
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Toward Full-Stack Acceleration of Deep
Convolutional Neural Networks on FPGAs

Shuanglong Liu , Hongxiang Fan , Martin Ferianc, Xinyu Niu, Huifeng Shi, and Wayne Luk, Fellow, IEEE

Abstract— Due to the huge success and rapid development
of convolutional neural networks (CNNs), there is a growing
demand for hardware accelerators that accommodate a vari-
ety of CNNs to improve their inference latency and energy
efficiency, in order to enable their deployment in real-time
applications. Among popular platforms, field-programmable gate
arrays (FPGAs) have been widely adopted for CNN acceleration
because of their capability to provide superior energy efficiency
and low-latency processing, while supporting high reconfigurabil-
ity, making them favorable for accelerating rapidly evolving CNN
algorithms. This article introduces a highly customized streaming
hardware architecture that focuses on improving the compute
efficiency for streaming applications by providing full-stack
acceleration of CNNs on FPGAs. The proposed accelerator maps
most computational functions, that is, convolutional and decon-
volutional layers into a singular unified module, and implements
the residual and concatenative connections between the functions
with high efficiency, to support the inference of mainstream CNNs
with different topologies. This architecture is further optimized
through exploiting different levels of parallelism, layer fusion,
and fully leveraging digital signal processing blocks (DSPs). The
proposed accelerator has been implemented on Intel’s Arria
10 GX1150 hardware and evaluated with a wide range of
benchmark models. The results demonstrate a high performance
of over 1.3 TOP/s of throughput, up to 97% of compute
[multiply-accumulate (MAC)] efficiency, which outperforms the
state-of-the-art FPGA accelerators.

Index Terms— Convolutional neural networks (CNNs), deep
learning, field-programmable gate arrays (FPGAs), hardware
accelerator, layer fusion, unified architecture.

I. INTRODUCTION

RECENTLY, large and deep convolutional neural net-
works (CNNs) have become widely adopted in many

tasks such as image classification [1], [2], object detection [3],
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and semantic segmentation [4]. Particularly, they have been
deployed in a variety of real-life and real-time applications,
such as smart cities, cameras, and remote sensing [5]. In these
applications, CNNs have shown great accuracy improvement
in comparison to traditional machine learning (ML) algo-
rithms. However, most successful CNN models exhibit very
high computational complexity and require vast memory and
processing power.

The operations that compose a CNN are not well-suited to
the Von Neumann computer architecture at the heart of CPUs.
They are better suited to hardware architectures with distrib-
uted, massively parallel computation and local memory such as
graphics processing units (GPUs) or field-programmable gate
arrays (FPGAs). In particular, GPUs with highly parallel archi-
tectures can achieve high throughput on CNNs by processing
parallel samples in batches. The efficiency of GPUs relies
largely on the regularity of data and batch size, which works
well for training, but not in practice while targeting real-time
inference [6]. For example, images in streaming applications
arrive one by one and using batch processing can greatly
increase latency, which is critical to the system’s performance.

Designing dedicated hardware for accelerating CNNs
requires significant investment and time to develop. However,
the ML community keeps to rapidly evolve CNNs. For exam-
ple, VGG16 [2] was first introduced in 2014 for object detec-
tion, one of the most popular tasks in computer vision, which
employed a uniform convolutional kernel size with serial layer
connectivity. A year later, CNNs have been in the trend of
employing residual (ResNets [7]) and concatenative connec-
tions (GoogLeNet [8]), which introduce irregular connectiv-
ity across layers. Moreover, networks such as YOLOv3 [9]
employ both types of irregular connections, making potential
accelerators, e.g., for VGG16 already obsolete. These irregular
connections are shown and explained in Fig. 1.

Apart from object detection, semantic segmentation has
been widely studied across a variety of application domains,
in order to provide pixel-wise segmented information from
the image. Deconvolution layer (Deconv), also called as
upsample in the literature, is hence introduced in models
such as SegNet [4] or U-Net [10], in addition to classic
2-D convolution (Conv), which also employ concatenative
connections. In these models, Deconv together with Conv
layers constitutes the majority of computation [11]. As a
result, they are far more computationally intensive than models
designed for image classification or object detection. There-
fore, a general customizable hardware architecture, without
the need to develop dedicated circuits, with the capability to
support all kinds of models mentioned above is crucial for
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Fig. 1. Main functions and connectivity in CNNs. (a) Convolutions with
serial connection. (b) Deconvolution, also known as upsampling, which
extrapolates new information from the input feature map and is widely used
in segmentation models. (c) Residual connection, also called as a shortcut
connection, where the results of one layer skip one or more layers and then
are added to the subsequent layers at different depth levels. (d) Concatenative
connection, which is a utility layer that concatenates its multiple inputs to a
single output. Unlike previous FPGA-based accelerators targeting CNN types
shown in (a), our work aims to improve the efficiency of CNNs of all these
types.

Fig. 2. Overview of the proposed optimization framework to accelerate the
mainstream CNN models for low-latency inference.

rapid system development. This requires special focus and
efforts on the compute efficiency1 of both Conv and Deconv
layers, as well as the irregular connections.

To address the challenges of CNNs with irregular shapes
and/or Deconv layers, and adaptation to varying and evolv-
ing CNN architectures, we propose a full-stack optimization
framework and develop a hardware accelerator based around
FPGAs. Fig. 2 presents the workflow to incorporate the hard-
ware engine for high-performance inference. In the training
stage, the compiler tool accepts a newly designed and trained
CNN model from ML frameworks, such as Tensorflow [13],
PyTorch [14] or Caffe [15]. The compiler then converts the
model to a streaming-graph intermediate representation and
extracts model structure and coefficients. During conversion,
an optimizer is used to optimize the model for efficient runtime
acceleration. At the application level, the hardware driver con-
sisting of the execution instructions is generated for the already
trained CNN model. Then, the operating system makes calls to
the compute engine on the FPGA to run inference. Using the
provided framework, a developer can quickly transfer a CNN
model to run directly on our accelerator without additional
hardware development.

In the heart of our approach is a compute engine, i.e., the
hardware accelerator that aims to improve the compute effi-
ciency and reduce the inference latency for the mainstream
CNNs with different topologies. It builds on top of a uni-
fied hardware architecture from our prior work [5], which
maps both Conv and Deconv layers into a single hardware

1The compute efficiency or multiply-accumulate (MAC) efficiency is defined
as the fraction of useful MAC cycles consumed by the total MAC units in
the design [12], while the overall efficiency is defined as the ratio of realized
performance to the theoretical peak performance of the device. Details are
given in Section VI-F.

module. Besides, the streaming accelerator maps the irregular
connections (residual and concatenative connections) with
high efficiency by organizing the hardware blocks in a way
where all blocks are kept busy at all times, also by using
a custom-tailored design of smart cache system. In addition,
the accelerator is further optimized by exploiting different
levels of parallelism and fully leveraging the digital signal
processing blocks (DSPs) on an FPGA. Finally, the CNN
is quantized through 8-bit fixed-point (INT8) quantization
scheme [16] to achieve higher performance without loss of
accuracy.

The novel contributions of this work are as follows:
1) automated acceleration framework, which enables users

to deploy the trained network models on FPGAs with
balanced resource allocation;

2) streaming accelerator with efficient mapping of residual
and concatenative connections and highly optimized
with methods such as input reshaping and layer fusion;

3) latency estimation method using the Gaussian process
with improved estimation accuracy without the need to
run the CNN on a real FPGA, which in turn reduces the
design time for better tradeoff between accuracy and
hardware performance.

Leveraging all these advances into a single system, we have
built an efficient CNN inference engine on an FPGA with
high compute efficiency. Achieving a high compute efficiency
across a wide range of CNN models is a challenge for many
hardware accelerators. The high compute and energy efficiency
of the proposed design is mainly due to two factors:

1) mapping the main computation operations into a singular
unified architecture (Section III-A);

2) reducing the communication time by efficient execution
of irregular connections (Section III-D).

As such, we can occupy the DSPs during most of the execution
time (>90%). Besides, we can exploit over 97% of the DSPs
in the FPGA device, due to the proposed DSP optimization
technique for INT8 multiplier (Section IV-C).

II. BACKGROUND AND RELATED WORK

In this section, we first review recent advances for efficient
CNNs in both algorithm and hardware implementations. Then,
we summarize the limitations of previous FPGA-based accel-
erators for CNNs in comparison to our design. Quantitative
evaluation and comparison will be presented in Section VI-F.

A. CNN Layer Overview

CNNs are built of several computational operations stacked
on top of each other, commonly known as layers, and most
modern networks have residual or concatenative connections
between them. Frequently used layers are 2-D convolutional
(Conv), upsampling (Deconv), or fully connected (FC) layers.
These three-layer types take up over 90% of computation in
a CNN model. Besides, there are pooling and batch normal-
ization [17] layers or nonlinear activations, such as rectified
linear unit (ReLU).

As illustrated in Code 1, the Conv or Deconv receives
C × Hi × Wi sized input feature maps, and then, these inputs
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Code 1 Convolution and Deconvolution Algorithms
Input: Input feature map I of shape C × Hi × Wi ;

Weight matrix W of shape F × C × K × K ;
Output: Output feature map O of shape F × H × W ;

1: for ( f = 0; f < F; f + +) // filter loop
2: for (c = 0; c < C; c + +) // channel loop
3: for (h = 0; h < H ; h + +) // row loop
4: for (w = 0; w < W ; w + +) // column loop
5: // Conv:

O[ f ][h][w]+ =
K−1∑
i=1

K−1∑
j=1

W[ f ][c][i ][ j ] ∗ I[c][h ∗ S + i ]

× [w ∗ S + j ]
6: // Deconv:

O[ f ] + = deconv(I[c], W[ f ][c]) // as shown in Figure 3.

are convolved or deconvolved with a kernel with the shape
of F × C × K × K . Each kernel window with the size of
K × K is applied to one channel of the input (Hi × Wi ) by
sliding the kernel with a stride of S to produce one output
feature map (H × W ); then, the results of C channels are
accumulated to produce one channel of output (channel loop
in line 2). All filters of the output feature maps (F × H × W )
are generated by repeating this process F times (filter loop
in line 1). Line 5 of Code 1 describes the 2-D convolution.
Deconv layers are implemented as transposed convolutions
in CPUs or GPUs [18]. Before performing the transposed
convolution, zeros need to be inserted into the original input
feature maps. FC layers can be converted into a Conv layer
by considering the kernel size K . For example, an FC layer
with the input size of C × H ×W and the output size of F ×1
can be implemented as a Conv layer with the kernel size of
F × C × H × W .

B. Efficient CNNs

It has been a general trend of increasing the depth of CNNs
using residual and concatenative connections between their
layers, to improve their classification accuracy as well as the
speed of training [19]. As a result, the networks are grad-
ually becoming structurally denser and thus more complex,
which largely limits their application in resource-constrained
settings, such as in edge devices for Internet-of-Things (IoT)
applications. Therefore, many research teams have proposed
methods to reduce the computation complexity of CNNs both
at algorithm and hardware implementation levels.

Novel algorithms, including Winograd convolution [20] or
fast Fourier transform (FFT) [21], focus on compute reduction
techniques. FFT performs the convolution operation in fre-
quency domain, and thus, it turns the originally space-domain
operation into a Hadamard product between the input and the
convolution kernel. Winograd convolution computes minimal
complexity convolution over small tiles, which reduces the
number of multiplications by a factor of approximately 2.25×
using the filter F(3×3, 2×2) [22]. Other algorithmic advances
cover model compression, which shrinks model representation

by channel pruning or resolution multipliers, used for example
in MobileNet [23]. Another technique to compress models
is to replace standard convolutions with depthwise separable
Conv [24], which reduces the computation by a factor of K 2.

From the hardware level perspective, researchers [25]–[27]
have proposed: 1) a quantization method, which captures
the specialty of FPGAs with capability of custom precision
support to save computation resources and 2) loop unrolling
strategies for multiple parallel processing. A further step into
improving quantization involves binarization for both weights
and data while executing the CNN on FPGA since, in this
case, the multiplication can be simply implemented as a XNOR

gate [28]–[30], which largely relieves the use of limited DSP
resources in current FPGAs. Others have proposed residual
binary inputs and weights to improve binarized networks,
which can improve the accuracy while still maintaining almost
the same computing resources in hardware [31].

C. Related Work

Recently, various FPGA-based accelerators for CNN infer-
ence have been proposed with the key objectives of designing
a system with high energy efficiency and low latency. These
accelerators, however, are generally targeting relatively struc-
turally simple networks, such as AlexNet [1] or VGG16 [2].
The common strategy used among these accelerators is to
minimize the data and weight movement from the off-chip
memories to the compute engine, which is implemented with
FPGA’s fabric. The techniques include: 1) double buffer,
to overlap the computation time and the data/weight load
time [25], [32], and 2) layer fusion, to process multiple CNN
layers in a pipelined manner, allowing for instant use of
intermediate data without external memory access [19], [27].
Wu et al. [12] optimized the accelerator by maximizing the
operating clock frequency and compute efficiency but achieved
a relatively low resource utilization. Most of these accelerators
only focus on Conv layers, thus providing high efficiency only
for CNNs with regular shapes.

A few works have studied the acceleration of Deconv layers
and generative adversarial networks (GANs) [33]–[35]. How-
ever, these works focus specifically on accelerating Deconv in
GANs that consist solely of deconvolutional layers. Therefore,
they did not attempt to accelerate other models such as those
used in segmentation models that employ both Conv and
Deconv layers. Our prior work [11] optimized the operations
of both Deconv and Conv layers for semantic segmentation.
An approach was proposed to address the compute inefficiency
incurred by the sparsity of Deconv when implemented as
transposed Conv. However, two different hardware modules
are deployed for Deconv and Conv separately in this design
and their DSPs for multipliers are not shared, which caused
the inefficiency of resource utilization.

Moreover, previous FPGA-based accelerators did not effi-
ciently support models with irregular connections. Venieris
and Bouganis [36] designed three separate hardware blocks
for each irregular network connection for networks that they
evaluated, i.e., GoogLeNet, ResNet-152, and DenseNet-161.
This approach can be a solution for a reconfigurable FPGA
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Fig. 3. Visualization of our approach to implement the Deconv layer with
K = 3, S = 3, and Padding = 1.

design, but it still leads to low resource efficiency in execution
and reduction in the design’s productivity. McDanel et al. [19]
introduced a network without any concatenative or residual
connections with small accuracy loss. Although competitive
performance on ImageNet [37] can be achieved in the mobile
setting, it did not solve the problem from the hardware
perspective, and in other applications, users are gradually more
inclined toward using residual or concatenative connections.

Compared to the previous work, we first implement the main
computation layers among CNN models, i.e., convolutional,
deconvolutional, and FC layer, and map them into a single
unified module, which improves the MAC efficiency during
inference. Second, the proposed accelerator supports both
residual and concatenative connections for a general set of
networks with only one element-wise residual hardware block,
and a high compute efficiency for these irregular structures
is achieved through designing a smart memory system (see
Section III-D). As a result, our approach provides high
compute efficiency for both regular and irregular network
structures without the need to reconfigure the FPGA fabric.

III. STREAMING ACCELERATOR ARCHITECTURE

This section first proposes a unified architecture to support
the main operations: Conv, Deconv, and FC layers in CNNs,
which serves as the key hardware module in our compute
engine. We explore different levels of parallelism for the
unified architecture as well as the overall accelerator. Then,
it presents the general structure of the accelerator with a smart
cache design that allows the implementation of residual and
concatenative connections while maintaining high efficiency
for a general set of CNN models.

A. Unified Architecture

The direct mapping of CPU- or GPU-based Deconv algo-
rithm, i.e., transposed convolution onto the FPGA, will incur
the compute inefficiency due to the zero insertions leading to
meaningless multiplications with zeros. In this work, an effi-
cient 2-D Deconv approach proposed in [11] is used in our
hardware implementation, as shown in Fig. 3. This approach
multiplies input pixels with the corresponding weight kernel
and sums the overlapping area in output maps. It improves the
compute efficiency by exploiting the sparseness of transposed
convolutions.

Existing FPGA-based accelerators, such as [11], [38],
and [39], implement 2-D Conv by unrolling the dot-product
loop in line 5 of Code 1 using K ×K multipliers. However, this
type of architecture cannot be reused for the Deconv approach
mentioned above. Besides, it is difficult to reconfigure the

Fig. 4. Unified module proposed to map Conv, Deconv, and FC on FPGA
with parallel channel processing and the 8-b quantization module to support
integer-only arithmetic inference [16].

compute kernel back for Conv with multiple kernel sizes (such
as 3 × 3, 5 × 5, or 7 × 7).

To improve the resource efficiency, we propose a unified
accelerator architecture to implement both Conv and Deconv
with an arbitrary kernel size. FC layers are always performed
as a Conv layer without the need to introduce additional
blocks and thus achieve the highest resource occupancy during
runtime. In this architecture, each multiplier is responsible for
computing a single output pixel such that the 2-D Conv or
Deconv is performed in a single MAC unit for one output.
As shown in Fig. 4, it consists of an array of multipliers
that compute multiple channels of input in parallel and a
quantization module that computes the sum of the input pixels,
to support the 8-b linear quantization scheme proposed in [16].
The quantization scheme for CNNs achieves a very high
compute density without observing loss of accuracy, as we
will show in Section VI-E.

1) 8-b Quantization: The quantization scheme is a mapping
of integers q to real numbers r with the form

r = S(q − Z) (1)

where S and Z are constant parameters. Assume that the
real and quantization numbers of inputs, outputs, and weights
are (rd , ro, rw), and (qd, qo, qw), respectively. Conv without
quantization is computed as ro = ∑

rwrd . Substituting each
term with (1), we have

So(qo − Zo) =
∑

Sw(qw − Zw)Sd (qd − Zd) (2)

which can be rewritten as

qo = Zo + Sw Sd

So

(
N Zw Zd − Zd

∑
qw − Zw

∑
qd

+
∑

qwqd

)
. (3)

Note that N Zw Zd − Zd
∑

qw is independent of the input
features, which means that it can be computed offline, and
only Zw

∑
qd needs to be computed at runtime. Therefore,∑

qwqd − Zw

∑
qd is computed in the unified architecture,

and other operations are merged with the weights and bias of
each convolution layer which is done offline.
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2) Conv: To compute one output pixel, the corresponding
K ×K input pixels of the feature maps and K ×K weights are
sequentially multiplied in a single multiplier. Then, the mul-
tiplied results are flowed into an accumulator (ACC shown
in Fig. 4) for accumulation to compute one output pixel of
the output maps of one channel. Therefore, one output of
convolution requires K × K + L hardware cycles in total,
where L is the total number of cycles to perform addition and
accumulation.

3) Deconv: The Deconv approach shown in Fig. 3 is more
complex than Conv in terms of hardware implementation.
The number of MAC operations required depends on the
position of the computed output pixel since there are different
overlapping rows and columns presented in the output map
in Fig. 3. In total, three cases need to be considered: 1) for
the output with nonoverlapping rows or columns, only one
input pixel is multiplied by the weights; 2) for the output
with only one overlapping row or column, two adjacent input
pixels in row or column dimensions are sequentially multiplied
by the corresponding weights; and 3) for output with both
overlapping row and column, four adjacent input pixels in
row and column dimensions are sequentially multiplied by
the weights. For the last two cases, the multiplied results are
flowed into the accumulator for accumulation. Hence, 1, 2,
or 4 clock cycles are required, respectively, to compute one
Deconv output of one channel input maps in the three cases.

Therefore, the architecture can implement convolutions with
any kernel size and strides as well as deconvolutions. It is also
capable of supporting other convolution-based operations in
CNNs such as 1-D Conv or dilated Conv, by feeding the data
and weights into the multipliers in the right sequence.

B. Parallelism Exploration

We explore different levels of parallelism in order to
improve the resource utilization and compute efficiency of
our accelerator. Three levels of parallelism can be utilized
for parallel processing in convolution-based operations: filter
parallelism, channel parallelism, and data parallelism. They
correspond to unrolling the loops in lines 1–3 of Code 1,
respectively. Data parallelism is utilized in previous designs,
such as [11]. However, the employment of data parallelism
will result in computational inefficiency in practical hardware
design due to the following factors.

1) Workload Imbalance: When performing Deconv. When
employing data parallelism, it computes multiple output
pixels in one row of the output feature maps in parallel.
However, Deconv has three separate modes with respect
to which the output in one row can be produced, just
as we have mentioned above. As a result, the workload
of the multipliers is imbalanced and some multipliers
must be kept idle to wait for others to finish processing,
resulting in low multiplier utilization.

2) Inefficiency: When the input width of a layer cannot be
divided by the degree of data parallelism. The degree
of parallelism in hardware must be a fixed number,
e.g., 32. However, the layers in CNNs often have the
input maps with different heights and widths, and it is

Fig. 5. Architecture of the overall accelerator that supports both channel
parallelism and filter parallelism with double buffer technique employed.
Weights and input image are transferred from DDR through the DMA
controller. All intermediate data are processed in on-chip memories.

impossible to have a degree of parallelism in which all
the widths of layers in the network are fully supported.
For example, for W = 36, the compute efficiency is
only ((36/32)/(�36/32�)) = 56%. This inefficiency
can be relieved by batch processing, but as previously
mentioned, it increases the latency for streaming appli-
cations.

Therefore, instead of using data parallelism, we employ the
channel parallelism in this work, as already shown in Fig. 4.
Multiple channels (PC) of inputs are multiplied with the
weights in parallel, and the results are then added together
using an adder tree before the accumulation. The advantage
of this design is that each multiplier’s workload is balanced
since the output pixels of different channels have the identical
position in the output maps. In addition, the layers’ input
channel (except for the first layer) in CNNs are often a power
of two or can be tuned to a power of two so that they can
be divided by the degree of channel parallelism (PC) that
is normally a power of two as discussed previously. Hence,
the channel parallelism does not lead to any loss in the
utilization of multipliers and it adapts to the algorithmic design
from users. On the contrary, once the size of the first layer’s
input is determined, the size of all other layers is automatically
decided, while the channel numbers are independent among
layers in one CNN model.

Furthermore, the accelerator computes multiple filters (PF)
of output in parallel. This is achieved by instantiating PF
datapaths in the compute engine, where each datapath includes
the unified module with channel parallelism (PC) and other
hardware blocks that map a CNN onto an FPGA with parallel
processing power. The overall design is shown in Fig. 5.
Weights of the CNN are read from the DDR memory
and cached in weight buffers using the double buffer tech-
nique to overlap the load time. Intermediate results are
read from and written back to the local (on-chip) smart
caches directly on the FPGA, with smart read/write controls.
Note that the PF datapaths share the identical quantiza-
tion module in Fig. 4 as they use the identical pixels as
input data, which largely saves the hardware resources. The
architecture design of the complete datapath is presented in
Section III-C, while the smart cache system is described in
Section III-D.
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Fig. 6. Hardware blocks instantiated in our accelerator to map the mainstream
CNNs on FPGA.

C. Hardware Building Blocks

Fig. 6 shows the hardware blocks of one datapath that maps
a CNN model onto the FPGA. Each datapath consists of a
unified module to perform Conv, Deconv, or FC operation.
It is then followed by a ReLU module, which performs
the nonlinear activation such as ReLU or leaky ReLU. The
following pooling module is added to run average or maximum
pooling on the input data. The residual block accepts one
input from one of the preceding hardware blocks, which
computes the results of the current layer, and another input
from the local cache, which stored the result from the previous
operation. It can perform element-wise operations, such as
add, subtract, or multiply. The operations are implemented
using the available DSPs and one DSP can be configured to
run any of the three kinds of operations above during runtime
simply by using control signals. Therefore, our design does not
introduce any additional resource overhead by supporting three
types of element-wise operations instead of potentially only
supporting multiply in the residual block. The final connected
block is a global average pooling (GAP) module, which is
usually employed before a final FC layer in a CNN [40].

The concatenation layers do not perform any operations,
and thus, no hardware block needs to be instantiated and they
are actually implemented through smart cache design, as their
operation is mainly dependent on routing of the incoming data.

The trick in the datapath design is that each hardware block
can be bypassed through multiplexers that enable flexible layer
configuration. Thus, it is capable of implementing a wide
range of CNN topologies, such as GoogLeNet [8], ResNet [7],
VGG16 [2], and YOLOv3 [9] by simply correctly configuring
the datapath through control signals that influence the infor-
mation flow. Besides, the whole datapath is run in a pipelined
manner with support of intralayer pipeline using double buffer
to overlap data transfer time with computation [25], as well
as interlayer pipeline [41] to run all other functionalities in
parallel with the unified module, thus keeping these blocks
busy during most of the execution time and achieving high
resource efficiency across the CNN models.

The input image and weights are stored in a DDR memory.
While processing, they are first cached in the on-chip Block
RAMs (BRAMs), i.e., local cache on the FPGA, and then, all
the intermediate results are stored in the local cache without
accessing the DDR memory, to avoid additional communica-
tion cost. The final result after execution is stored back to the
DDR memory for further evaluation in the CPU. Therefore,
the performance of our system is not limited by the bandwidth
of the DDR interfaces.

Fig. 7. Weight storing pattern in the weight buffer that consists of PF banks
and each bank stores one set of filter weights with the width of PC weights
(8 × PC bits) and the depth of K × K × TC. Numbers in the figure represent
the memory address of the attached data group.

D. Smart Cache Design

One of the advantages of FPGAs in comparison to GPUs
and CPUs is their large on-chip bandwidth since the local
BRAMs can be customized with large data width to decrease
the access latency for the frequently used data. For example,
in convolution, each input pixel is reused K × K × F times,
and weights are only used once. Data buffers are also needed
to cache the input and output of standard convolutions, inputs
of residual block, and multiple inputs of concatenative con-
nections. Therefore, efficient utilization and management of
the local caches on the FPGA are crucial to the performance
of the overall system. Here, we introduce our smart cache
design, in order to achieve the maximum memory utilization
while maintaining parallel processing capabilities in channel
and filter dimensions. Besides, we show how the local cache is
divided and balanced into different parts, in order to improve
the efficiency of concatenative and residual connections.

1) Data Storing Pattern in Cache: The storage data pattern
in caches should mainly consider the support of parallel
processing. Weights are simple and straightforward to be
cached. Weight buffers are divided into PF memory banks, and
each bank stores one set of filter weights, i.e., C × K × K .
Each bank has a memory width of PC weights with the depth
of K × K × TC, where TC = C/PC. As shown in Fig. 7,
the weights are stored in channel dimension first, followed by
width and height dimensions. Weights of multiple filters are
fed into different rows of the datapaths in parallel.

Data buffer design is much more challenging. The fea-
ture maps can be stored in the data buffer in two orders:
channel-major and block-major. Both methods store the input
feature maps in one single memory with the width of PC
data pixels in channel dimension for implementation of chan-
nel parallelism. The illustration of both methods is shown
in Fig. 8.

1) Channel-Major: It stores the data pixels in the order of
H × W × C . The data in channel dimension are stored
first and then followed by width and height.

2) Block-Major: It stores the feature maps block by block,
as the total volume can be regarded as TC blocks in
the channel dimension. Each data block is stored in the
order of H × W × TC.
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Fig. 8. Two alternatives of the data storing pattern in the data buffers and their
corresponding reading and writing patterns with channel-major computing.
(a) Channel-major. (b) Block-major.

In this work, we use the block-major storing method for more
efficient implementation of concatenative connections, as we
will discuss later.

2) Computing Pattern: Corresponding to the data storage
pattern, there are two alternative ways for computing the
standard Conv. For convenience, we still name them as
channel-major and block-major computing patterns.

1) Channel-Major: It computes the final result of one data
point first, and thus, it needs to access the data in one
K × K window along the channel dimension until the
end. This results in the datapaths reading K × K × C
input pixels in TC · K · K cycles and then generating PF
output pixels. The datapaths share the same input pixels.
Every TC · K · K cycles, the accelerator generates PF
results, and in total, TC · K · K · H · W · F/P F cycles
are needed.

2) Block-Major: It computes the results in width and height
dimensions first instead of channel dimension, and the
intermediate results of one block size need to be cached
during the process. Every K · K · H · W · TC cycles,
it generates the results of the whole maps of PF filters,
i.e., H × W × PF output pixels. Compared to the
channel-major method, it is more efficient for the DDR
memory access since it generates a large volume of
data consecutively and thus enables burst transfers of
results to the DDR memory. However, it needs large
buffers to cache the intermediate results with the size of
H × W × PC × P F , which increases the overhead of
local caches. When block-major storage is used, the data
are read discontinuously in the input buffer.

Nevertheless, the channel-major computation does not need
any cache for intermediate results and provides us with more
efficient utilization of local memories. Therefore, it better
suits our architecture in which all the layers are processed
by using on-chip memories. The behaviors of different com-
binations of storing and computing patterns in cache design
are summarized in Table I. In this work, the block-major
storage and channel-major computation are utilized with com-
prehensive consideration of design complexity and compute
efficiency. Note that the output results are always produced in

TABLE I

SUMMARY OF THE BEHAVIORS OF STORING AND
COMPUTING PATTERNS IN CACHE DESIGN

Fig. 9. Simplified illustration of the implementation of residual connections.

the block-major pattern because the results are generated in
the filter dimension, so the block-major storing will lead to
continuous writing behavior, as shown in Fig. 8.

3) Data Buffer Organization: This section mainly considers
how to manage and balance the data buffers for standard
convolution, residual, and concatenative connections. When
performing standard Conv, two data buffers are needed, which
are input and output buffers. Residual connection has two data
inputs and a single output, whereas concatenative connection
can have more than two inputs and again a single output.
As shown in Fig. 9, when connecting inputs in the residual
layer, the input maps are stored in the input buffer and the
accelerator can run standard Conv first, then, its output is con-
nected to the residual block with the other input coming from
a second data buffer—Residual Buffer, and finally, the residual
output is stored in the output buffer. With this design, we can
keep both unified module and residual block busy at the same
time, which guarantees high resource occupancy.

Since there are usually more than one residual or concate-
native connections in a single network, either memory buffer
can be used as an input or output or residual buffer. Therefore,
in this work, we customize three memory buffers to cache
the data that all have the identical size and structure. When
performing the concatenative connections, because the data
are stored in buffers per block, they are concatenated together
just by jumping to the other memory location, which stores the
other input. This also works for even more intricate input pat-
ters, such as three inputs concatenated, by storing the multiple
data blobs in one memory buffer. The simplicity and efficiency
of implementation of the concatenative connection are owed
to the chosen block-major storing pattern in data buffers.

E. Overall Accelerator

The overall system is shown in Fig. 10. It consists of the
host processor, computation engine, on-/off-chip interconnect
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Fig. 10. Overview of the complete hardware system for FPGA-based
acceleration for CNN inference.

(DMA), and off-chip DDR memory. The host processor is
used to configure the parameters of layers when running the
CNN model in the computation engine. All the weights of
the model, the input image, and the final results of classifica-
tion/detection/segmentation are stored in the DDR memory.

IV. DESIGN OPTIMIZATIONS

This section presents the optimization techniques used in
our approach to improve resource efficiency and compute
efficiency of the proposed accelerator.

A. Layer Fusion

Layer fusion [27] is a common optimization technique to
minimize data movement, which is considered in practical
designs. By storing all intermediate data in on-chip memory,
layer fusion processes multiple CNN layers at the same time
in a pipelined manner without the need for external memory
access. As shown in Fig. 5, input and output feature maps are
cached in the data buffers using BRAMs during the execution.
The memory size and data structure of these data buffers are
the same, as described above. Before the processing of the first
layer, the input data are transferred from the DDR and cached
in one buffer. Then, the inputs are streamed into the datapaths,
whereas the outputs are simultaneously flowing into the second
data buffer. When the computation of the first convolution
finishes, the second data buffer acts as the input buffer for
the second convolution and the outputs will be cached in the
other buffers. In the end, the final outputs are transferred back
to the DDR from the data buffers. The double buffer technique
is also used to cache weights, in order to overlap the weight
load time with the computation time. For simplicity, it is not
shown in Fig. 5.

B. Input Reshaping to Improve Utilization

For CNNs trained on ImageNet [37], nearly 10%–15% of
the total computation is associated with the first convolution
layer because of the large spatial size of the input image [19].
However, the computation of the first convolution layer has
not been mapped well onto the previous hardware accelerators
such as those based on the systolic architectures [42] because
the input image only offers a small number of channels,
which cannot fully utilize the input bandwidth and leads to
the underutilization of the computing resources.

To solve this imbalance, we reshape the first layer [19]
to improve the resource efficiency. The input maps are
divided into multiple small blocks. Then, we concatenate these

Fig. 11. INT8 multiplication is decomposed into one 6-b multiplication and
other simple operations.

blocks together along the channel dimension. Correspondingly,
in order to fit them into our computation engine and guarantee
that the computation results are correct, we compute each set
of three channels of data in a set of four multipliers in the
unified module (see Fig. 4) with one multiplier idle, while the
adder tree is disabled when executing the first layer. Hence,
each datapath generates PC/4 output pixels in total at a time.
As a result, the compute efficiency of the first layer is increased
from 3/PC to 3/4 = 75%.

C. DSP Optimization for INT8 Multiplier

The maximum performance of the system depends on
the number of multipliers used in our design. In FPGAs,
DSPs are often used to implement multipliers, which makes
them the most limiting resource for CNN acceleration. The
variable-precision DSP block in Intel Arria 10 devices includes
two 18 × 19 multipliers with variable arithmetic precision
support. Without any optimization, one DSP can be configured
as two INT8 multipliers. While running INT8 computations,
the higher input width can carry another computation if the
lower 8-b input and its 16-b results are not affected. Based
on this, Xilinx proposed a method to optimize the 18 × 27 bit
multiplier on its DSP48E2 slice for INT8 operations, which
achieves a 1.75× performance improvement, i.e., 1 : 1.75 DSP
multiplier to INT8 MAC ratio [43]. However, it claimed that
an 18 × 19 multiplier in the Intel DSP block is limited to a
1 :1 ratio of DSP multiplier to INT8 MAC. The reason lies
in that such optimization must guarantee that the upper bits
should not affect the computation of the lower bits. Therefore,
it requires a minimum of 16 + 8 = 24 bits of the total input
bit width.

In this work, we propose an INT8 optimization method,
targeted at Intel’s DSP block, to efficiently map two 8-b
multiply into one 18 × 19 multiplier, i.e., 1:2 DSP multiplier
to INT8 MAC ratio. Since the multiplier’s input width is only
18 b, we first separate the inputs (a[7 : 0]) into two parts: the
higher 2 b (ah = a[7 : 6]) and the lower 6 bit (al = a[5 : 0]).
Then, the multiply a ×b is decomposed into one 6-b multiply,
three multiply with very small input bits, and one addition of
the four product results, as shown in Fig. 11. Now, we can
pack 6-b inputs a and b in the higher and lower 6 b of the
multiplier’s 18-b input port A and c and d in port B in the
same manner, as shown in Fig. 12. The 36-b product result has
a × c in higher 12 b and b × d in lower 12 b. As a result, two
multiplication results can be separated from the 36-b product,
and the other three simple operations required to generate the
8-b multiply result are implemented with logic resources.
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Fig. 12. 18 × 19 multiplier in Arria 10 DSP block is optimized to
implement two 6 × 6 multipliers, in order to improve the performance of
INT8 multiplication.

V. LATENCY ESTIMATION WITH GAUSSIAN PROCESS

A. Motivation

Design space exploration (DSE) has been widely used in
hardware accelerators [11], [36], [44] for CNNs, to optimize
a wide range of hardware parameters in an effort to effi-
ciently map a CNN onto the target FPGA. The DSE process
usually involves two approximating models. The models are
used instead of running the CNN on real hardware after
each hardware iteration with different hardware parameters
to collect measurements, which is very time-consuming. One
model is the resource model, which models the resources
for a specific architecture with given hardware parameters in
the target FPGA device. The other model is the performance
model, which usually estimates the corresponding system
performance, e.g., latency, given the chosen hardware and
fixed algorithmic properties. Then, DSE will try to find the
optimal design parameters that achieve the best performance
under the resource constraints for a given device.

There are several rather complicated performance estimation
frameworks for FPGA-based accelerators [45], [46]. There-
fore, practitioners usually resort to an analytic formulation
of performance prediction that provides a rough estimate,
e.g., for the latency, due to the simplicity of this prediction
method. In addition, the analytic approximation can be easier
to integrate into the DSE optimization loop, which is often
custom to support a variety of CNNs [5], as in compari-
son to working with all-round simulation software such as
ModelSim.

Nonetheless, avoiding the use of dedicated simulation
software or complicated performance predictors and instead
of using only an analytic approximation introduces several
challenges. First, by formulating an analytic approximation,
we usually avoid to count for scheduling, which can intro-
duce errors in the prediction. Second, the explicit time to
execute a certain operation on hardware varies by on-/off-chip
communication, synchronization, control signals, I/O interrup-
tions, and in particular for the CNN accelerators—the CNN’s
architecture, which cannot be covered by analytic estimation.
Third, a pure analytic method is unable to account for any
collected real-world performance measurements. Therefore,
it is necessary to develop a performance estimation method,
which provides the user with a reliable guarantee of the
expected performance while not increasing the implementation
effort.

B. Our Method

In this work, we propose a novel approach for accurate
performance estimation of FPGA-based CNN accelerators

that we used to estimate the latency of a given CNN on
the accelerator. This method employs a Gaussian process
regression (GPR) [47] approach coupled with the standard
analytic formulation [11] and the collected measurements.

GPR is a nonparametric, Bayesian approach for regression
that can embody prior knowledge/model into the target. It is
specified by a mean function m(·) and a covariance function
(kernel) k(·, ·). The mean function represents the supposed
average of the estimated data. The kernel computes correla-
tions between inputs and it encapsulates the structure of the
hypothesized function.

The predictive distribution p(yt |X, y, Xt ) for the targets
yt given the corresponding features Xt and the training data
(X, y) is defined as a multivariate Gaussian distribution with
a predictive mean E[yt |X, y, Xt ] and a predictive variance
V[yt |X, y, Xt ], which are defined as follows:
E[yt |X, y, Xt ]

= m(Xt ) + k(Xt , X)(k(X, X) + σ 2I)−1(y − m(X)) (4)

V[yt |X, y, Xt ]
= k(Xt , Xt) + k(Xt , X)(k(X, X) + σ 2I)−1k(Xt , X)T (5)

where σ 2 represents the noise amplitude and I is the identity
matrix. The detailed derivations can be found in [48].

In this work, the GP’s target is to estimate the latency for
a single layer based on the input features. The inputs are the
features that include the model’s layer parameters introduced
in Section III-A and the accelerator’s parameters, such as the
degrees of parallelism (PC and PF), clock frequency, and data
width. The output is the corresponding layer’s execution time,
i.e., latency. The standard analytic formulation developed in
our prior work [11] is used as the mean function of the GP,
with the profiling data collected by running the CNN on real
hardware as the training data. Matérn 3/2 kernel [48] is chosen
as the GP’s kernel.

The main benefit of using a GP over other methods, such
as linear regression or gradient tree boosting, which rely on a
large number of collected measurements, is that it can use the
previously developed analytic formulation, as prior knowledge
in a form of m(·). Thus, it reuses any previously developed
heuristics and only minimally increases the implementation
effort by tuning a small number of hyperparameters while
requiring a smaller number of collected measurements due
to the heuristic. Moreover, it can use the previously collected
measurements (X, y) to learn to account for any nonlinearities
such as on-/off-chip communication, synchronization, or con-
trol signals.

VI. EVALUATION AND EXPERIMENTS

A. Benchmarks

Some typical CNNs have been tested as benchmark models,
as listed in Table II. These models are widely used for tasks of
classification, object detection, and segmentation. VGG16 [2]
is one of the largest and computationally intensive net-
works, with serial layer connectivity and uniform kernel size
(3×3) across its convolutional layers. ResNet-50 and ResNet-
101 [7] represent the mainstream networks that contain the
residual connections insides their blocks. Inception-v4 [40]
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TABLE II

BENCHMARK MODELS

has a more uniform and simplified architecture with concate-
native connections compared to ResNet models. SSD [49]
has the architecture that builds on VGG16, and a set of
auxiliary convolutional layers were added to extract features
at multiple scales and progressively decrease the size of the
input to each subsequent layer. U-Net [10] is famous for the
introduction of large upsampling (deconvolutional) layers for
semantic segmentation and it also has concatenative connec-
tions. YOLOv3 [9] is a mainstream network with feature map
upsampling and concatenation. Its feature extractor is built
on Darknet-53 that is organized as a series of residual blocks.
Therefore, YOLOv3 has all the characteristics of irregularities.

B. Implementation Details

Our accelerator was implemented and evaluated on the
Intel’s Arria 10 device that consists of a high-performance
and power-efficient FPGA device, i.e., Arria 10 GX1150
(20 nm), a dual-core ARM Cortex-A9 processor (1.5 GHz),
and 2-GB DDR4 memory. The ARM CPU was used to
configure the layers’ parameters when running each model
in our accelerator. All the hardware modules are developed
using Verilog HDL. The hardware system was synthesized and
placed-and-routed with Quartus Prime Pro 18.1. In the target
device, our accelerator achieved the optimal design parameters
at PC × PF = 64 × 64 and the computation engine is run at
the clock frequency of 200 MHz.

C. Latency Estimation Results

The evaluation data set comprises the convolutional layers
from three CNNs, i.e., 24 convolutions of SSD [49], 57 convo-
lutions of ResNet-50 [7], and 75 convolutions of YOLOv3 [9].
Each model was executed on the implemented accelerator
on Intel Arria GX1150 FPGA. For a more comprehensive
evaluation, leave-one-out cross validation was used, where
each time, one sample was left out and all the others were
used for training. This process is then repeated for each
sample in the data set. The GPR is implemented using the
existing GPflow [50] library, and it was trained using an
Adam optimizer with the initial learning rate 1 × 10−3 until
convergence with respect to the relative error. The result is
shown in Table III in comparison to the standard method
in [11] using the analytic formulations.

The experiment results demonstrate the estimation accuracy
improvements provided by the GPR. Compared to the standard

TABLE III

LATENCY ESTIMATION WITH GPR COMPARED
TO STANDARD METHOD

TABLE IV

RESOURCE UTILIZATION OF THE ACCELERATOR

ON ARRIA 10 GX1150

method, it reduces the relative error from 27.6% to 8.3%, 33%
to 9.2%, and 22% to 3.1% for the evaluated models, achieving
a maximum of 23.8% and an average of 20.7% reduction in
the errors of latency estimation. The results confirm that our
method provides a very accurate estimate of latency and thus
accelerates the process of CNN model tuning in order to satisfy
the latency requirement for real-time applications. Therefore,
the proposed method can largely reduce the design time for the
tradeoff between accuracy and performance and improve the
hardware design productivity.

D. Resource Efficiency

Table IV shows the resource utilization of the accelerator on
Arria 10 GX1150. Owning to the use of 8-b quantization and
the proposed DSP optimization technique, the low-precision
fixed-integer multipliers are implemented individually in soft
logic or combined with other multipliers in the DSP blocks,
leading to high resource utilization and great compute density.
However, the result is routing congestion, which has a negative
impact on the working clock frequency [51].

Fig. 13 shows a breakdown of the resources of each module
in the datapath. Since the unified module (MM) is the core
computation block, it has the highest utilization of ALMs,
Registers, and DSPs among all the modules. Besides the
unified module, the arithmetic operation inside the residual
and ReLU blocks is implemented with DSPs that can be
configured for element-wise add/subtract/multiply operation.
The other two modules, i.e., GAP and Pooling use soft logic
to implement the arithmetic operations, and thus, they use a
relatively high percentage of ALMs and on-chip registers.

E. Compute Efficiency and Model Accuracy

Table V shows a summary of the performance, com-
pute (MAC) efficiency, and accuracy for our benchmark
models when running on Arria 10 GX1150 device. In this
work, the power consumption is obtained by subtracting the
idle power from the power measurement of the board due
to the benchmark execution. Our accelerator achieves the
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TABLE V

PERFORMANCE AND ACCURACY ON BENCHMARK MODELS

Fig. 13. Resource breakdown of each module in the datapath.

throughput of 1.30–1.59 TOP/s (teraoperations per second),
which is up to 97% of the realized maximum performance.2

As can be seen, it achieves the compute efficiency of 79.1%–
97.0%, depending upon the network. The relatively low effi-
ciency of VGG16 is due to the large computation of the
first layer since it can only achieve 75% of efficiency as we
have discussed in Section IV-B. Nevertheless, our accelerator
achieves a high compute efficiency of more than 89% for
networks with irregular types, such as ResNet and YOLOv3.
Our framework employs INT8 quantization scheme in [16],
and the resulting accuracy for the CNNs is almost equivalent
to that of the original floating-point 32-b (FP32) model, which
are within 1% point of the original FP32 accuracy without
retraining.

F. Performance Comparison

1) Comparison With Embedded GPU: We compare the per-
formance of our design with the widely used high-performance
NVIDIA Tegra X1 platform. TX1 has 256 CUDA cores
delivering over 1 TOP/s of peak performance with a power
consumption of 10 W. NVIDIA TensorRT as supplied by
the JetPack 3.1 package was run with the NVIDIA cuDNN
library and FP16 precision, which enables a highly optimized
execution of layers. Although a batched way of processing
can fully utilize the parallelism of GPU on TX1, it is not
a good choice for real-time processing because it increases
latency, as discussed in Section I. Therefore, on all evaluated
platforms, the benchmarks are run with a batch size of 1.

2The realized maximum performance is defined by multiplying the sum of
the adders and multipliers used in the design by the working clock frequency.

TABLE VI

COMPARISON WITH EMBEDDED GPU TX1

Performance comparison is shown in Table VI. As we
can see, the GPU performance has a large divergence across
the evaluated models from 131 to 322 GOP/s compared to
ours of 1.3–1.59 TOP/s on FPGA. In general, GPU performs
better on larger CNN models with regular shape and serial
connectivity, such as in cases of VGG16 and U-Net. However,
the GPU’s performance decreases dramatically on smaller
models or models with residual or concatenative connec-
tions. As a result, GPU TX1 has the lowest performance
of 131 GOP/s for YOLOv3 among all the evaluated models.
Owning to our customized and careful design for the irregular
connections, our accelerator achieves an overall high compute
efficiency across all benchmark models. The proposed accel-
erator achieves 4×–10.5× speedup in terms of the throughput
of GOP/s and 2.17×–5.48× improvements on the energy
efficiency of GOP/s/W compared to GPU.

2) Comparison With Previous FPGA Accelerators:
Table VII shows the performance comparison of our design
against prior FPGA-based accelerators. All results are based on
the batch size equal to 1. The total number of DSPs in a device
is used to compute the performance density (GOP/s/DSP)
because the utilization of DSPs can be regarded as a metric of
the quality of the hardware architecture design of FPGA-based
accelerators.

For all evaluated networks, our accelerator outperforms
all other accelerators in terms of both performance density
(GOP/s/DSP) and energy efficiency (GOP/s/W), as shown
in Table VII. Among all the accelerators, we achieve the
best performance density of 1.0 GOP/s/DSP and the energy
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TABLE VII

COMPARISON WITH PREVIOUS FPGA ACCELERATORS

efficiency of 79.5 GOP/s/W. Aydonat et al. [32] used
the Intel Xeon-FPGA Platform that targets the data cen-
ter applications and achieved a similar performance den-
sity of 0.91 GOP/s/DSP to our work. However, their work
only implemented AlexNet, which has a uniform and regu-
lar shape, and its performance will be impacted negatively
with other CNN topology with irregular connections. Besides,
Aydonat et al. [32] used a batch size of 1 for convolution layers
and 96 for the FC layers, which increased the throughput but
actually also increased the latency. Compared to the state-
of-art implementation of CNNs with irregular shapes in [36],
we achieve a performance density improvement of 6.13× and
an energy efficiency improvement of 2.9× for VGG16 and
ResNet.

3) Overall Efficiency Comparison: Here, we compare the
overall efficiency of our accelerator to the state-of-the-art work
presented in [12], which devoted the efforts to achieve high
compute efficiency and clock frequency. The overall efficiency
is defined as the ratio of the achieved performance to the
peak performance of the device. The peak performance of the
FPGA device is computed by multiplying the total number of
multipliers and adders incorporated into the DSP blocks by
the maximum clock rate [51]. Correspondingly, the realized
maximum performance is defined by multiplying the sum of
the adders and multipliers implemented in the design by the
working clock rate. Compute or MAC efficiency also refers
to the ratio of achieved performance to the realized maximum
performance. Therefore, the overall efficiency can be actually
computed as

OVERALL EFF.

= CLOCK EFF. × RES. EFF. × COMPUTE EFF. (6)

where clock efficiency refers to the ratio of working clock
rate to maximum clock rate, resource efficiency or utilization
is the ratio of multipliers and adders used in the design
to that incorporated in DSPs, and compute efficiency is the
fraction of useful MAC cycles. Optimizing clock rate and
improving resource utilization are two competing strategies

TABLE VIII

OVERALL EFFICIENCY COMPARISON

for high-performance FPGA accelerators. Note that logic
resources are not considered when computing the peak per-
formance since they make the computation very difficult and
a large amount of logic is required for other functions. Besides,
logic usage has a negative impact on the working clock
rate [51].

The results are shown in Table VIII. Due to the proposed
DSP optimization for INT8 multiplier, we have achieved a
1:1.35 DSP multiplier to INT8 MAC ratio of the overall
compute engine, leading to a very high resource efficiency.
This, in turn, limits the achieved clock rate that is only 44% of
the maximum due to the resulting routing congestion in FPGA
device [51], which is lower than that of [12]. Nevertheless,
we achieve an overall efficiency of 54.0%, which outperforms
the work in [12].

VII. CONCLUSION

This article presents an accelerating framework toward
the full-stack acceleration of CNNs on FPGAs. Computa-
tional functions, such as convolutional, deconvolutional, and
full-connected layers, are mapped in a unified architecture by
exploiting different levels of parallelism and fully leveraging
the DSPs. Besides, the proposed accelerator addresses the
efficiency of the irregular connections in CNN models such
as residual and concatenative connections by the smart cache
design. Quantitative evaluation results demonstrate that our
accelerator outperforms the performance density and energy
efficiency of existing state-of-the-art FPGA-based accelerators,
achieves a high compute efficiency, and therefore provides
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a highly optimized, specialized hardware accelerator for ML
acceleration.
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