower latency.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are a type of archi-

tecture specialized for processing ordered data, for example

time-series data. These networks have applications in speech

recognition [1], DNA sequence analysis, and physics exper-

iments [2, 3]. An exciting physics experiment concerns the

detection of gravitational waves, predicted by Albert Einstein

a hundred years ago. The first detected wave came from a

collision between two black holes, reaching the earth after

1.3 billion years. The detectors at the Laser Interferometer

Gravitational-Wave Observatory (LIGO) produce time-series

data, as they capture cosmic events such as black hole mergers

which happen at unknown times and of varying durations.

Accelerating RNN inference using reconfigurable accelerators

such as FPGAs would enable sophisticated processing, such

as anomaly detection, to run in real time on the data stream

from the detector and generate a fast response. Among the

many RNN variants, the most popular one is Long Short-Term

Memory (LSTM). FPGAs have been used to speed up the

inference of RNNs/LSTMs [1, 4, 5, 6, 7], which offer benefits

of low latency and low power consumption compared to CPUs

or GPUs.

Fig. 1: Unbalanced layer IIs among various cascaded layers

in an RNN model

However, existing LSTM accelerators cannot support low-

latency and effective multi-layer execution, especially when

targeting small LSTM models with requirements of ultra low

latency and ultra high throughput for scientific applications.

Many existing FPGA-based LSTM accelerators are designed

with the same idea as their GPU counterparts, which utilize a

single computational engine architecture where the engine is

designed to run one block or layer at one time, and the whole

network is processed by running the engine repeatedly [5, 6].

Their design consists of arranging computing resources to

form a single core with many processing elements, leveraging

data level parallelism. For example, Brainwave [5] is a single-

threaded neural processing unit (NPU) which has 96,000 pro-

cessing elements (PEs). However, when the size of the targeted

LSTM layer is small, these hardware resources will not be

fully utilized, e.g., when targeting a small LSTM layer, the

Brainwave hardware utilization is lower than 1% [5], while the

utilization of the NPU can be lower than 15% [6]. Moreover,

since a single engine is used, the various layers must have the

same amount of parallelism which is not flexible to take full

advantage of the customizability of FPGAs. Thus, this work

applies a layer-wise architecture to map all the LSTM layers

on-chip and perform the computation for different layers on

their own unit with independent optimization to achieve low

latency and high system throughput.

Unlike CNN inference designs [8, 9] which only have

forward datapaths and can be fully pipelined, there are feed-

back datapaths in RNN inference and data dependencies exist

between the current timestep and the next timestep. Unrolling

the timesteps fully may help, however the sequence length

117

2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP)

2160-052X/21/$31.00 ©2021 IEEE
DOI 10.1109/ASAP52443.2021.00025



(timestep) of an LSTM model is usually larger than the

number of layers [10], e.g., 1500 timesteps in an LSTM

layer in DeepSpeech [11], which makes the full unrolling

of timesteps impractical on FPGAs because of the limited

hardware resources.
To accelerate an RNN model with multiple LSTM layers,

this work proposes coarse grained pipelining with balanced II

(initiation interval) to improve system throughput and reduce

latency. This is achieved by identifying appropriate reuse

factors for each layer, resulting in fast response and enhanced

resolution for processing sensor data. It can achieve the best

(smallest) system level II for a neural network with multiple

LSTM layers on a given FPGA. The II is the number of clock

cycles before a unit can accept new inputs and is generally the

most critical performance metric in systems [12]. A perfect

pipeline has II = 1 cycle, as this is required to keep all

pipeline stages busy. However, the II of an LSTM layer is

generally larger than one because of the data dependencies.

For a model with multiple layers in sequence, the initiation

interval of this model is decided by the largest II among

all the layers [13], as shown in Fig. 1. The unbalanced IIs

in various layers result in hardware inefficiency and low

throughput. Accelerating a deep LSTM model is challenging

since the computation load varies greatly among layers and

data dependency exists both time-wise and layer-wise.
Our approach is to ensure all the layer IIs are balanced to

eliminate system stall, so that the system becomes a coarse

grained seamless pipeline. It increases pipeline parallelism

by performing more computations without increasing latency,

and without introducing additional memory traffic or storage.

Unbalanced IIs in a pipeline is a common issue, but few

studies address balancing IIs in the context of accelerating

multi-layer DNNs, especially for RNNs/LSTMs. The proposed

coarse-grained pipelining is similar to layer parallelism but

the granularity in our approach does not need to cover an

entire layer. An LSTM layer can still be divided into multiple

blocks with pipeline parallelism. In addition, a customizable

template for this architecture has been designed, which enables

the generation of low-latency FPGA designs with efficient

resource utilization using high-level synthesis (HLS) tools.

Moreover, We develop an optimization algorithm such that,

given the dimensions of the LSTM layers and a resource

budget, computes a partitioning of the FPGA resources for

an efficient
To the best of our knowledge, this is the first work to pro-

pose balancing IIs for a coarse-grained pipelined architecture

to enable fast multi-layer LSTM data analysis in gravitational

wave experiments. This work could help improve performance

of next generation Gravitational Wave detectors.
We make the following contributions in this paper:

• A novel technique for balancing IIs of multi-layer LSTM

inference to increase hardware efficiency and system

throughput for data analysis in gravitational wave exper-

iments.

• A scalable and low latency LSTM template which enables

the generation of low-latency FPGA designs with efficient

Fig. 2: Structure of an LSTM cell

resource utilization by HLS tools. We open source the

templates with some examples1.

• A comprehensive evaluation of the proposed method and

hardware architecture.

The specific RNN layered structure and coefficients are

LIGO specific, but the need for low latency would benefit

many other applications, especially those requiring real-time

response, e.g., low latency would benefit the Large Hadron

Collider (LHC) physics [14], adaptive radiotherapy [15] and

electronic trading [16]. The proposed techniques can be

adapted to address these other applications.

II. BACKGROUND AND PRELIMINARIES

RNNs/LSTMs have been shown to have useful properties

with many significant applications. This study follows the

standard LSTM cell [4, 5, 6]. 2 shows an LSTM cell. It

consists of three main parts. At the front, there are four LSTM

gates which perform matrix-vector multiplication (MVM),

followed by activation functions. While in the tail, there are

a few element-wise operations. The hidden state ht, which

will be fed back from the tail to the front, is produced by the

following equations:

it = σ(Wi[xt, ht−1] + bi), ft = σ(Wf [xt, ht−1] + bf )

gt = tanh(Wg[xt, ht−1] + bu), ot = σ(Wo[xt, ht−1] + bo)

ct = ft � ct−1 + it � gt, ht = ot � tanh(ct)

Here, σ, tanh and � stand for the sigmoid function, the

hyperbolic tangent function and element-wise multiplication

respectively. i, f, g and o represent the input, forget, input

modulation and output gate respectively. The input modulation

gate is often considered as a sub-part of the input gate.

The input vector and hidden vector are combined so that W
represents the weight matrix for both vectors. Bias term is

represented as b. The output ct is the internal memory cell

state and ht is the output of the cell, also called the hidden

vector, which is passed to the next timestep or next layer.

III. DESIGN AND OPTIMIZATION METHODOLOGY

This section analyzes unbalanced II issues and introduces

several optimizations for multi-layer RNN designs. We define

a few parameters, as shown in Table I for later calculations.

1https://github.com/walkieq/RNN HLS
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TABLE I: System Parameters

IIsys System initiation interval

TS Timestep number

iiN Timestep loop initiation interval in the LSTM layer N

IIN Initiation interval for layer N

LTN Latency of a single timestep loop for layer N

LTα Latency of the unit α; α could be mult / mvm / tail / σ

xt The input vector x at timestep t

ht The hidden vector h at timestep t

Wx LSTM gates weight matrix for input vector.

Wh LSTM gates weight matrix for hidden vector.

Lx Number of elements in the input vector x

Lh Number of elements in the hidden vector h

Rx Reuse factor for MVM involving LSTM input vector xt

Rh Reuse factor for MVM involving LSTM hidden vector ht

Rt Reuse factor for LSTM tail unit

Fig. 3: Overview of the LSTM-based autoencoder

A. LSTM-based autoencoder for gravitational wave detection

Fig. 3 shows an overview of the LSTM-based autoencoder

used for gravitational wave detection. The models and the

dataset are available on GitHub [17, 18]. The autoencoder

consists of two components, an encoder and decoder. The

encoder learns to transform data from the input layer into a

latent-space representation, which acts as a data ”bottleneck”.

The decoder then reconstructs the output of the reduced latent

representation as close as possible to its original input. When

the error between input and reconstructed values is high, the

input is flagged as anomalous. In this work, an LSTM-based

autoencoder is used as an unsupervised prediction model to

detect the anomalies for gravitational waves. This works by

only training the LSTM-autoencoder to encode and decode

normal background conditions at the LIGO interferometers.

When an event containing a gravitational wave passes through

the autoencoder, the model cannot encode and decode the

additional strain provided by the gravitational wave. Both the

encoder and decoder have two LSTM layers. A TimeDis-

tributed dense layer is applied before the data output.

B. System II for multi-layer LSTM networks

Accelerating a deep LSTM model which has multiple layers

is challenging since the computation varies greatly among

layers and data dependencies exist both time-wise and layer-

wise. An efficient technique to improve throughput and reuse

computational resources is to pipeline hardware units. If each

input can overlap with itself, we can achieve simultaneously

inference parallelism within a run by coarse grained pipelining

as shown in Fig. 1.

However, a naive implementation can result in a large

number of idle cycles due to inter-layer dependencies since the

Fig. 4: Overview of the method used to balance IIs

pipeline is not seamless; a particular layer might stall until the

previous layer finishes. The unbalanced IIs in various layers

results in hardware inefficiency and low system throughput.

Typically, the particular layer with the largest II should be

optimized since it dominates the system II. Generally, the II

cycles can be reduced if more hardware resources are allocated

to that particular layer by adding more parallelisms. So the

targeted layer should be allocated as many hardware resources

as possible. However, the hardware resources on a given FPGA

is limited, which means that the other layers may occupy less

hardware resources. When the resources for a layer decrease,

the II of that layer will increase. Then this layer may become

the one that has the largest II and dominates the design. Thus,

the optimal case is that all the layers have the same II, in which

scenario the design utilizes the hardware resources efficiently

and achieves the highest system throughput as shown in Fig. 4.

Besides, we find that we do not need to unroll every unit in

order to achieve the lowest II. Some hardware resources can

be saved from the units which do not require full unrolling.

And then these saved hardware resources can be reallocated

to the other units which dominate the system to achieve low

initiation intervals. As shown in Fig. 4, the hardware resources

for layer 1 can be reduced so that the saved resources can be

reallocated for layer 0. The IIlayer1 is increased to II ′layer1
while the IIlayer0 which is the largest can be reduced to

II ′layer0 so that the final system IIsys can be reduced.

Partitioning FPGA resources to enhance throughput has

been studied for CNNs [8, 9, 19, 20] but they do not touch

the RNNs and the recurrent nature as well as the data

dependencies in RNN computations, which are absent from

CNNs. We develop an optimization algorithm such that, given

the dimensions of the LSTM layers and a resource budget,

computes a partitioning of the FPGA resources for an efficient

and balanced high-performance design. Our algorithm runs in

seconds and produces a set of reuse factors [14]. We then

use these factors to parameterize an LSTM template design

specified using HLS to form a complete multi-layer LSTM

implementation. Since all the layers have the same II, we only

need to focus on the optimization for a single LSTM layer.

The layer II and system II are

IIN = iiN × TS (1)

IIsys = max(II0, II1, ..., IIN ) (2)

The original IIN should be IIN = iiN ×TS+(LTN − iiN ).
However, the extra (LTN − iiN ) cycles can be eliminated

after using the rewind for Vivado HLS #pragma pipeline.
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Fig. 5: An LSTM layer after performing the transformation

The rewind is an optional keyword that enables rewinding,

or continuous loop pipelining with no pause between the

end of one loop iteration and the start of the next iteration.

So the proposed balancing method has two benefits. First,

it improves throughput due to pipelining. Second, it reduces

system latency since if the LSTM loop initiation interval, iiN ,

can be reduced by 1 cycle, then the system latency can be

reduced by TS cycles in total according to Equation (1).

C. The II of a single LSTM layer

This work splits one LSTM layer into two sub-layers. The

first one is the mvm x which has no data dependencies and

performs MVM operations for the LSTM gates involving the

input vectors while the second one includes all the others

which form a loop with data dependencies, as shown in Fig. 5.

For accelerating LSTM layers used for gravitational wave

detection, the system is designed to achieve the average

latency (system II) as small as possible. To achieve the lowest

system II, fully unrolling the neural network model is an

effective method which utilizes a multiplier only once in the

computation of a layer. E.g., a fully connected (FC) layer with

input size num in and output size num out can achieve the

lowest latency if there are num in × num out multipliers.

This is the most parallel and fast way a layer can be computed.

It has been demonstrated in the HLS4ML based DNN designs

for particle physics [14]. However, unlike forward computation

in the FC layers used in the design of [14], there are data

dependencies in LSTM computations.

After we have split the LSTM layer into two sub-layers,

the two can be pipelined as shown in Fig. 6. According to

the discussion in Section III-B, the optimal case is when the

two sub-layers have the same II. Since the second sub-layer is

complex and its II is usually larger than the one of the first sub-

layer, the parallelism for the first sub-layer does not need to

be as large as possible, resulting in a reduction of the number

of multipliers needed to process the mvm x unit. The saved

multipliers can then be reallocated for other layers to achieve

a lower system II. Reducing the parallelism of mvm x does

not hurt the system latency. Normally, each input vector can

finish the calculation in the shadow region of processing the ht

because of the pipelining. Besides, the cycles for processing

the first mvm x can be eliminated when calculating the layer

II because of the keyword of rewind in Vivado HLS.

While the second sub-layer may seem complex, if the design

is split into more sub-layers, these sub-layers cannot be coarse

grained pipelined. The reason is that the start of the next

Fig. 6: Coarse grained pipelining in an LSTM layer

Fig. 7: Timestep overlapping

iteration needs the result from the current iteration, as shown

by the red arrows in Fig. 6

D. Overlapping the computations in cascaded LSTM layers

In the proposed coarse grained pipelining, the processing

of the cascaded LSTM layers can be overlapped. The second

layer does not need to wait for the whole sequence of hidden

vectors to be ready. Just one hidden vector from the former

LSTM layer is sufficient to start the calculation of the next

LSTM layer as shown in Fig. 7. It helps to reduce the overall

system latency. It has to be noted that the LSTM2 can only

start after the LSTM1 calculation is completed, since only the

last timestep hidden vector is returned in LSTM1, which is

decided by the structure of the autoencoder.

IV. IMPLEMENTATION

A. HLS implementation

This work maps all the layers on-chip and different layers

run in a fashion of coarse grained pipelining to increase the

system throughput. Besides, this work always seeks to achieve

extremely low latency by utilizing as many hardware resources

as possible. However, because of the data dependencies be-

tween different timesteps in LSTM calculation, the initiation

interval is typically larger than 1. In this case, HLS will

automatically increase the initiation interval until it can find a

feasible schedule. For complex codes it is common to partition

functionality into multiple modules, streaming data between

them through explicit interfaces. Smaller components are more

modular, making them easier to reuse, debug and verify. The

effort required by the HLS tool to schedule code sections

increases dramatically with a large number of operations that
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need to be considered for the dependency and pipelining

analysis. Scheduling logic in smaller chunks is thus beneficial

for compilation time and sometimes also for system latency.

Our experiments show that inlining every function, especially

the mvm x and mvm h in the LSTM gates , brings large II

when the involved matrices are large.

The trade-off between latency, throughput and FPGA re-

source usage is determined by the parallelization of the in-

ference calculation. This work adopts the reuse factor used

in [14] to fine tune the parallelism, which is configured to

set the number of times a multiplier is used in the com-

putation of a module. In one extreme, all multiplications

can be performed simultaneously using a maximal number

of multipliers, while alternatively in the other extreme, one

can use only one multiplier and perform the multiplications

sequentially; between these extremes the user can fine tune

algorithm throughput versus resource usage.With a reuse factor

of one, the computation is fully parallel. With a reuse factor

of R, 1
R of the computation is done at a time with a factor of

1
R fewer multipliers.

The total number of multiplications required to infer a given

LSTM layer using 16-bit is:

DSPlayer =
4× Lx× Lh

Rx
+

4× Lh2

Rh
+ 4× Lh (3)

DSPmodel =
N∑

layer=1

DSPlayer ≤ DSPtotal (4)

Compared with the number of multipliers used in LSTM gates,

the one required in the LSTM tail unit is small so the Rt is

set to 1. Otherwise, 4×Lh
Rt

should be used in Equation (3).

Besides, since the LSTM cell status, ct−1, is represented in

32-bit, the ft×ct−1 in the LSTM tail needs two Xilinx DSPs to

implement one multiplier. Thus, the LSTM tail unit consumes

4×Lh DSPs. The activation function sigmoid is implemented

using BRAM-based lookup tables with a range of precomputed

input values. The hyperbolic tangent function is implemented

as piecewise linear function [21, 22] to reduce the latency. In

the next subsection, we introduce our method for determining

Rx and Rh with a given FPGAs.

B. Design space exploration

FPGA multipliers are pipelined; therefore, the latency of

one MVM computation, LTmvm, is approximately

LTmvm = LTmult + (R− 1)× IImult (5)

where LTmult is the latency of the multiplier, IImult is

the initiation interval of the multiplier, which is one cycle

in this work. Equation (5) is approximate because, in some

cases, additional cycles could be introduced for signal routing.

Besides, the Vivado HLS tool will replace a multiplier by an

adder when the corresponding weight is simple.

As we discussed in Section III, the optimal case is that the

two sub-layers in an LSTM layer have the same II, which

results in Equation (6).

IIsublayer = LTmvm x = LTmvm h + LTσ + LTtail (6)

Fig. 8: Pareto frontier

where LTmvm x and LTmvm h are the latencies of the MVM

units involving input vectors x and hidden vectors h respec-

tively. LTσ is the latency of the sigmoid function and LTtail

is the latency of the LSTM tail unit. These units are shown

in Fig. 5. If we substitute the Equation (5) into Equation (6)

and then we get

Rx = Rh + LTσ + LTtail. (7)

The architecture designed in this section serves as a baseline

to deploy our methodology, whose goal is to find Pareto-

optimal sets of reuse factors of the proposed accelerator to

achieve a good trade-off between our design objectives, which

are hardware resources, energy, and performance. To achieve

low latency, the reuse factors should be as small as possible

since when they decrease the parallelism increases, leading to

high throughput. However, when reuse factors decrease, the

required hardware resources increase and may easily exceed

the number of total hardware resources on an FPGA. If we

substitute the Equation (7) and Equation (3) into Equation (4),

we can get a quadratic inequality of Rh, which gives the

minimum Rh for a given number of DSPs.

Fig. 8 illustrates the exploration results of an LSTM layer

with (Lx,Lh) = (32, 32) and different values of reuse factors,

which are from 1 to 10. The red line represents the cases

with the same Rx and Rh. The blue line shows the cases

with balanced IIs, where Rx and Rh meet the constraint

in Equation (7). For simplicity, LTσ is set to 3 and the LTtail is

5. Please note that LTσ and LTtail are both system dependent

and can vary depending on clock frequency and FPGA devices.

After balancing IIs, the Pareto frontier moves from red line to

blue line. With the proposed technique, we can achieve a same

II with less DSP usage (from point A to point C) or we can

achieve a better II (from point A to point B) as shown in Fig. 8.

V. EVALUATION AND ANALYSIS

This section presents the performance of the RNN models

developed for gravitational wave detection on two generations

of Xilinx FPGAs demonstrating the scalability of the proposed

optimization.
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Fig. 9: AUCs and ROC curves for various autoencoders

A. Experimental setup

Simulated gravitational waves are generated using the

GGWD library [23]. Noise is generated at a specified power

spectral density (PSD) to mimic normal detector background

conditions using PyCBC [24]. This approach to simulated data

generation ignores glitches, blips, and other transient sources

of detector noise, though this algorithm can be re-purposed for

identifying these detector glitches with unsupervised methods.

Signal events are generated simulating GW production from

compact binary coalescences using PyCBC [24], which itself

uses algorithms from LIGO’s LAL Suite [25]. Signal events

containing GWs were created overlaying simulated GWs, with

the SEOBNRv4 Approximant, on top of detector noise. This

provides an analogous situation to a real GW, in which the

strain from the incoming wave is recorded in combination

with the normal detector noise. Data are then whitened and

band-passed, then normalized. The training set has 240K

gravitational wave events. The validation set and test set have

60k and 50k events respectively. To study the performance

and limitations of the proposed optimizations and hardware

architecture, the designs are implemented using Vivado HLS

19.2. Two generations of Xilinx FPGAs, the ZYNQ 7045 and

U250, are evaluated and compared with previous work.

B. Model accuracy

To quantify the performance of the autoencoders for

anomaly detection implemented by various neural networks,

we use the AUC metric, or area under the Receiver Oper-

ating Characteristic (ROC) curve, as shown in Fig. 9, with

higher AUC corresponding to better performance. The default

timestep [17] of 100 is used. AUC is a common metric for

evaluating models as it is classification-threshold-invariant.

The threshold for flagging an anomaly by its loss spike can

be calculated by setting a false positive rate (FPR) on noise

events. The higher the threshold for detecting an anomaly,

the lower the FPR will be. This threshold can be used to

calculate the corresponding true positive rate (TPR) on signal

events. We observe that the LSTM-based autoencoder has the

highest AUC, and hence the best performance, among the

TABLE II: Performance comparison of the FPGA designs

Z1 Z2 Z3 U1 U2 U3

FPGA Zynq 7045 U250

DSP

total
900 12,288

Rh 1 2 1 1 1 4

Rx 1 2 9 1 9 12

LUT

used

45k

(21%)

45k

(21%)

43k

(20%)

449k

(26%)

463k

(27%)

516k

(30%)

DSP

used

1,058

(118%)

578

(64%)

744

(83%)

11,123

(91%)

9,021

(73%)

2,713

(22%)

iilayer
cycles

9 10 9 12 12 13

IIlayer
cycles

72 80 72 96 96 104

unsupervised designs [17] with various NN layers, including

GRU, CNN and DNN. Additionally, Qkeras [26] is used to

quantize the LSTM-based autoencoder to 16-bit. We find this

precision to have a negligible effect on the NN performance.

C. Performance and efficiency comparison

To illustrate the benefits of our proposed approach, two

LSTM-based autoencoders are evaluated. The first one is a

small autoencoder which has the same architecture as the one

used in gravitational wave detection described in Section III-A

but only has two LSTM layers, each having 9 hidden units.

The results are shown in Table II. It is running at 100MHz

with 8 timesteps. The weights and input are 16 bits. The bias

and LSTM cell status are both 32 bits to keep the accuracy.

To achieve the lowest latency, the reuse factors should be set

to one so that all the operations are unrolled, e.g., the design

Z1 in Table II. However the required number of DSPs exceed

the one of the total DSPs on this FPGA. One may increase

the re-use factor from one to two to fit the design into this

FPGA device. However the cost is that now the timestep loop

initiation interval, iilayer, increases by one cycle which results

in TS cycles increase for the layer II, e.g., the design Z2

in Table II. However, it is not necessary to fully unroll all

units in order to achieve the lowest latency. Some hardware

resources can be saved from the units which do not require

full unrolling and can be allocated to the other units which

are dominating to achieve low latency.

With the proposed balancing of IIs, some of the DSPs

resources can be rearranged from implementing mvm x to

mvm h to achieve lower latency, e.g., the design Z3. So

this design can still achieve the lowest II like the case with

full unrolling, and it is still able to fit in this FPGA device

as shown in Table II, showing the benefits of balanced IIs.

Besides, with heterogeneous reuse factors, the parallelism of

the design can be fine-tuned to make the trade-off between

latency, throughput and FPGA hardware resources as shown

in Fig. 10. With the balanced II, the number of DSPs can be

reduced up to 42% while achieving the same IIs.

Besides, to show the adaptability of our technique, the

nominal autoencoder [17] developed for gravitational wave de-

tection is implemented using a larger FPGA, U250, running at

300MHz with 8 timesteps. It has four LSTM layers which have

122



Fig. 10: Initiation intervals and DSP numbers using various

reuse factor Rh on Zynq 7045

a number of hidden units equal to 32, 8, 8, 32 respectively and

one TimeDistributed dense layer before the output. Since the

U250 has 12,288 DSPs, the whole fully unrolled autoencoder

can be fit into this FPGA with both Rx and Rh set to one,

shown as the design U1 in Table II. With our technique of

balancing IIs, the DSPs of the design U2 can be reduced by

2102 while achieving the same design IIs and same design

throughput. After HLS synthesis, the II is slightly larger than

the one estimated by the performance model since the DSP

usage is very high and some additional cycles are incurred for

signal routing. The design U3 is an interesting version with

reuse factors (Rh, Rx) as (4, 12). It achieves a slightly worse

II, as shown in Table II, however it consumes 3.3 and 4.1

times less DSPs than design U2 and design U1 respectively.

Sometimes, the user may only care about the latency of the

LSTM running on the FPGAs, then they can just take the

point that gives them the lowest latency with most resources.

However, if the user can bear with a slightly reduced latency

then they can choose a smaller and cheaper FPGA as shown

in Table II. One can choose between using less resources but

increasing latency and vice versa. Please note because of the

data dependence, the iilayer could be hard to optimize to 1.

However, it could be further optimized to a smaller value using

fast multipliers or fast activation functions. We leave that for

future work since it has a limited impact on the conclusions

we draw from our study in this paper.

To compare the performance of the proposed design on

FPGA with other platforms, we implement the same LSTM-

based autoencoder on Intel CPU and NVIDIA GPU. The

AVX2 vector instructions are enabled for the CPU while the

CuDNN libraries are enabled for the GPU. Compared with

the designs running on CPU and GPU, our FPGA design

runs much faster, as shown in Table III. We are processing

each inference sequentially (batch 1) since requests need to

be processed as soon as they arrive. The GPUs provide large

throughput by running many parallel inferences but may not

perform well when the batch is small, especially there are

data dependencies in LSTMs. However, FPGAs work fast on

a single inference with a fully unrolled tailor-made design.

TABLE III: Latency comparison of the FPGA design versus

CPU and GPU

CPU GPU This work

Platform Intel E2620 TITAN X U250

Precision F32 F32 16 Fixed

Latency 39.7 ms 32.1 ms 0.40 us

TABLE IV: Comparison with previous FPGA-based LSTM

designs for anomaly detection and physics

[28], 2018 [27], 2020 This work This work

FPGA
Kintex7

K410T
KU115 U250 U250

Model
Single

Layer

Single

Layer

Single

Layers

Four

Layers

Application

Domain

Anomaly

Detection
Physics -

Anomaly

Detection

LSTM hidden

units Lh
32 16 32 32,8,8,32

DSPs 1091 2374 2221 9021

Preci. (bits) 16 fixed 16 fixed 16 fixed 16 fixed

Freq. (MHz) 155 200 300 300

Latency (us) 4.27 1.35 0.343 0.867

Some other HLS-based RNN/LSTM accelerators on FPGAs

are compared with ours in Table IV. In this table, we focus

on latency since the throughput, power or power efficiency of

the other designs are not reported. Our design achieves 4.92

to 12.4 times lower latency compared to the state-of-the-art

FPGA designs targeting anomaly detection. Our single-layer

design, with a similar amount of DSP resources to another

design [27], is 3.9 times faster as shown in Table IV. Note

that because of the structure of an autoencoder, the processing

of the encoder and the decoder cannot be overlapped, which

increases the end-to-end latency of the design. Nevertheless,

we still achieve better latency than the others which contain

only one LSTM layer. Moreover, while the other designs

report Vivado HLS synthesis latency, we report the RTL co-

simulation latency which is likely to be more accurate.

VI. RELATED WORK

A latency-optimized LSTM-based anomaly detection is pro-

posed in [28] on FPGAs and we achieve 4.9 times faster than

it. [14] proposes the HLS4ML tool and introduces a deep FC-

layer model for substructure-based jet tagging in LHC physics.

[27] introduces HLS LSTMs for the same physics problem.

Partitioning FPGA resources to improve throughput has

been studied for CNNs [8, 9, 19, 20], but they do not touch the

RNNs and the recurrent nature and data dependency in RNN

computations which are absent in CNNs. The FiC-RNN [29]

proposes to accelerate multi-layer RNNs using an FPGA

cluster, in which each RNN layer occupies a single FPGAs.

The authors in [10] put each LSTM layer on each multi-core

to achieve coarse grained pipelining. In [30, 31, 32, 33], the

batching technique is used to improve the hardware throughput

and utilization for LSTM inferences. However, latency can

suffer since different inputs may not come at the same time,

meaning that a newly arrived request has to wait until the

batch is formed, which imposes a significant latency penalty.
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Some of the previous studies [1, 34, 35, 36, 37, 38] are

focusing on weight pruning and model compression to achieve

good performance and efficiency. Some researchers use low

bitwidth, even binarized, datapaths [30, 39, 40] and investi-

gate the trade-off between precision and performance. These

studies are orthogonal to our proposed approach and hardware

architecture. These techniques can be complementary to our

approach to achieve even lower latency of RNN inferences on

FPGAs.

VII. CONCLUSIONS AND FUTURE WORK

This paper aims to pioneer new data analysis architectures

to support next-generation low-latency anomaly detection on

time series data, relevant to many fundamental physics exper-

iments including gravitational wave detection. We present a

novel approach for minimizing the initiation intervals for the

execution of a multi-layer LSTM network by optimizing the

reuse factors for each layer. Results show latency reduction of

up to 12.4 times over the existing FPGA-based LSTM design.

Current and future work includes exploring the use of new

FPGA resources such as the AI Engines [41] and the AI Tensor

Blocks [42], and incorporating the proposed approach into the

design of the data analysis architecture for next-generation

gravitational wave detectors.
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