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Abstract: Contemporary advances in neural networks (NNs) have demonstrated their potential in
different applications such as in image classification, object detection or natural language processing.
In particular, reconfigurable accelerators have been widely used for the acceleration of NNs due to
their reconfigurability and efficiency in specific application instances. To determine the configuration
of the accelerator, it is necessary to conduct design space exploration to optimize the performance.
However, the process of design space exploration is time consuming because of the slow perfor-
mance evaluation for different configurations. Therefore, there is a demand for an accurate and fast
performance prediction method to speed up design space exploration. This work introduces a novel
method for fast and accurate estimation of different metrics that are of importance when performing
design space exploration. The method is based on a Gaussian process regression model parametrised
by the features of the accelerator and the target NN to be accelerated. We evaluate the proposed
method together with other popular machine learning based methods in estimating the latency and
energy consumption of our implemented accelerator on two different hardware platforms targeting
convolutional neural networks. We demonstrate improvements in estimation accuracy, without the
need for significant implementation effort or tuning.

Keywords: field-programmable gate array; deep learning; neural network; performance estimation;
Gaussian process

1. Introduction

Recently, neural networks (NNs) have demonstrated superhuman performance in
a multitude of tasks, such as in image classification [1], object detection [2], semantic
segmentation [3] or natural language processing [4]. NNs are also making their way into
real-life practical applications, such as in medical diagnostics [5], autonomous driving [6]
or aviation [7–9]. While in medicine, the applications of NNs are primarily limited by their
algorithmic performance, in other practical scenarios such as in autonomous driving, their
hardware performance needs to also be considered in addition to their decision making
capabilities. The hardware performance is usually considered in terms of latency or energy
efficiency, which is especially crucial when aiming at real-time response rates. While it is
indeed possible to run NNs on stock hardware platforms such as central processing units
(CPUs) or graphical processing units (GPUs), to achieve peak hardware performance, it is
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also necessary to consider reconfigurable hardware accelerators [10]. Considering the rapid
pace of NN architecture design, accelerators need to be partially reconfigurable such that
they are adaptable to the new generation of NN designs, while still achieving favourable
hardware performance.

Therefore, to fully utilise the performance capabilities of a reconfigurable accelerator,
it is necessary to perform design space exploration (DSE) [11] to determine the optimal hard-
ware configuration of the accelerator, given the desired NN architectures. The search space
when performing DSE is determined by the available accelerator’s configuration domains
which can, for example, be determined by the levels of implementable parallelism [10].
Naively, DSE is conducted by systematically synthesising different configurations of a
given accelerator on the hardware platform and measuring the real-world performance
of the desired NNs on the accelerator. Given a large search space, consisting of different
configurations of the accelerator, the time and resource costs of actually implementing
the accelerator on the target hardware platform limit the speed of DSE. Practically, it is
therefore necessary to accurately estimate the hardware performance during DSE with
respect to multiple different hardware specifications, to enable the fast exploration and
exploitation of the available configurations for the given NNs.

There are several performance estimation frameworks for reconfigurable accelera-
tors [12–14]; however, estimating the performance without knowing the run-time intricacies
when running different NNs is still a challenging task. There are two main reasons for this
complication: (1) the cost of executing a certain operation on hardware varies by on/off-
chip communication, synchronisation, control signals, I/O interruptions, in particular for
the NN accelerators, the NN’s architecture, complicating the estimation; (2) it is difficult
to accurately select the most representative design features for all hardware specifications
during performance estimation.

In this work, we propose a novel approach for performance estimation of custom
convolutional neural network (CNN) accelerators. The proposed method constitutes a
Gaussian process regression model [15] coupled with features that can be readily read off
datasheets for the underlying hardware platform or the target algorithm (a tutorial code is
available at https://git.io/Jv31c). We evaluate the method for estimating layer-wise latency,
as well as network-wise latency and energy consumption. Experiments were conducted
with respect to two hardware platforms, the Intel Arria GX 1150 field-programmable
gate array (FPGA), as well as a structured application-specific integrated circuit (ASIC)
implementation of the targeted accelerator. We compared the proposed approach to
other machine learning-inspired methods such as linear regression (LR), gradient tree
boosting (GTB) or a feed-forward fully-connected NN. The proposed approach is simple
to implement, fast in providing predictions and more accurate in comparison to the other
compared methods in estimating both latency and energy. This article extends our previous
work [16] by further evaluation with respect to estimating an additional hardware metric,
energy consumption, by benchmarking the proposed method with respect to an additional
hardware implementation platform (ASIC) and by supportive software experiments. The
further experimentation proves that the Gaussian process is an accurate estimator that can
be used to estimate the hardware performance for running CNNs.

In Section 2, we discuss the background on NN design and the related work on
performance estimation. Then, in Section 3, we introduce the proposed method, followed
by Section 4, where we describe the implemented hardware design of the benchmarked
accelerator. Then, we present the experiments, results and discussion in Section 5. Lastly,
we conclude the work in Section 6.

2. Background and Related Work

In this section, we present an overview of NNs and their compute pattern and related
work on performance estimation methods.

https://git.io/Jv31c
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2.1. Neural Networks

NNs are built by stacking several mathematical operations on top of each other, other-
wise known as layers. In this work, we mainly demonstrate our method on an accelerator
for CNNs; however, the proposed method is not limited to accelerators for CNNs. The
processing of a CNN is usually done in a layer-by-layer fashion; nevertheless, most modern
networks [17–19] have residual or concatenative connections between them [17]. Specifi-
cally for CNNs, frequently used layers are 2D convolutional, fully-connected or pooling
layers interchanged with element-wise applied non-linearities [20]. Convolutional or fully-
connected layers aim to learn useful features that can be used to recognise patterns in the
input data, while pooling aims to reduce the representation and pool the most important
information, while processing the data through the NN. Practically, convolutional and
fully-connected layers take up over 90% of the computation and energy consumption in a
CNN model [2,21,22]. The algorithm behind 2D convolution is shown in Algorithm 1. The
notation used in this paper is presented in Table 1.

Algorithm 1 Convolution.
Input: Input feature map I of shape C× HI ×WI ; weight matrix W of shape F×C×K×K

Output: Output feature map O of shape F× HO ×WO
1: for ( f = 0; f < F; f ++)

2: for (c = 0; c < C; c ++)

3: for (h = 0; h < HO; h ++)

4: for (w = 0; w < WO; w ++)

5: O[ f ][h][w] += ∑K−1
i=1 ∑K−1

j=1 W[ f ][c][i][j] ∗ I[c][h ∗ s + i][w ∗ s + j]

Table 1. Notation used in this paper.

HI Height of the input feature map WI Width of the input feature map
HO Height of the output feature map WO Width of the output feature map
K Kernel size F Number of filters
C Number of channels s Stride in a convolution
W Weights in a neural network PF Parallelism in the filter dimension
PC Parallelism in the channel dimension PV Parallelism in the data vector dimension

MCLK (MHz) Memory access clock cycle time LCLK (MHz) Logic clock cycle time
MEFF (%) Memory transfer efficiency S (bits) Memory transfer size
DW (bits) Processing data width M Number of input features

B Number of layers in a neural network N Number of training samples

As illustrated in Algorithm 1, the convolution accepts a C × HI ×WI sized input
feature map, and then, the input is convolved with a kernel with the shape of F×C×K×K.
Each kernel window with the size of K×K is applied to one channel of the input HI ×WI by
sliding the kernel with a stride of s to produce one output feature map HO ×WO; then, the
results of C channels are accumulated to produce one filter of the output. All filters of the
output feature maps F× HO ×WO are generated by repeating this process F times. A fully-
connected layer can be re-interpreted as a convolution by considering the kernel size K = 1.
Utilizing this compute pattern, it is then possible to summarize the number of compute
operations, as well as the number of memory transfers, as shown in Table 2. At the same
time, given the different for-loops in Algorithm 1, it is possible to parallelise the convolution
operation in each for-loop dimension: filter, channel, data vector or kernel. In Section 4,
we introduce the implemented accelerator, which is capable of taking advantage of this
property in multiple dimensions.
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Table 2. Number of operations and the data size for a convolution.

Sizes Number of Operations/Data Size

Number of compute operations F× C× HI ×WI × K× K
Input size HI ×WI × C

Weights size F× C× K× K
Output size HO ×WO × F

2.2. Performance Estimation

As discussed in Section 1, the most accurate and reliable method for determining
the performance of a CNN for a specific system configuration is deploying the CNN on
the hardware platform and measuring its performance. A significant drawback of this
method is that it requires re-implementation for different hardware specifications on the
hardware’s fabric. Given a large number of potential configurations that might need to be
benchmarked during DSE, this approach is too time consuming and resource demanding.
Therefore, it is more feasible and practical to perform DSE with respect to an estimate of
the performance at the software level, rather than running the CNN for each hardware
configuration of different hardware architectures. Considering a complex accelerator for
multi-layer CNNs, it is likely that due to the intricacy of the data manipulation or the
compute, the performance for the CNNs will need to be estimated on a case-by-case
basis. Therefore, this approach is infeasible in general, as it is usually constrained to a
single hardware configuration. Nevertheless, there have been a few researchers who have
proposed general performance estimation methodologies [12–14].

A performance estimation framework for reconfigurable dataflow platforms was pro-
posed by Yasudo et al. [12], which can analytically determine the number of accelerator
units suitable for an application. Dai et al. [13] proposed an estimation method based on
a GTB and a high-level synthesis report. However, their method requires a significant
amount of data and features from the synthesis report, which might not be available,
especially when high-level synthesis is not being used to implement the accelerator. Liu et
al. proposed a general heuristic based method [14] for estimating the performance of FPGA
based CNN accelerators and that is now used as the standard go-to estimation method.
The heuristic analytic approach does not depend on any potentially collected measure-
ments to perform the estimation, and it is simple to implement since it relies only on the
variables that can be easily read from the respective datasheets for the hardware platform
or the algorithmic configuration. Nevertheless, this general estimation method usually
computes the most optimistic estimate, and it does not take into account communication,
synchronisation or control. One way to refine the estimation is that we can collect a few
runtime data points and use them to improve the estimate.

Therefore, in our work, we propose using a Gaussian process (GP) regression model [23]
together with data samples collected by running the CNN on real hardware. GP is a model
built on Bayesian probabilistic theory, which can embody prior knowledge into the predic-
tive model and can be used for the regression of real-valued non-linear targets [23].

3. Method

In this section, we motivate and describe the proposed method for performance
estimation, which is based on a GP regression model.

Given a dataset D = {(xi, yi)}; i = 1, . . . , N consisting of N observations with inputs
and outputs as xi ∈ RM and yi ∈ R1, respectively, a function f needs to be induced to
hypothesise y∗ on new, previously unseen, inputs x∗. x represents a vector of M features,
while y represents the real-valued target that is to be estimated in this case. As discussed in
the previous Section 2.2, there are multiple function classes that can be used to perform
this task.

A naive parametric approach would make use of a predictive conditional distribution
that can be written as p(y∗|w,D, x∗). This approach constitutes an LR, using parameters
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w, such that the prediction is made as y = ∑M
m wmxm. It requires learning the parameters

w, which represent one potential function realisation f that fits the data.
Assuming a Gaussian weight prior p(w) = N (w|0, Σw), with some pre-defined co-

variance matrix Σw, we can induce a Gaussian distribution on any set of y: p(y|x) =
N (y|µ, K), where K ∈ RN×N is the covariance matrix characterised by a covariance func-
tion and µ represents the mean. This leads to the consideration of a non-parametric
predictor, where instead of learning w, the focus is shifted towards inferring an entire
distribution of function classes for explaining the data. Specifically, a non-parametric
predictor uses a parametric model and integrates the parameters. A prior p(θ) induces a
distribution over plausible functions, where θ is a latent random variable. Using such a
probabilistic modelling framework, we can sample plausible data-fitting functions directly.
This approach avoids necessitating a decision on which predefined class of function predic-
tors to use, as it considers all of them. The assumption that any set of values specified at an
arbitrary point xi over functions is Gaussian distributed leads to a GP model.

GP is a flexible Bayesian model characterised by a finite collection of Gaussian ran-
dom variables [ f1, f2, . . .], such that for any finite set of plausible inputs X∗, the vector
f ∗ = f (X∗) follows a Gaussian distribution [23]. The stochastic process can be entirely
determined by second-order statistics: a mean function m(.) and a kernel (covariance)
function k(., .). The mean function represents the value that the mean across the functions
f tends towards. The covariance matrix K is characterised by the kernel function values
[K]i,j = k(xi, xj) = φ(xi)

Tφ(xj), for some non-linear function φ(.), which represent the
value that the sample covariance for all sampled functions tends towards for the points
xi and xj. The kernel encodes structural information of the latent function f and must be
symmetric and positive semi-definite.

For N Gaussian observations XN ∈ RN×M; Y N ∈ RN×1, yi = f (xi) + εi where
εi ∼ N (εi|0, σ2), the posterior for unseen data X∗ is defined as in Equations (1) and (2)
(for a detailed derivation, please refer to [23]):

f ∗|y ∼ N (m∗|N , K∗,∗|N) (1)

m∗|N = m(XN) + K∗,N(KN,N + σ2 I)−1(Y N −m(XN))

K∗,∗|N = K∗,∗ − K∗,N(KN,N + σ2 I)−1KN,∗
(2)

Furthermore, training the GP requires finding appropriate latent random variables
or hyperparameters θ. Considering the posterior over hyperparameters: p(θ|X, y) =
p(y|X,θ)p(θ)

p(y|X)
, hyperparameters θ∗ are obtained through maximising the log of marginal

likelihood θ∗ = arg maxθ log p(y|X, θ) + log p(θ).
In this paper, we propose to use a GP regression model as outlined above to predict

the performance of an algorithm realisation on a given accelerator and a hardware platform.
We propose to use the characteristics of the accelerator at design time and the target NN as
features, as shown in Table 1, with respect to which we can predict the target performance
measure (a tutorial code is available at https://git.io/Jv31c). Practically, this means that an
input vector x is a vector of M features with algorithmic or hardware properties for one
configuration of the system, while y can represent the performance that is to be estimated.
The features of the input vector x being used are those that are already known and used
in the standard analytic estimation [14], avoiding the need for any additional feature
extraction from the dataset or the datasheets. These features consist of characteristics of
the CNN to be run, as well as the hardware accelerator. Additionally, it is possible to
embody the standard analytic method into the GP based estimator, through using it as the
mean function m(.). This model enables us to use any available measurements as training
data and does not restrict us to one class of predictors; it considers a plausible family
of best fitting models that are characterised by the kernel and the mean function. The
proposed method is able to make predictions outside of the observed data samples without
collapsing [23]. At the same time, by choosing the features given by the datasheets, the

https://git.io/Jv31c
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model is more interpretable than an NN or an LR, where the corresponding uninterpretable
weights w need to be learned. Moreover, the Gaussian noise assumption can be interpreted
as an additive instrumentation error, while collecting measurements. Furthermore, if
used during DSE, the GP model can additionally provide an uncertainty estimate for its
predictions, which can more precisely guide the exploration and the exploitation of the
search space [23]. The overall system diagram, including all the necessary parts of the
prediction methodology, is presented in Figure 1. The dashed lines symbolise the fitting of
the GP, through providing hardware measurements, along with the characteristic NN and
hardware features, to the GP to obtain the θ∗, Y N , KN,N to be used during the evaluation.
During the evaluation, the features and the fitted GP model are then used for prediction.

For a training set of size N samples, the computational complexity of the training
scales in ∼O(N3) due to the unavoidable Cholesky factorisation, while the prediction is
∼O(N2), and the memory requirements are ∼O(NM + N2). Therefore, given a typical
number of collected real-world measurements (which is <1000) for different configurations
of the accelerator, the method is scalable to be used in practice.

Figure 1. Overview of the proposed prediction methodology based on a Gaussian process (GP).

In the next section, we present the CNN accelerator on which we used the proposed
method. We compare our approach with other estimators in predicting layer-wise latency
and network-wise latency and energy consumption.

4. Hardware Design

In this section, we detail the accelerator architecture, the performance for multiple
different CNN architectures of which we aim to estimate.

4.1. Accelerator’s Architecture

The hardware design of our accelerator is illustrated in Figure 2. The design consists
of a CNN engine, a central communication interconnect and an off-chip main memory.
The weights of the whole network are transferred and stored in the off-chip memory via a
central communication interconnect before the processing. The CNN engine is composed of
an input buffer, a weight buffer, a convolutional processing engine (PE) and other functional
modules including batch normalisation (BN) [24], shortcut (SC) [17], pooling (Pool) and
rectified linear unit (ReLU) activation. In order to fully utilise the extensive concurrency
exhibited in CNNs and improve the hardware efficiency, we support three types of fine-
grained parallelism in our CNN engine: filter parallelism (PF), channel parallelism (PC)
and vector parallelism (PV). The accelerator processes each layer in a CNN one-by-one, and
the intermediate results between layers are transferred and stored in the off-chip memory,
in case the output size is bigger than the available on-chip memory. To achieve higher
hardware performance, the accelerator is designed to support 8 bit operations.
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Figure 2. The convolutional neural network accelerator’s design. SC, shortcut; PC, channel paral-
lelism; PV, vector parallelism; PF, filter parallelism; DMA, direct memory access.

To avoid large memory consumption on the on-chip memory, we adopt the channel-
major computational pattern for convolution, which is illustrated in Algorithm 2. In our
channel-major PE, the computation required along the channel dimension in each filter is
finished first. In this way, the on-chip memory only needs to cache the intermediate results
for one filter, which largely decreases the memory usage.

In this paper, we used this accelerator design to perform the benchmarking of our
proposed estimator method in estimating layer-wise latency, network-wise latency and
energy consumption.

Algorithm 2 Channel-major computational pattern.
Input: Input feature map I of shape C× HI ×WI ; weight matrix W of shape F×C×K×K

Output: Output feature map O of shape F× HO ×WO
1: for ( f = 0; f < F

PF ; f ++)

2: for (h = 0; h < HO; h ++)

3: for (w = 0; w < WO
PV ; w ++)

4: for (c = 0; c < C
PC ; c ++)

5: O[ f ][h][w] += ∑K−1
i=1 ∑K−1

j=1 W[ f ][c][i][j] ∗ I[c][h ∗ s + i][w ∗ s + j]

4.2. Standard Analytical Latency Model

In this section, we outline the layer-wise processing latency model for the proposed
accelerator, which constitutes the standard method as proposed in [14] for comparison.

The simplest form of a heuristic that estimates layer-wise latency on a hardware
accelerator consists of partitioning the overall processing time to individual layers, Ti,
corresponding to the time to perform one convolution in a feed-forward CNN consisting of
B convolutions/layers. The per-layer latency of an implemented CNN accelerator consists
of three parts: (1) time for loading the input; (2) computation time; (3) time for storing
the results.

The complete input has to be loaded into the on-chip memory only once for the first
layer, while the partial results that do not fit into the on-chip memory are off-loaded to
the off-chip memory. Nevertheless, the time spent on this memory transfer is assumed to
be negligible.

The size of the weights and the input/output for convolution is shown in Table 2,
following the notation defined in Table 1. The per-layer latency Ti for a single convolutional
layer i; i = 1, . . . , B of a CNN with B layers is shown in Equations (3)–(5) as follows:
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1. Loading time, i.e., the time to load the input into the on-chip memory. Note that the
loading of the data is in parallel with respect to the channel parallelism PC:

Tweightsi
=

Ki × Ki × Fi × Ci × DW
PC× PV ×MCLK × S×MEFF

Tdatai
=

HIi ×WIi × Ci × DW
PC× PV ×MCLK × S×MEFF

Tloadi
= Tweightsi

+ Tdatai
(3)

2. Computation time, i.e., the time to compute PF × PC parallel filters and
channels, respectively:

Tcomputei =
Fi × Ci × HIi ×WIi × Ki × Ki

PF× PC× LCLK
(4)

3. Storing time, i.e., the time to store the output back to the off-chip memory. Note
that similar to the input loading time, the storage time is divided by the channel
parallelism PC:

Tstorei =
HOi ×WOi × Fi × DW

PC× PV ×MCLK × S×MEFF
(5)

Therefore, the time required to process a single convolutional layer can be written as
in Equation (6) below:

Ti =


Ti=1 = Tloadi

+ Tcomputei

Ti 6=1∨N = max(Tweightsi
, Tcomputei )

Ti=N = max(Tweightsi
, Tcomputei ) + Tstorei

(6)

Note the max operations, which are present due to pipelining of the design, result in a
latency determined by the slowest operation.

5. Experiments

In this section, we present the experimental settings, as well as the results with respect
to both latency and energy estimation on different CNN architectures on the implemented
accelerator (Section 4). The experiments were performed on an FPGA, as well as a custom
ASIC. The networks were quantized into 8 bits [25], such that DW = 8 bits.

5.1. Evaluation for FPGA Design

This section describes the accelerator on an Intel Arria GX 1150 FPGA, and we
evaluate the proposed GP based method with respect to layer-wise latency estimation,
while running CNNs on the accelerator. The fixed hardware parameters used for the
FPGA implementation are such that the filter, channel and data parallelism were set as
PF = 64, PC = 64, PV = 1. At the same time, the memory and logic clock frequencies
were MCLK = 200 MHz and LCLK = 200 MHz. The memory efficiency was assumed to
be MEFF = 70%, and the communicating data-width size was S = 64 bits. The evalua-
tion dataset comprised of several different configurations of convolutional layers, which
were the building blocks of three different CNNs, namely SSD [18] with 24 convolutions,
Yolo [19] with 75 convolutions and ResNet-50 [17] with 57 convolutions. The characteristics
of the dataset from a software perspective are shown in Table 3. These networks were
chosen because their algorithmic structures present challenges to the accelerator design, its
control and its scheduling. In particular, SSD and Yolo are characteristic by their irregulari-
ties, which result in the output being produced at different times, while ResNet is known
for its residual blocks, which require implementing additional control in hardware.
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Table 3. Dataset for the evaluation of the layer-wise latency on an FPGA.

Parameter Min Mean Max

HI/WI 1 42 418
HO/WO 1 37 416

K 1 2 7
C 3 360 2048
F 64 371 2048

Latency (ms) 0.018 0.841 11.727

In total, the dataset for layer-wise latency estimation for each layer i consisted of
N = 156 training samples, and the input feature size M was 15, corresponding to:
HIi , WIi , HOi , WOi , Ki, Fi, Ci, PF, PC, PV, MCLK, LCLK, MEFF, S and DW. The recorded la-
tency per convolution represents the targets y. Due to the limited size of the dataset,
leave-one-out cross-validation (LOOCV) with respect to the mean absolute error (MAE)
was used to compare the estimators. LOOCV is a particular case of leave-k-out cross-
validation where k = 1, which means that a model is trained on all samples except one, on
which the performance is then evaluated. Although potentially more expensive to imple-
ment, it provides a less biased estimate of the test errors. In this instance, the performance
of the predictor is measured by the absolute error between the prediction and the target
value. The error is accumulated for all samples from which the mean is then calculated by
dividing the total summed error by the number of samples.

In the evaluation, the proposed method is compared with the standard analytical
method, including LR, GTB and a fully-connected multi-layer NN. Due to the few data
samples, we used the layer-wise latency model as presented in Section 4.2 as the mean
function m(.) of the GP model. We considered several hyperparameters for the proposed
GP based method such as the learning rate, ranging from 0.1 to 0.000001 on a logarithmic
scale, and the kernel, ranging from linear, Gaussian to Matérn kernels [23], and their
combinations. The best parameters were found by a grid search with respect to the LOOCV
MAE. For GTB and NN, we needed to determine the most influential parameters such as
the learning rate, ranging from 0.01 to 0.0001 on a logarithmic scale, or for the GTB, the
number of trees or the tree depth determined by gradual pruning. For the NN, we needed
to decide the number of hidden nodes, between [10, 1], [10, 10, 1] and [10, 10, 10, 1], and for
the activation function, we considered tanh, ReLU and sigmoid. The hyperparameters were
similarly found through a grid search with respect to the LOOCV MAE. For the standard
method and LR, it was not necessary to determine any hyperparameters. The results for
latency estimation are presented in Table 4.

Table 4. Evaluation of layer-wise latency estimation for different methods on the convolutional neural network accelerator
on an FPGA.

Methods Layer-Wise Latency
LOOCV MAE (ms)

Implementation and
Optimiser Properties

Standard method 0.450 None None

Linear regression 0.450 Sklearn [26] Default

Gradient tree boosting 0.607 Sklearn [26]; AdaBoost [27]
Learning rate: 0.1
Number of trees: 10
Maximum depth: 3

Neural network 1.257 TensorFlow [28]; Adam [29]

Batch size: 8
Learning rate: 0.1
Regulariser: L2, 0.001
Number of nodes: 10,10,1
Activations: ReLU

Our method 0.312 GPFlow [30]; Adam [29]
Mean function: Ti
Learning rate: 0.001
Kernel: Matérn 3/2
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Overall, the best method proved to be the combination of the standard method as the
mean function for the GP and the collected data. In comparison to other approaches, the
proposed method achieved approximately a 30.7% improvement in LOOCV with respect
to MAE, decreasing to 0.312 ms in comparison with the second best-performing methods,
which were LR and the standard method with a 0.450 ms MAE.

5.2. Evaluation on the ASIC Design

In this section, we implement the outlined hardware accelerator using 28 nm eA-
SIC [31] technology on the Intel N3XS platform with 8GB DDR3 installed as an off-chip
memory. The whole design was clocked at MCLK, LCLK = 333 MHz, and the PF, PC and
PV were set as 64, 64 and 1, respectively. The example design we used in this experiment
kept the same parallelism configuration for the entire CNN model. Other designs, such
as the streaming design [32], can support layer-wise configurable parallelism. However,
the layer-wise instantiation of a modern deep CNN requires extensive hardware resources,
which are often not available.

Before the evaluation of our GP based estimation, we compare both the FPGA and
eASIC implementations in terms of latency and power efficiency (frames per second per
Watt (FPS/W)) on four CNN models including SSD, ResNet-50, Yolo and VGG-16. It can
be clearly seen from Table 5 that the eASIC design achieved higher energy efficiency and
smaller latency than the FPGA implementation on all four CNN models.

Table 5. Hardware performance comparison between the FPGA and eASIC design.

SSD [18] ResNet-50 [17] Yolo [19] VGG-16 [33]

Latency FPS/W Latency FPS/W Latency FPS/W Latency FPS/W(ms) (ms) (ms) (ms)

FPGA 3.24 7.01 4.62 4.92 41.22 0.55 23.18 0.98
eASIC 2.39 22.02 3.06 17.20 31.55 1.67 15.35 3.43

Next, we evaluated the GP based estimation for the eASIC design with respect to
latency and energy consumption. Instead of estimating per-layer latency, this experiment
aimed at validating the GP based estimation of a whole NN for both latency and energy
consumption. We ran ResNet-50 [17] using different network configurations with respect
to energy and latency to form the evaluation and training datasets, which is illustrated in
Figure 3.

1st Unit, Depth = 3, Stride = 1

Avg-Pool
Fully-Connected

Cell

Cell

Cell
Skip

Cell
Skip

Conv
Cin

Conv
Cin ∗ E

Conv
Cin ∗ E

Cout
+

Conv Head, Stride = 2 
Pool, Stride = 2

2nd Unit, Depth = 4, Stride = 2

3rd Unit, Depth = 6, Stride = 2

4th Unit, Depth = 3, Stride = 2

Figure 3. ResNet-50 with different depths, channel numbers and expansion ratios.
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The network contains three parts: head part, middle part and tail part. The head part
includes a convolutional layer and a pooling layer with stride-2, while the tail part consists
of an average pooling layer followed by a fully-connected layer. We fixed the head and
tail parts while changing the network configurations for the middle part that contains
four residual blocks with a gradually reduced feature map size and increased channel
numbers. In each residual block, the depth ranges from two to Di, where Di denotes the
maximal depth in the ith block. In each cell of the residual block, the expansion ratio (E)
was chosen from [0.5, 0.75, 1.0]. For regression, as the hardware properties are fixed for the
eASIC design, we only needed to encode the network configurations as a 13-dimensional
vector, which represents the expansion ratio used in the 13 cells, giving M = 13. The
expansion ratio was zero, if this cell was skipped. We randomly sampled 800 different
network configurations and evaluated these networks on our eASIC designs with respect
to latency and energy consumption. We used 600 samples for training and 200 samples
for evaluation. Therefore, even though the hardware configuration remained fixed, we
benchmarked the methodology with respect to changing various software parameters.

To demonstrate the advantages of GP based estimation compared with other regres-
sion techniques, we also compared it with LR, GTB and NN, which is illustrated in Table 6.
In this instance we used a zero mean function, such that the methods should rely more on
data, instead of any bias that could have been potentially induced by inaccurate analytical
approximation. All methods used the same hyperparameters as in Section 5.1, to demon-
strate the flexibility and simplicity of the implementation of the proposed GP regression
model. It can be seen that our method achieved a smaller MAE on both latency and energy
estimation, when compared with the other methods. In comparison to LR, which is a
simple and widely adopted estimator, the performance can be improved by approximately
two times with respect to both latency and energy estimates.

Table 6. Evaluation of network-wise latency and energy estimation for different methods on the convolutional neural
network accelerator on an eASIC.

Methods Latency Energy Implementation PropertiesMAE (ms) MAE (W) and Optimiser

Linear regression 0.177 0.272 Sklearn [26] Default

Gradient tree boosting 0.476 0.501 Sklearn [26]; AdaBoost [27]
Learning rate: 0.1
Number of trees: 10
Maximum depth: 3

Neural network 0.108 0.241 TensorFlow [28]; Adam [29]

Batch size: 8
Learning rate: 0.1
Regulariser: L2, 0.001
Number of nodes: 10,10,1
Activations: ReLU

Our method 0.079 0.151 GPFlow [30]; Adam [29]
Mean function: 0
Learning rate: 0.001
Kernel: Matérn 3/2

Furthermore, in Figure 4, we show the advantages of GP over the aforementioned
methods on smaller datasets by varying the training dataset size and number of features
as the input of the models with respect to the overall prediction latency and energy
consumption on the eASIC. Each experiment was repeated three times varying the number
of available data points or features to evaluate the robustness of the compared methods.
It can be observed that the GP is more accurate and also more robust as the standard
deviation is consistently smaller in comparison to the other methods in all experiments.



Electronics 2021, 10, 520 12 of 14

100 200 300 400 500 600
Number of data points

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E
 (m

s)

Training data size

(a)

2 4 6 8 10 12 14 16
Number of features

0.2

0.4

0.6

0.8

M
A

E
  (

m
s)

Feature set size

(b)

100 200 300 400 500 600
Number of data points

0.2

0.4

0.6

0.8

M
A

E
 (W

)

Training data size

(c)

2 4 6 8 10 12 14 16
Number of features

0.2

0.4

0.6

0.8

M
A

E
 (W

)

Feature set size

(d)
Figure 4. Prediction benchmarks for latency with respect to changing training data size (a) and
feature set size (b). Benchmarks for energy with respect to changing training data size (c) and feature
set size (d).

The main advantage of the proposed method lays in its implementation simplicity, as
it reuses those variables that can be commonly found in hardware or algorithmic datasheets
and commonly used in DSE, combined with recorded measurements. The method can be
improved by recording more measurements and simple fine-tuning of the hyperparameters
related to the kernel K. Nevertheless, as demonstrated in Sections 5.1 and 5.2, the method
is capable of estimating the performance even with respect to few collected data samples.

A potential limitation of this method, as was eluded to in Section 3, stems from
the kernel computation, which scales with the complexity of O(N3). This means that
the inference time can be prolonged if there are many training samples. One possible
solution to overcome this problem is to use variational inference to determine the k most
important points that have to be included in the kernel computation [34]. Nevertheless,
the inference time is much less than the time needed for synthesis and then running the
design on hardware.

6. Conclusions

In this paper, we propose an accurate method for estimating the performance of an
accelerator for convolutional neural networks and compare it with the standard method,
linear regression, gradient tree boosting and an artificial neural network. Moreover, we
evaluate our method with respect to two hardware platforms on which we accurately pre-
dict the overall latency or energy consumption of the given convolutional neural networks.
The evaluation demonstrates that the innovative Gaussian process method paired with
collected data can provide an accuracy improvement with respect to the other compared
methods. Future work includes providing tools to automate our approach, and extending
it to cover applications beyond machine learning designs.
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The following abbreviations are used in this manuscript:

ASIC Application-specific integrated circuit
CPU Central processing unit
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DSE Design space exploration
FPGA Field-programmable gate array
GP Gaussian process
GPU Graphical processing unit
GTB Gradient tree boosting
LOOCV Leave-one-out cross-validation
LR Linear regression
MAE Mean absolute error
NN Neural network
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