2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

Flexible Instrumentation for Live On-Chip Debug
of Machine Learning Training on FPGAs

Daniel Holanda Noronha®, Zhigiang Que?, Wayne Luk? and Steven J.E. Wilton'
!University of British Columbia, 2Imperial College London
{danielhn,stevew } @ece.ubc.ca, {z.que,w.luk} @imperial.ac.uk

Abstract—FPGAs have recently shown promise for accelerating
machine learning training. This has led to research into the
co-design of narrow-precision accelerator architectures and the
investigation of novel machine learning models. Such research
can be extremely expensive, as the steep cost of training a model
can increase several-fold due to the need of performing hyper-
parameter tuning and adjustments to the model to ensure accept-
able convergence speed and accuracy. In this scenario, monitoring
key data on-chip is essential to more quickly understand and
diagnose problems, significantly reducing training costs.

Previous work has proposed on-chip debug instrumentation
to monitor key signals for both general-purpose circuits and
inference algorithms. This instrumentation either performs lim-
ited on-chip compression, or is extremely restricted in the
amount of run-time customization that may occur. We argue
that for training applications, the extremely long and expensive
training runs warrant significantly more flexibility in the on-chip
instrumentation, even at the expense of some chip area.

In this paper, we propose flexible debug instrumentation that
allows for the live debugging of machine learning systems during
training. Different from previous debug instrumentation, our
instrumentation offers firmware programmability, allowing the
researcher to gather data in a large variety of ways that would
likely not be anticipated at compile time.

I. INTRODUCTION

It has become well-established that FPGA-based hardware
accelerators can provide energy-efficient compute horsepower
for a variety of complex applications [1]. Major companies
such as Microsoft, Amazon, IBM, and Baidu have recently
incorporated FPGAs into their data centres [2]-[4]. Today,
many of the target applications involve machine learning
inference for tasks such as search engine ranking and natural
language processing [5], [6]. However, the process of training
machine learning models still heavily relies on GPUs.

Training machine learning models using FPGAs has been
explored by academic work [7]-[10] and has recently spurred
the attention of FPGA vendors and FPGA groups from com-
panies with large-scale FPGA-accelerated data centers [11]—
[14]. Using FPGAs for training may be compelling since it
may offer higher performance-per-watt than a GPU. This is
due to optimizations such as custom data paths and arithmetic
representations on FPGAs [15], [16]. Cost-effective training
is especially desirable for large networks, since training large
models like GPT-3 [17] using GPUs may cost several million
USD [18], [19].

Implementing training on FPGAs is challenging. In order
to take advantage of the customisability of these devices,
it may be necessary to significantly redesign and/or refine

2576-2621/21/$31.00 ©2021 |IEEE
DOI 10.1109/FCCM51124.2021.00011

20

the underlying machine learning model. As a result, multiple
expensive training runs are needed for adjustments to ensure
acceptable accuracy and convergence speeds, increasing the
cost of training several-fold. Often, the need for these adjust-
ments only become apparent after long run-times; issues such
as overfitting, poor generalization performance, sudden drops
of accuracy, and long-term numerical instabilities may only
become observable after many training iterations. We believe
that the ability to diagnose such problems during training by
tracking the behaviour of the circuit as it runs is essential to
effectively create networks suitable for training on FPGAs.

Frameworks that gather run-time information of a running
circuit have been proposed. For machine learning inference
applications, frameworks which provide on-chip visibility of
large matrices and arrays by recording the behaviour of the
design as it runs at speed have been presented [20], [21].
These techniques, however, may not work well for training ap-
plications. These techniques rely on identifying and inserting
a small subset of debug instruments at compile time, limiting
the range of behaviours that can be observed. For training, we
anticipate that more flexible instrumentation that allows us to
observe many different aspects of the training behaviour would
be desirable, as would the ability to stream this data off-chip
rather than storing it in on-chip buffers. Flexibility will cost
chip area, however, since training is often performed on large
data-centre FPGAs, it may be more acceptable to insert larger
and more flexible instrumentation.

In this paper, we present a flow to accelerate the debug of
machine learning training on FPGAs. Our contributions in this
paper are the following:

1) We provide motivational examples that highlight the
need for increasing the observability of the run-time

Live Debugger

ML Hardware
Accelerator

sl ias Domain-specific
Instrumentation

High Speed 1/0

A ————

sl

Figure 1. Training Debug Instrumentation

behaviour of training applications,

2) We propose a flexible on-chip debug infrastructure for
FPGA machine learning training, describing its archi-
tecture and implementation in detail, and

3) We quantify the impact of adding such an infrastructure
to hardware accelerators and study how this impact
changes according to a set of parameters.

This paper is organized as follows. Section II describes
recent domain-agnostic and domain-specific efforts in on-chip
debug. Section III then presents a taxonomy on machine
learning bugs and presents a motivational example for this
work. Section IV introduces our enhanced debug flow and
instrumentation architecture. Section V shows examples of
data gathering techniques enabled by our instrumentation.
Section VI evaluates our proposal in terms of data gathering
capabilities, area overhead, and circuit speed.

II. PREVIOUS WORK AND CONTEXT
A. Machine Learning Software Debug

High-level software debug of the machine learning model is
essential to catch bugs at an early stage. In [22] researchers at
Google presented TensorFlow Debugger (tfdbg), a specialized
debugger for TensorFlow dataflow-based graphs. Tfdbg fo-
cuses on organizing the intermediate and internal graph states
and presenting them in a clear and understandable fashion by
keeping copies of intermediate values as they flow through
the graph. This gives the user more visibility into the model
execution graph, which otherwise would be encapsulated as
a black-box function call, abstracting away internal graph
detail, parallel and potentially distributed execution routines.
This command-line interface (CLI) of tfdbg has been ex-
tended as a graphical user interface (GUI) in TensorBoard
[23]. Tensorboard also includes a graph visualizer that helps
users understand complex machine learning architectures by
performing a series of transformations to declutter the graph.

Some work has also considered techniques to debug prob-
lems based on a reference model. In [24] Uber presented
Manifold, a framework that utilizes visual analysis techniques
to compare and debug pairs of similar machine learning
models (e.g. a full model and its distilled version). This model-
agnostic tool does not rely on access to the internal logic of the
model. Instead, Manifold visually compares different statistical
metrics of the inputs and outputs of the pair models, allowing
the user to focus on those discrepancies (symptoms) and make
an initial hypothesis of the problem.

Other machine learning software debug work focuses on
analysing deep learning models during training. In [25], re-
searchers from Microsoft proposed TensorWatch, which pro-
vides a way to perform interactive queries on live processes
instead of constantly interrupting the system for queries.
TensorWatch also focuses on extensibility, by allowing the user
to visualize the logged data in custom ways. and temporarily
displaying them to the user without logging.

The main limitation of software debug work is the speed
in which data can be gathered at low granularity, making it

21

impractical to diagnose some types of training problems in
large models. We believe that if a hardware accelerator is
required to make training timely and economically viable,
problems that only become apparent after long run-times
should be diagnosed on-chip.

B. Machine Learning Hardware Debug

Recent work on on-chip machine learning debug focused on
adding instrumentation into the machine learning accelerator
to increase visibility into the design by recording selected
signals over time.

Unlike traditional on-chip debug [26]-[28], which is
domain-agnostic, the authors in [20] explored the creation of
an on-chip debug infrastructure specifically tailored to machine
learning circuits. The key idea behind this contribution is that
it is not necessary to record the raw history of how signals
change over time to gain insight on the internal behaviour of a
given circuit. Instead, data is compressed in a domain-specific
way, allowing the user to decide which kind of information
should be recorded on-chip. As a result, the trace buffer
memory resources can be utilized to observe the circuit for a
substantially longer period, accelerating the diagnosis of more
complex problems.

This work was later expanded in [21], which addresses the
need for lower debug turns-around times. This need comes
from the iterative nature of debug, which requires the user
to observe different things as the user refines his or her
understanding of the circuit. In this scenario, previous instru-
mentations were not enough, due to the need to recompile the
entire circuit every time the user wanted to observe something
different, or observe the same thing in a different way. This
problem was addressed by a configurable instrumentation that
can select between a few pre-determined data compression
circuits at debug time. In addition, the instrumentation in [21]
allows for the signals/matrices being traced and the organiza-
tion of the trace buffer to be adjusted at debug time.

C. Baseline

In this work we adopt the infrastructure proposed in [21] as
our baseline. A key limitation of the baseline is the lack of flex-
ibility in how data can be observed. In the instrumentation in

Observed Signals 0.3 0.3 0.1 0.3 /T‘:me

: 4
i T2 2l vh | M BEE |
Instrumentation Data Packer !

Trace Buffer

Figure 2. Baseline instrumentation

Figure 2, three data compression schemes have been included
in the instrumentation, and the user can switch between these
schemes at debug time. However, if a different compression
scheme is needed, then new instrumentation must be created
and the circuit recompiled. In this paper, we overcome this
limitation by proposing a programmable debug infrastructure
that can be programmed at the firmware level at run time. Note
that although our instrumentation has been optimized to allow
for computing statistics that are useful during training, it also
allows for the computation of the simpler statistics proposed
in [21].

Another important difference from this previous work in-
cludes the ability for live monitoring and debugging the circuit,
which is essential for debugging training circuits as further
discussed in Section IV.

III. MACHINE LEARNING TRAINING BUGS
A. Machine Learning Hardware Bug Taxonomy

In this work we adapt the taxonomies presented in [29],
[30]. For each description of the accelerator (software baseline,
firmware and hardware) we classify bugs into to five types:

Inherited Bugs: This group consists of bugs that predate the
beginning of the current development cycle. These include
bugs in tools and bugs that were already present in higher-
level descriptions of the accelerator.

Data Bugs: These are bugs related to an unexpected behaviour
of the input data. This includes problems such as incorrectly
labeled samples, values out of range and malformed or missing
data samples.

Syntax Bugs: These are bugs related to any failure to comply
with the set of rules of the language being used, such as case-
sensitivity and the enforced order of operands.

Structural Bugs: These are bugs related to problems in the
general logic and semantics of the accelerator, causing the
implementation to differ from its original description. Struc-
tural bugs range from simple problems, such as a trivial error
when converting between units, to complex errors such as a
combination of multiple elusive logic mistakes.

Conceptual Bugs: These are bugs related to false assumptions
about the suitability of the machine learning model itself and
its interactions with the hardware. Conceptual bugs include
problems such as assuming that a given data type would be
enough to allow for the proper training of a given model,
or assuming that a certain model would not overfit given its
topology and hyperparameters. Conceptual bugs may result
in problems such as lower than expected accuracy, failure to
converge or suboptimal convergence speed.

Different from previous work in machine learning hardware
debug, which focused on structural bugs during inference, we
focus on conceptual bugs that only become apparent during
training. We consider those bugs especially challenging, since
they may be prohibitively long to expose using simulation and
may require observing the system in multiple different points
of the training process before their overall behaviour can be
understood.

22

B. Motivational Example

To demonstrate an example conceptual bug, we modeled a
DNN with multiple dense layers and ReLu activations in all
hidden layers to perform a simple classification task. Note
that this network is intentionally small in order to allow
for rapidly extracting statistics about the training process.
Although this bug is illustrated using a small network modeled
in software, we anticipate that similar problems may happen
with significantly larger networks trained in hardware.

As shown in Figure 3(a), the DNN being trained behaves
well during the first few epochs, but the accuracy significantly
drops after Epoch 33 and recovers after Epoch 44. This prob-
lem would not be visible in an initial RTL-level simulation,
since only the first few training steps would be simulated.
When running such a network in a hardware accelerator with-
out any instrumentation, the machine learning expert would
only be able to observe the drop in accuracy as shown in Figure
3(a), but would have no more information to help diagnose
the problem. Moreover, a software-only simulation could also
be slow and behave differently from the circuit that has been
implemented with limited precision.

In this scenario, there are multiple statistics that could
be used to help diagnose this problem as shown in Figure
3(b,c,d,e). Figure 3(b) shows the gradients of different layer
over time, which shows that most gradients become zero as
soon as the accuracy starts to drop. The cause of this drop is
shown in Figure 3(e), which shows that the sparsity of Layer
9 becomes nearly 100% around the same time that the drop in
accuracy occurs. This is known as the ‘dead ReLu problem’,
in which layers with most of its ReLus dead will always output
approximately the same value for any given input. Once most
of the layer ends up in this state, the layer is unlikely to
recover, as the function gradient of a ReLu at zero is also
ZEerO0.

A possible way of addressing this problem is to use Leaky
ReLus instead of traditional ReLus, which have a small
positive gradient for negative inputs. However, this will cause
the sparsity of all layers to be nearly zero, negating some of
the benefits of accelerators that profit from sparsity. Moreover,
the machine learning expert debugging this system might be
interested in understanding the cause of the ReLus dying, since
this might be only a symptom of a larger underlying problem.

Note in Figure 3(e) that the sparsity of the network progres-
sively moved towards 100%, which means that no particular
batch of inputs was solely the reason for the problem. More
interestingly, Figure 3(d) shows that the mean value of activa-
tions started to significantly vary between batches after Epoch
60, indicating that the network is possibly overdimensioned or
that the training step is too high for the given loss landscape.
Note that this behaviour in activations would be averaged out
and become less evident if the circuit was only observed every
few epochs, showing the need for observations to be performed
frequently. Moreover, deciding to observe the training circuit
using RTL-level simulation after Epoch 60 would be both slow
and not an obvious place to start.

Training and Test Accuracy

87 W,_m— Train Accuracy Test Accuracy (@)
0.6 4 e ,.j\,—"—’m
051 Mg T AERED. A
T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
é%g% ! i i b} Mininum and Maximum Weights Gradients
8:323 sodaadiadd aakaad b Lo ab LARLALY].L,ﬂ' — yerd — yerd — lyer? e |)
-0, R e e R 1 Sy e e ayerl —— lyers layerg lyerll
:8181.;? ' |) | WW— layer2 layer6 —— layerd layerl2
-1315 : . ‘ . ‘ . ‘ e ‘ o
0 10 20 30 40 50 60 70 80 90 100
%ggé 3 | ! . [Mininum and Maximum Bias Gradients
9380 i) st b ool bisnd bl ;
a%0 - beiabibd sabeddbdolading o MM AIN 1 00 Al R 6B (©
_0'331 4 by s S A T ‘
~ALTTT ' '
=1.223 T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 920 100

Mean Activation Values

Epoch

Figure 3. Motivational example showing a debug challenge that can benefit from on-chip instrumentation. Data obtained using a software model.

IV. ENHANCED DEBUG FLOW
A. Overall Approach

Similar to previous flows, we insert instrumentation that
performs on-chip domain-specific compression to gather ag-
gregated information about the behaviour of the machine
learning model, rather than recording raw values over time.
Different from previous flows, instead of restricting the user
to select among a few predefined ways of observing the circuit
during inference, we create an architecture that is optimized
for observing training models, while also being flexible enough
to allow for a large variety of custom ways to observe the
model. Although, as we will show, our architecture requires
more chip area than previous techniques; we argue that this
may be less critical in training applications which are often
performed on large data-centre FPGAs, compared to inference
applications which are sometimes implemented in smaller
edge-oriented FPGAs.

Our instrumentation also differs from previous work in
the way it handles its gathered data. Rather than storing
this information using precious on-chip memory resources,
we stream this compressed data opportunistically off-chip,
allowing for live monitoring and debugging of the machine
learning model being trained. As discussed in Section V,
this may enable early detection of a variety of problems,
significantly saving time and reducing training costs.

We anticipate the typical use of our instrumentation to
unfold as follows. First, at compile time, the designer selects
which parts of the model could be observed by the instru-
mentation and adds the instrumentation to the design. The
designer then programs the instrumentation by either selecting
or creating custom firmware (see Section IV-D) and starts the
training process, while live-monitoring different aspects of the
learning model. At run time, the designer may reprogram the
instrumentation to change how the model is observed. If a

23

certain aspect of the training process is found to be unsuitable,
the designer will then perform ad hoc adjustments. At this
point, the designer may choose to either quit the possibly
failing training process to reduce costs and debug offline, or
perform live modifications to the network given that the right
amount of controllability is built into the design.

B. Architecture Overview

As illustrated in Figure 4, the user circuit is connected to
a single programmable instrumentation unit through a signal
selection mechanism. Rather than allowing only a single vector
input to reach the programmable instrumentation, the signal
selection mechanism allows multiple input vectors to reach
the instrumentation via time-multiplexing. As a result, instan-
tiating multiple programmable instrumentation units may be
avoided in many scenarios. We believe that time-multiplexing
different vectors into the instrumentation is often a good
solution, as signals may not be valid at all cycles, and sampling
instead of recording all valid signals might also be acceptable
when live monitoring the model and searching for the root
cause of conceptual bugs.

Note that the programmable instrumentation has no trace
buffer to store processed data. Instead, all data is sent off-
chip, significantly reducing on-chip memory overhead. This is
possible due to the compressing nature of gathering aggregated
model information. In scenarios in which the interface to
off-chip memory is unable to handle the instrumentation’s
throughput, back pressure may be applied to the instrumenta-
tion to ensure that a somewhat periodic sampling is achieved.

C. Programmable Instrumentation

Figure 5 shows the overall architecture of our programmable
instrumentation. We refer to each block that composes our
architecture as a building block. Building blocks are chained
together, allowing data to only follow a predetermined data

User Circuit

Observable Signal Selector 1

1
1
\ .
1 signal_select ww,&gnmi
1
1
1 |Reconfiguration decoded_conf | :
1 Block ¥ Programmable | |
1 :
= . *enco m— Instrumentation|
o _5 1
% ; Network | _gebug_data Firmware :
Z <4 Interface ¢ ’
A =

Figure 4. Overall Architecture Image

path. The order in which blocks are connected has been chosen
to minimize the number of times data has to traverse the entire
instrumentation in order to compute the statistics described in
Section V. This order, however, is easily changeable at compile
time and might be customized for power users that are not
satisfied with the family of programmable infrastructures we
provide.

The Filter Unit (FU) and the Matrix-Vector Reduce Unit
(MVRU) are the building blocks responsible for handling data
that needs to be within a specific range. The FU handles a vec-
tor of N elements and checks whether each of those elements
is within M ranges, resulting in a binary N x M output matrix.
A single FU can be used to check multiple different ranges,
since those ranges are stored into a programmable memory in
the FU. The MVRU then sums this data along the N or M
axis and performs zero padding as appropriate. Those blocks
may be used, for example, to create a histogram M bins per
cycle or to check whether each element of the input array is
valid or invalid by simultaneously checking for values out of
range, NaNs and subnormals.

The Vector ALU (VALU) performs simple element-wise
operations, such as addition, subtraction, and multiplication.
This building block also has direct access to a scratchpad that
can be used to store intermediate computations when multiple
loops though the chained instrumentation are needed. The
Vector-Scalar Reduce Unit (VSRU) may be used to reduce all
inputs to a single element by either summing or multiplying
them.

The Data Packer (DP) is responsible for packing elements
into blocks of NN elements. Although the DP will always
receive [N elements as an input, not necessarily all of those
inputs are valid. Elements that have been processed by the
VSRU, for example, will only have one valid element in its
array of N elements. Similarly, the MVRU may also output
only M valid elements depending on the operation performed.
The DP is crucial to compress the data, minimizing the amount
of information that needs to be sent off-chip.

D. Describing the instrument functionality

Different from previous work, which allows the designer
to select among a handful ways of observing the model, our
architecture enables the designer to create a large variety

24

Observed Signals
0.3 0.3 0.1 0.3

. Input Buffer .
| S ——— WN
Filter Unit
¥ NxM
Matrix-Vector
Reduce Unit
> YN

Vector ALU

\

<> Scratchpad

EIEOE]

Vector-Scalar
Reduce Unit
D 4 *1, NorM

Data Packer
* N Programmable

\ Instrumentation
i5 Output Buffer P4

[
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Network Interface

Figure 5. Programmable Instrumentation Architecture

of ways to observe the model at run time. The behaviour
of the instrumentation at a given run is described by the
firmware. Note that changing the firmware does not require
resynthesizing the circuit, unless the new firmware requires a
specific building block that has not been added to the design
at compile time.

A firmware specification is composed of a sequence of
instructions that describe the operations that will be performed
for each input vector. A firmware specification may contain
one or more chains, which are sequences of instructions that
describe a single pass through the entire architecture. A new
chain is initiated each cycle, given the heavily pipelined nature
of our instrumentation. The order in which the building blocks
are placed in the instrumentation dictates the possible ways
in which data may flow and, consequently, the allowed order
of operations in a given chain. Complex operations may be
achieved by splitting the computations into multiple chains.

I # Get multiple stats for each set of input vectors
> def summaryStats (cp) :

4 # Sum of all

values
5 cp.begin_chain ()
6 cp.vv_add (0, 'notfirst’)
7 cp.v_cache (0)
8 cp.v_reduce ()

.v_commit (1, last’)
.end_chain ()

9 cp
cp

Number of sparse elements
13 cp.begin_chain ()
cp.vv_filter (0)

15 cp.m_reduce ('N")

16 cp.vv_add(l, 'notfirst’)
17 cp.v_cache (1)

18 cp.v_reduce ()

19 cp.v_commit (1,’last’)

20 cp.end_chain ()
2 return cp.compile ()

Listing 1. Sample firmware for simple summary statistics

A sample firmware specification that computes simple sum-
mary statistics is shown in Listing 1. This firmware specifica-
tion is composed of two chains, which means that each input
vector only needs two clock cycles to be consumed by the
instrumentation.

To increase the flexibility of our infrastructure without
requiring a costly processor-like control structure, individual
instructions may be predicated only by a few key conditions.
We found that the existence of these conditions combined with
the use of the scratchpad allows us to compute a large variety
of statistics that are useful for monitoring and debugging a
training model as discussed in Sections V and VI

V. TRAINING-SPECIFIC DATA AGGREGATION

In this section, we show how our architecture can be used
to increase the observability of a training circuit running on an
FPGA. As described in Section IV-D, our instrumentation can
be configured at run-time, using firmware, to aggregate data
in ways that may be useful to help the designer reason about
the model under evaluation. To make our discussion concrete,
we focus on six examples that we believe are well positioned
to aid in the understanding of training-specific problems. The
first three, which we will refer to as our Baseline Aggregations,
were also used in [21] and were originally intended to help
diagnose inference problems. The remaining three, which we
will refer to as our Training Aggregations, are new to this
paper, and were specifically designed with training in mind.
In Section VI, we use these six examples as benchmarks to
evaluate the effectiveness of our technique.

1. Distribution: This data gathering technique bins the fre-
quency count of the observed values over a user-defined pe-
riod, resulting in data that can be visualized using histograms.

2. Spatial Sparsity: The Spatial Sparsity gathers whether each
specific element is zero or non-zero, allowing the designer to
have a low-resolution visualization of activations and weights.

3. Summary Statistics: The summary statistics compresses all
data received within a user-defined period of time to a single
value, such as the mean or the number of sparse elements.

4. NormCheck: NormCheck is a data aggregation technique
inspired by the effect of the Batch Normalization (BatchNorm)
layer [31] in a training circuit. Although BatchNorm was
originally believed to accelerate training by reducing the
Internal Covariate Shift (ICS) [31], it was later shown that the
actual reason for its success is its impact on the smoothness
of the loss landscape [32]. BatchNorm, however, may offer
another advantage for hardware accelerators: it increases the
initial stability of the distribution of network activations, which
may be critical in systems that operate with limited precision.

A designer considering including BatchNorm in a model
may wish to understand the distribution of activations in a
network as it is being trained. Our instrumentation can be
used to gather this information as the circuit is running.
Specifically, our NormCheck implementation measures the
15th, 50th, and 85th percentiles of a set of inputs (typically

25

5097 el _ce--- *

S

[} == Without BN

& —— With BN in all layers (a)

G — - With BN in selected layer

I @ Steps to 30% Acc

T T T

5 0 250 500 750

2 17 '_/"'-*‘ 1 —

a oM < (b, c, d)
- O S N]

@

- A 4 E

i T T T T T T T T T

£ 0 250 500 750 0 250500 750 0 250 500 750

Steps Steps Steps

Figure 6. (a) The test accuracy of a network trained with and without Batch

Normalization (BN), vs. the number of training steps. (b, c, d) The change
in the activation distribution without BN, with BN and with BN in a selected
layer, respectively, over time shown as {15, 50, 85}th percentiles. Results
obtained using a software model.

the activations) over a period of time. To demonstrate this, we
created a software model and gathered the results in Figure 6.
Figure 6 (a) shows the accuracy over time demonstrating the
impact of BatchNorm. Figures 6 (b-d) shows the frequency
distribution for a typical hidden layer of those networks, which
corresponds to the 15th, 50th, and 85th percentiles of the
network activations, over a period of time. We propose that
we use our instrumentation to compute this later data. The
NormCheck shown in Figures 6 (b), shows that the distribution
of the activations in the network without batch normalization
quickly grow overtime, which, if implemented in hardware,
may cause overflows in architectures with lower precision.
Conversely, Figure 6 (c) suggests that the use of BatchNorm
in all layers is able to make those values stable over time,
avoiding numerical problems. Interestingly, Figure 6 (d) show
that by the same effect can be achieved, even if only a single
layer has BatchNorm.

The percentiles that compose NormCheck are computed
by our instrumentation using an approximation technique.
First, a 64-bin distribution of the activations is computed.
Those values are then sent off-chip, where the percentiles are
approximated and new uneven ranges for the distribution are
defined. Those ranges are then opportunistically updated on-
chip at run-time, ensuring that a good approximation of the
percentiles can be constantly obtained.

5. Activation Predictiveness: We can also use the instrumenta-
tion to allow the designer to check whether the activations of
a certain layer are somehow correlated with the test accuracy,
which would indicate that a numerical problem is manifesting
at that specific layer. Figure 7 (a) shows the test accuracy
over time of a simple network performing classification, while
Figure 7 (b) shows the activation predictiveness of one of
its layers (again, computed using a software model). The
activation predictiveness is given by:

t
1
APt == M Z max(dn,'m)

m=t—M

Q.70

—— Baseline + Decay —— Baseline

0.65 4
(a)

0.60 1
0.55

Test Accuracy

0.50 T T T T T T
20

70

1.00 4
0.75 4
0.50 4
0.25]
0.00 A

(b)

Act. Predictiveness

20 30 40 60 70
Epochs

Figure 7. (a) Test accuracy of a sample network over a large number of
epochs. (b) Activation Predictiveness of penultimate layer, showing that drops
in the predictiveness are correlated with drops in the network’s accuracy. Data
obtained using a software model.

where a,, ., is the average node activation of node n at time
step m, and M is the number of time steps used for a simple
moving average.

Note that the computation of the activation predictiveness
does not take any labels into consideration. The similarity
between Figures 7(a) and (b) suggests that the sudden drops of
accuracy experienced by the network is due to some numerical
instability in the network.

The ‘Baseline + Decay’ plot on Figures 7 (a) and (b) show
what would happen if the designer decided halfway through
the training process to minimize the effects of this numerical
instability by significantly accelerating the network’s learning
rate decay. As a result, the accuracy slowly increases over
time, which is the desired behaviour.

Note that this kind of observation is better performed on-
chip, as streaming the activations off-chip to do this analysis
would be costly and this is something that must be continu-
ously observed throughout training.

The activation predictiveness is computed by our instru-
mentation by first calculating the mean of the activations
of all nodes, followed by checking the maximum values
between those nodes. The moving average is computed offline,
as calculating it on-chip would not reduce the amount of
information that needs to be sent off-chip.

6. Total Invalidity: During training, weights, activations and
gradient values might suffer from different numerical anoma-
lies. Although those anomalies in a small scale may not cause
major harm, tracking the total number of invalid elements
over time might help better understanding when a numerical
problem started to manifest. Total Invalidity simultaneously
checks whether each specific element is a subnormal, +inf,
-inf or NaN and accumulates this value over time for each
training step.
VI. EVALUATION

Our programmable debug instrumentation offers run-time

programmable data gathering capabilities, and is characterized

by a number of parameters that allows the designer to trade-
off those capabilities with area overhead. In this section, we

26

— 102 | = Dist. {128 bins) mmm NermCheck
= =] épatialSpaé?llty] #c;t IPrediE[:lveness
— _ Summar afts. s jot. Invahiar
S 10! : & (a)
e
&
£ 100
c 1D
2
=
2 10! (b)
[=
10° ~ = I
S M00 SIS SIS S SIS SIS IS S
T T T T T
Prev. Work Variant A Variant B Variant C Variant D
Figure 8. Initiation Interval (II) of different workloads with N=32 (a) and

N=128 (b). Some workloads are not possible to compute in previous work.

will first show how the area, and speed of different variants
of our instrumentation compare to the baseline, which only
allows data to be gathered in a limited number of ways defined
at compile-time. We will then perform an architectural study
to investigate the overhead of those variants when different
numerical precisions and arithmetical representations are used.

A. Capabilities and overhead compared to baseline

To compare with previous work, we use four different
variants of our debug instrumentation (Variants A-D), each of
which is parameterized in four different ways. Those variants
differ both in terms of the input vector width (N) connected
to the user circuit, as well as in terms of the range parameter
M, which dictates many of the instrumentation’s capabilities
as discussed in Section IV. All of the experiments were
performed using Quartus Prime Pro 20.3 and targeting a Stratix
10 1SG280LN2F43E1VG.

In order to allow for a fair comparison, previous work
has been adapted to target vectorized circuits. Also note that
the different variants of our instrumentation are all able to
gather the same kinds of aggregated information. However,
different variants may take a different number of clock cycles
to perform the same task. Variant A represents the most
capable of our instruments, while Variant D corresponds to
the least capable of our variants.

Figure 8 shows the Initiation Interval (II) of our instrumen-
tation when compared to previous work under the different
workloads presented in Section V. As shown in this figure,
the initiation interval of the previous work is always 1, which
is ideal for observing short periods of the circuit’s execution,
but unnecessary for long-term monitoring. In contrast, our
instrumentation often needs multiple cycles to perform the
computations required in many data gathering techniques, but
the more time we allow for the processing of this information,
the lower is our area overhead. Importantly, previous work
only has the flexibility of computing the baseline aggregations,
while ours is capable of being programmed to gather data in
a large variety of ways.

Table I shows the area overhead and reported impact on
Finar of the proposed instrumentation when compared to
previous work.

As shown in Table I, both previous work and Variant A
may consume an unreasonable amount of area, especially

Table 1

OVERHEAD OF DEBUG INSTRUMENTATION COMPARED TO BASELINE

Configuration Vector FMax Area Normalized
Width (N) | (MHz) (ALMs) ‘ Area ‘
1 300 0.9k (0.1%) -
(1) Previous 16 242 14.1k (1.5%) Tx
Work' [21] 32 231 2777k (2.9%) Ix
64 216 53.3k (5.7%) Ix
128 200 | 106.5k (11.4%) Ix
16 191 9.8k (1.10%) 0.69x
(2) Variant A 32 160 287k (3.0%) 1.03x
(M=N) 64 145 95.3k (10.2%) 1.78x
128 129 | 342.6k (36.7%) 3.21x
16 177 6.2k (0.7%) 0.43x
(3) Variant B 32 177 144k (1.5%) 0.51x
(M=N/4) 64 169 38.1k (4.0%) 0.71x
128 129 | 114.0k (12.2%) 1.07x
(4) Variant C 16 178 5.1k (05%) 0.35x
(M=N/16) 32 173 10.9k (1.1%) 0.39x
4 185 238k (2.5%) 0.44x
128 165 57.0K (6.1%) 0.53x
16 178 5.1k (0.5%) 0.35x
(5) Variant D 32 134 103k (1.1%) 0.37x
(M=1) 64 177 20.3k (2.1%) 0.38x
128 168 40.3k (4.3%) 0.37x

 Assuming distribution engine with 128 bins.

when observing wide vectors. This high overhead is caused by
the design choice of prioritizing the frequency in which new
information can be tapped, instead of allowing for more reuse
of the instrumentation. In contrast, Variants B, C, and D show
progressively lower area overhead at the cost of additional
cycles to gather data. The reported impact on Fj,,, of our
instrumentation is slightly higher than previous work, and
we anticipate that this impact could be further reduced by
pipelining the instrumentation.

Note that different from [21], our results don’t focus on
the overhead in terms of memory, since our instrumentation
continuously streams this data off-chip instead of recording
data on-chip until the end of the execution. However, if we
were to store data on-chip, our compression ratio for the
data gathering techniques presented in [21] would be very
similar, since we use an analogous data packing mechanism
as discussed in Section IV.

B. Study on numerical precision and representation

This architectural study aims to evaluate the overhead of dif-
ferent variants of our architecture when using different numer-
ical precisions and representations. Note that the arithmetical
representation being used by the debug instrumentation does
not necessarily need to match the arithmetical representation
of the user circuit. However, if the user circuit operates in
low precision, our instrumentation is in a better position to
also use reduced precision, resulting in significantly lower area
overhead.

Figure 9 shows the area overhead of multiple variants of
our instrumentation when different numerical precisions are
used. For this experiment, we fixed the vector width N to
64 elements, as we believe this represents a typical use case
scenario. As shown in Figure 9, the area overhead of variant
A is significantly larger than the overhead of all other variants,

27

Iy 101 4

g

b=

o

@

€ _‘.__ o

o R e E

5 .--"'# it T ¥ —#~ Variant

o 0 \ ‘--”-. —§- Variant B

@ 107 9 -—— 4 Variant C

< f Variant D
T T T T T T T
8 b 16 20 24 28 32

Instrumentation Bit Width

Figure 9. Overhead of instrumentation under different fixed-point bit widths.

even when a lower precision is used. For all widths, the
overhead of Variant C is only slightly larger than the overhead
of Variant D, although it is significantly more capable.

We also performed initial studies on the possible use of
Block Floating Point (BFP) as a way to decrease the area over-
head of our debug instrumentation. BFP has been identified
as a promising alternative representation for machine learning
workloads for both inference and training due to its efficiency
when performing multiply-accumulate operations [33]-[35].
However, our experiments have shown that BFP is not a
good alternative for debug instrumentations like ours, since
a significant part of our area overhead lies in the extensive
use of comparators. The need of matching the exponents of
the BFP operands before performing those operations requires
the use of multiple cycles for an efficient implementation,
which causes a significant increase of our initiation interval,
outweighing the benefits of the lower overhead.

VII. CONCLUSION

In this paper, we presented a flexible debug instrumentation
for live on-chip debug of machine learning training on FP-
GAzs. Different from traditional general-purpose on-chip debug
work, our instrumentation generates aggregated data, which
compresses information in a domain-specific way, allowing
for the live transmission of debug data off-chip. Different from
previous work on domain-specific on-chip debug, our infras-
tructure is firmware programmable, allowing the designer to
gather debug information on a large variety of ways, instead
of being constrained by a few options defined at compile-
time. We showed that this added flexibility allows us to gather
information that can be used to more quickly understand effi-
ciency and accuracy problems on training models, significantly
reducing training costs of large models. Although the area
overhead of such instrumentation can be significant, we show
that this overhead can be drastically reduced by trading off area
and the time between subsequent circuit observations. Overall,
we believe that the inconvenience of the higher overhead is
outweighed by the benefits of the flexibility provided by our
instrumentation.

DOWNLOAD

The source code for the proposed instrumentation (includ-
ing examples and documentation) can be downloaded from
github.com/danielholanda/LeBug.

[1]

2

—

3

—

[4]

[5]

[6]

[71

[8

—

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

REFERENCES

S. Fox, S. Tridgell, C. Jin, and P. H. W. Leong, “Random projections for
scaling machine learning on fpgas,” in 2016 International Conference
on Field-Programmable Technology (FPT), 2016, pp. 85-92.

Amazon. Amazon ec2 fl instances: Enable faster fpga accelerator
development and deployment in the cloud. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

Baidu. Fpga cloud server. [Online]. Available: https://cloud.baidu.com/
product/fpga.html

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger,
“A reconfigurable fabric for accelerating large-scale datacenter services,”
IEEE Micro, vol. 35, no. 3, pp. 10-22, 2015.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, and et al., “A
configurable cloud-scale dnn processor for real-time ai,” in Proceedings
of the 45th Annual International Symposium on Computer Architecture,
ser. ISCA °18. IEEE Press, 2018, p. 1-14. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00012

E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar, R. Krishnamurthy, S. Gribok,
B. Pasca, M. Langhammer, D. Marr, and A. Dasu, “Why compete when
you can work together: Fpga-asic integration for persistent rnns,” in 2019
IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019, pp. 199-207.

T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Patel, and M. Herbordt,
“A framework for acceleration of cnn training on deeply-pipelined fpga
clusters with work and weight load balancing,” in 2018 28th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2018, pp. 394-3944.

H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA °20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
255-265. [Online]. Available: https://doi.org/10.1145/3373087.3375312
T. Wang, T. Geng, A. Li, X. Jin, and M. Herbordt, “Fpdeep: Scalable
acceleration of cnn training on deeply-pipelined fpga clusters,” IEEE
Transactions on Computers, vol. 69, no. 8, pp. 1143-1158, 2020.
Wenlai Zhao, Haohuan Fu, W. Luk, Teng Yu, Shaojun Wang, Bo Feng,
Yuchun Ma, and Guangwen Yang, “F-cnn: An fpga-based framework
for training convolutional neural networks,” in 2016 IEEE 27th Inter-
national Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2016, pp. 107-114.

D. Lo, B. D. Darvish, E. S. Chung, Y. Zhao, A. Phanishayee, and
R. Zhao, “Adjusting activation compression for neural network training,”
Microsoft Technology Licensing LLC, U.S. Patent 20200264876A1,
Aug. 2020.

D. C. Burger, E. S. Chung, and B. D. Rouhani, “Incremental training
of machine learning tools,” Microsoft Technology Licensing LLC, U.S.
Patent 20200265301A1, Aug. 2020.

K. Denolf, N. Fraser, K. A. Vissers, and G. Gambardella, “Training
of neural networks by including implementation cost as an objective,”
Xilinx Inc, WIPO Patent W0O2020068437A1, Apr. 2020.

K. Denolf and K. A. Vissers, “Architecture optimized training of neural
networks,” Xilinx Inc, U.S. Patent US20190057305A1, Feb. 2019.

S. Kolala Venkataramanaiah, Y. Ma, S. Yin, E. Nurvithadhi, A. Dasu,
Y. Cao, and J. Seo, “Automatic compiler based fpga accelerator for cnn
training,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), 2019, pp. 166-172.

N. P. Jouppi er al., “In-datacenter performance analysis of a tensor
processing unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, p.
1-12, Jun. 2017. [Online]. Available: https://doi.org/10.1145/3140659.
3080246

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

C. Li, “Openai’s gpt-3 language model: A technical overview,” jun 2020.
[Online]. Available: https://lambdalabs.com/blog/demystifying-gpt-3/

28

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

K. Wiggers, “Openai launches an api to commercialize its research,”
jun 2020. [Online]. Available: https://venturebeat.com/2020/06/11/
openai-launches-an-api-to-commercialize-its-research/

D. H. Noronha, R. Zhao, J. Goeders, W. Luk, and S. J. Wilton, “On-
chip FPGA Debug Instrumentation for Machine Learning Applications,”
in Int’l Symposium on Field-Programmable Gate Arrays (FPGA), Feb
2019, pp. 110-115.

D. Holanda Noronha, R. Zhao, Z. Que, J. Goeders, W. Luk, and
S. Wilton, “An overlay for rapid fpga debug of machine learning
applications,” in 2019 International Conference on Field-Programmable
Technology (ICFPT), 2019, pp. 135-143.

S. Cai, E. Breck, E. Nielsen, M. Salib, and D. Sculley, “Tensorflow
debugger: Debugging dataflow graphs for machine learning,” 2016.

K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané,
D. Fritz, D. Krishnan, F. B. Viégas, and M. Wattenberg, “Visualizing
dataflow graphs of deep learning models in tensorflow,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 1-12,
2018.

J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert, “Manifold:
A model-agnostic framework for interpretation and diagnosis of
machine learning models,” CoRR, vol. abs/1808.00196, 2018. [Online].
Available: http://arxiv.org/abs/1808.00196

S. Shah, R. Fernandez, and S. Drucker, “A system for real-time
interactive analysis of deep learning training,” Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems -
EICS ’19, 2019. [Online]. Available: http://dx.doi.org/10.1145/3319499.
3328231

Xilinx, ChipScope Pro Software and Cores: User Guide, October 2012.
Intel, Quartus Prime Pro Edition Handbook, November 2015, vol. 3,
ch. 9: Design Debugging Using the SignalTap II Logic Analyzer.

R. Hale and B. Hutchings, “Enabling low impact, rapid debug for highly
utilized fpga designs,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), 2018, pp. 81-813.

M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 510-520. [Online]. Available: https:
//doi.org/10.1145/3338906.3338955

B. Beizer, Software System Testing and Quality Assurance.
Nostrand Reinhold Co., 1984.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.
03167

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch
normalization help optimization?” 2019.

B. Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov, A. Vino-
gradsky, S. Massengill, L. Yang, R. Bittner, A. Forin, H. Zhu, T. Na,
P. Patel, S. Che, L. C. Koppaka, X. Song, S. Som, K. Das, S. Tiwary,
S. Reinhardt, S. Lanka, E. Chung, and D. Burger, “Pushing the limits
of narrow precision inferencing at cloud scale with microsoft floating
point,” in NeurIPS 2020. ACM, November 2020.

M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Training dnns with
hybrid block floating point,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 451-461.

, “End-to-end dnn training with block floating point arithmetic,” in
arXiv, 04 2018.

USA: Van

