
Reconfigurable Acceleration of Graph Neural
Networks for Jet Identification in Particle Physics

Zhiqiang Que, Marcus Loo, Wayne Luk
Imperial College London, UK, {z.que, marcus.loo20, w.luk}@imperial.ac.uk

Abstract—This paper presents a novel reconfigurable architec-
ture to accelerate Graph Neural Networks (GNNs) for JEDI-net,
a jet identification algorithm in particle physics which achieves
state-of-the-art accuracy. The challenge is to deploy JEDI-net for
online selection targeting the Large Hadron Collider (LHC) ex-
periments with low latency. This paper proposes custom strength
reduction for matrix multiplication operations customised for the
GNN-based JEDI-net, which avoids the costly multiplication of
the adjacency matrix with the input feature matrix. It exploits
sparsity patterns and binary adjacency matrices to increase
hardware efficiency while reducing latency. The throughput
is further enhanced by a coarse-grained pipeline enabled by
adopting column-major order data layout. Evaluation results
show that our FPGA implementation is 11 times faster and
consumes 12 times lower power than a GPU implementation.
Moreover, the throughput of our FPGA design is sufficiently high
to enable deployment of JEDI-net in a sub-microsecond, real-
time collider trigger system, enabling it to benefit from improved
accuracy.

I. INTRODUCTION

Graph neural networks (GNNs) have been explored and
shown excellent performance for particle physics applications,
such as jet identification (tagging) [1], charged particle track-
ing [2, 3], and calorimeter energy measurements [4]. Jet identi-
fication, which identifies the nature of the particle that initiated
a given collimated cascade, is an important but challenging
problem at the CERN Large Hadron Collider (LHC). It iden-
tifies all-hadronic decays of high-momentum heavy particles
produced at the LHC and distinguishes them from ordinary
jets originating from the hadronization of quarks and gluons.
[1] proposes JEDI-net, a GNN-based network, which achieves
state-of-the-art accuracy on jet identification. It can process
the list of jet constituent features directly without assuming
specific properties of the underlying detector geometry, and it
is insensitive to the order of the input jet constituents, showing
many advantages for the LHC experiments.

However, JEDI-net requires very large amounts of computa-
tion and suffers from large inference latency [1], which makes
its use problematic for real-time deployment on typical level
1 and high level trigger environments. This work proposes
several optimizations to accelerate the GNN-based JEDI-net
using high-level synthesis (HLS) on FPGAs. First, we propose
custom strength reduction for matrix operations based on the
characters of the JEDI-net, which avoids the expensive matrix
multiplications of the adjacency matrix with the input feature
matrix. It largely reduces the computation cost of JEDI-net and
boosts the design throughput since the adjacency matrix is very
large and matrix multiplication is costly. Second, we propose
to adopt a column-major order instead of a conventional row-

major order for the data layout of the intermediate results
traversed along the hardware datapath, which benefits the
computation of JEDI-net. It enables a coarse-grained pipeline
with a low initiation interval (II) to improve the design
throughput. With both of the above optimizations, our FPGA
implementation of JEDI-net achieves a sub-microsecond ini-
tiation interval, which makes the model deployable at the
collider trigger system that has strict latency constraints, while
enabling the system to benefit from improved accuracy.

To the best of our knowledge, this is the first FPGA
design of a GNN-based JEDI-net for jet identification in
particle physics experiments. This work would help improve
the performance of next-generation collider trigger systems
capable of highly accurate jet identification.

We make the following contributions in this paper:
• A custom strength reduction for matrix multiplications

for the GNN-based JEDI-net, which exploits sparsity pat-
terns and binary adjacency matrices to increase hardware
efficiency while reducing latency.

• A low latency coarse-grained pipeline design for JEDI-
net with novel column-major order based data layout to
increase design throughput and reduce design latency for
jet identification.

• A comprehensive evaluation of the proposed method and
hardware architecture.

II. BACKGROUND

The JEDI-net can be represented as a graph, G = ⟨I,R⟩
with the nodes, I , corresponding to the input features of the
physics particle, and the edges, R, to the relations. The input
particle features (I) are defined as a P × NO matrix, whose
columns correspond to the node’s P -length state vectors, and
NO corresponds to the number of particles in the jet. The
relations are a triplet, R = ⟨RR, RS , RR

T ⟩, where RR and
RS are NO × NE binary matrices which index the receiver
and sender nodes, respectively. Each column of Rr is a one-hot
vector that indicates the receiver node’s index; Rs indicates
the sender similarly. JEDI-net utilizes a full interconnection
through directional edges and the total number of the edges,
NE , is NO × (NO − 1).

The I matrix is multiplied by the RR and RS matrices and
the two resulting matrices are then concatenated to form the
B matrix, having dimension 2P × NE , as shown in Fig. 1.
A trainable function fR : R2P → RDE is then applied to
each column of B and gives a matrix E. Thus, the cumulative
effects of the interactions received by a given vertex are
gathered by summing the DE hidden features over the edges

B1

B2

MMM3

MMM1

MMM2

Fig. 1: Overview of the JEDI-net architecture [1].

arriving at it, which is implemented by computing Ē = ERT
R

in the MMM3 unit. The Ē and input matrix I are then
concatenated to form the C matrix. Each column of the
C matrix represents a constituent in the jet, expressed as
a (P + DE)-dimensional feature vector, containing the P
input features and the DE hidden features representing the
combined effect of the interactions with all the connected
particles. Another trainable function fO is used to build a post-
interaction representation of each jet constituent. It is applied
to each column of C to form the matrix O with dimensions
Do×NO. A final trainable function ϕG returns the probability
for that jet to belong to each of the five categories. fR, fO
and ϕG are expressed as 3-layer deep neural networks using
multi-layer perceptrons (MLPs).

III. DESIGN, OPTIMIZATION AND IMPLEMENTATION

This section introduces several optimizations for accelerat-
ing the GNN-based JEDI-net.

A. Strength reduction for matrix multiplications of JEDI-net

The implementation of the JEDI-net in [1] utilizes matrix-
matrix multiplication (MMM) operations to compute B1 =
IRR and B2 = IRS , which is costly and time-consuming.
One optimization is to exploit the sparsity of RR and RS

and a sparse matrix multiplication unit could be designed to
accelerate the operations. However, most of the computational
operations in these MMMs in JEDI-net are unnecessary if
we exploit the patterns in the RR and RS matrices. Both
matrices are binary and each of their columns is one-hot.
Besides, they have a fixed pattern as shown in Fig. 2. To
illustrate the idea, the number of particles is 5 in this figure,
but a real design has more particles. The element (RR)ij is
set to 1 when the ith vertex receives the jth edge and is 0
otherwise. Similarly, the element (RS)ij is set to 1 when the
ith vertex sends the jth edge and is 0 otherwise. Because
of the fixed patterns and the binary feature, MMMs are not
necessary to produce B1 and B2. First, the multiplications
are unnecessary because the RR and RS matrices only have
binary values. Second, accumulation (addition) operations can

0

1

2

4

3

N
O

=
5

NE = NO * (NO-1) = 20

RR

RS

N
O

=
5

Fig. 2: An example graph with 5 fully connected vertices
(NO = 5) and the corresponding 20 uni-directional edges
(NE = NO × (NO − 1) = 20) (left) and its receiving
matrix RR as well as sending matrix RS (right). Each yellow
circle is 1 and 0 for all the others in the matrices. The first
columns of RR and RS matrices have been highlighted using
a red frame to show that they are one-hot.

A11 A12 A13

A21 A22 A23

A11 A12 A13

A21 A22 A23
Fig. 3: Row-major (left) and column-major (right) orders.

be avoided because each column of RR and RS is one-
hot. Thus, only load and store operations are required to
compute B1 = IRR as well as B2 = IRS . Moreover,
the RR and RS matrices are not obtained from then input
to reduce memory bandwidth; their values are fused into
the loops. A similar optimization can be applied to compute
Ē = ERT

R with minimum addition operations. All the zero
products are excluded by a careful design using loop and
index. Our proposed methods not only eliminate the expensive
MMM operation to increase the computational efficiency but
also avoid the input of the adjacency matrices to improve
the memory access efficiency, which reduces the latency.
Although this work focuses on the JEDI-net architecture, the
proposed custom strength reduction technique can be adapted
to optimize other GNN-based networks.

B. Row-major and column-major orders

The intermediate results in the JEDI-net architecture are
captured using two dimensional (2D) arrays representing a
matrix as shown in Fig. 1. Row-major and column-major
orders (Fig. 3) are two data layout methods which are critical
for correctly passing arrays between hardware units. It is
important to select an appropriate data layout, since the choice
has impact on performance. When mapping a 2D structure
onto a one dimensional (1D) structure (i.e. memory) using a
high level synthesis tool (e.g., Xilinx Vivado HLS), often the
default data layout is row-major order. However, row-major
order for JEDI-net will lead to poor spatial locality and will
hinder parallelism since the functions fR and fO are applied
to each column of the input matrix. With a row-major format,
the input data of these functions are not contiguous in memory
so it is very time-consuming to collect all the data in a column.
However, if the memory is arranged in a column-major layout,
iterating over each column brings benefits because the data

Algorithm 1: The pseudocode of the custom matrix
operations for JEDI-net.

1 Function MMM_B(I , B1, B2):
2 for i = 0 to NO do
3 for k = 0 to NO − 1 do
4 for j = 0 to P do
5 B1[k + i ∗ (NO − 1)][j] = I[i][j];

6 index = (k < i)?k : (k + 1);
7 B2[k + i ∗ (NO − 1)][j] = I[index][j];
8 end
9 end

10 end
11 End Function

are accessed sequentially. Thus, this work adopts the column-
major order for accelerating the JEDI-net.

C. Implementation of the hardware accelerator

The detailed implementation of the custom strength reduc-
tion for the matrix operations is illustrated using pseudocode
in Algorithm 1. The computation of B1 and B2 is shown in
the same function in the pseudocode to save space but they
are implemented as MMM1 and MMM2 units respectively
as shown in Fig. 1. The multiplications and additions have
been removed when computing B1 and B2 as discussed
in Section III-A. Furthermore, RR and RS are not obtained
from the input to reduce memory bandwidth. Their values are
statically fused into the loop index.

In addition, this work splits the whole JEDI-net into several
sub-layers and adopts a layer-wise hardware architecture [5, 6]
to map all the sub-layers on-chip which is flexible to take full
advantage of the customizability of FPGAs. Besides, different
sub-layers run in a fashion of coarse-grained pipelining to
further increase the design throughput. Moreover, we perform
the calculation for different sub-layers on their own unit
using separate optimization to achieve low latency and high
design throughput. This work achieves low latency by using as
many hardware resources as possible, such as fully unrolling
each layer in the DNNs (fR, fO, ϕO). We also deploy NfR

copies of the fR hardware unit, each processing a vector of
the B matrix. Thus, NfR column vectors can be processed
simultaneously, which improves parallelism. Note that the
preceding hardware units of fR in JEDI-net are also updated
so that they can provide the NfR vectors in each cycle.

IV. EVALUATION AND ANALYSIS

A. Experimental setup

This study is based on JEDI-net [1] on a dataset of 30
particles [7]. To study the performance and limitations of
the proposed optimizations and hardware architecture, the
design is implemented using Xilinx Vivado HLS 19.2 on a
U250 FPGA to do the evaluation and comparison with other
implementations. It runs at 200MHz so each cycle is 5ns.
FPGA power consumption is reported by the Xilinx Vivado
tool. Besides, the weights and input of JEDI-net are quantized

TABLE I: Resource utilization

Task LUT FF BRAM DSP

Available 1728k 3456k 5376 12288

JEDI-net 30P Used [↓] 303k 104k 284 1831

(NfR = 1) Utilized [%, ↓] 17 3 5 14

JEDI-net 30P Used [↓] 810k 205k 924 7417

(NfR = 8) Utilized [%, ↓] 46 5 17 60

Fig. 4: Number of iterations reduction (left) and number
of addition/multiplication operations reduction (right) for the
matrix matrix multiplication in JEDI-net.

to 24-bit: one sign bit, 8 integer bits and 15 fractional bits. It
achieves the same accuracy as the floating-point model.

B. Resource Utilization
Table I shows the resource utilization of our design on the

U250 FPGA when the NfR is 1 and 8. The input particle
number NO is 30 and the input feature P is 16, which are
defined in the dataset. The number of edges, NE , increases
dramatically when NO increases. It is NO ∗ (NO − 1) which
equals 870 when NO = 30. To achieve low latency, the MLPs
of fR, fO and ϕO are all unrolled with a reuse factor [5]
of 1 for each dense layer in these models. The design with
NfR = 8 consumes 4.05 times more DSP blocks than the one
with NfR = 1.

C. Performance and analysis
We perform code transformation using strength reduction to

optimize matrix multiplications, transforming multiplications
to only load and store operations. Fig. 4 (right) shows that
all the additions for MMM1/2 units are removed while only
3.33% of the additions of the original implementation [1] are
required for the MMM3 unit. Besides, strength reduction also
decreases the number of the total loop iterations to 3.33% for
all the MMM units, which largely reduces the design latency.
Furthermore, the run time of C synthesis using Vivado HLS
is also reduced by over 3 times when compared with the HLS
design with no strength reduction.

To achieve low latency and high throughput, each of the
dense layers in all the fR, fO, ϕO hardware units are fully
unrolled. Besides, NfR copies of the fR unit are deployed to
reduce the design latency and II (initiation interval) with the
improved hardware units in JEDI-net described earlier. When
NfR increases, both the design II and latency reduce as shown
in Fig. 5. The II reduces from 600 cycles (3µs) to 120 cycles
(0.6µs) when NfR increases from 1 to 8. There is a cost: the
large design needs 4.05 times more DSP blocks and 2.67 times
more LUTs than the small one, as shown in Table I.

N
um

be
r o

f c
yc

le
s

NfR

Fig. 5: End-to-end latency and initiation interval (II) cycle
numbers with various NfR.

To compare the performance of the proposed design on
FPGA with other platforms, we run the JEDI-net model imple-
mented in [1] on Intel Xeon E5-2620 CPU and on NVIDIA
TITAN X GPU based on PyTorch framework. The CuDNN
libraries are used for optimizing the hardware performance
on GPUs. Each batch has 1000 events (samples) according
to [1], so we set the same batch size for all the hardware
platforms for a fair comparison. We adopt MEPS (Million
Events Per Second), which denotes the number of event
inferences that run per second, as an indicator of throughput.
Compared with the JEDI-net implementation on GPU, our
FPGA design is 11 times faster and consumes 12 times less
power. In terms of the power efficiency, which is denoted as
MEPS per watt, our design is 143 times higher than the GPU
implementation. When compared to the CPU implementation,
our FPGA implementation is 17 times faster and consumes
1.57 times less power. Besides, our design achieves 172 times
higher power efficiency than the CPU implementation. Our
FPGA design is faster and more efficient because it is tailor-
made for the JEDI-net based on coarse-grained pipelining with
low II. This work uses the same GPU implementation as the
one in [1]. We believe that the GPU and CPU implementations
can also benefit from the proposed optimization of custom
strength reduction but the latency profiling shows that the three
MMMs cost less than 15% of the total latency. Further CPU
and GPU optimisations are beyond the scope of this paper.

V. RELATED WORK

There has been much work exploring GNNs [1, 2, 3, 4, 8,
9, 10] for particle physics applications. [3] explores automatic
translation of GNN-based algorithms into FPGA firmware
for charged particle tracking using the hls4ml [5] tool. Be-
sides, a GNN-based GarNet [10] is proposed for calorimeter
energy regression and deployed on FPGAs using hls4ml.
There are also some general GNN accelerations [11, 12, 13].
[12] presents an efficient graph sampling accelerator targeting
FPGAs with high bandwidth memory (HBM) for training
GNNs. In contrast, we focus on optimizing and implementing
the GNN-based JEDI-net.

TABLE II: Comparison of the FPGA, CPU and GPU designs
CPU GPU This work

Platform Intel E2620 TITAN X U250

Frequency 3.4 GHz 1.62 200 MHz

Technology 32 nm 16 nm 28 nm

Power (W) 30.5 233 19.43

Precision F32 F32 24 Fixed

Batch Size 1000

Average Latency
per Event (us) 70.4 6.8 0.60

Throughput (MEPS) 0.014 0.15 1.67

Power Efficiency (MEPS/W) 0.0005 0.0006 0.086

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for minimizing the
latency for the execution of the GNN-based JEDI-net by opti-
mizing the matrix operations and coarse-grained pipelining.
The approach benefits next-generation low-latency collider
trigger systems for many fundamental physics experiments
including jet identification. Results show latency reduction of
up to 11 times over the existing GPU-based JEDI-net design.
Current and future work includes exploring the use of new
FPGA resources such as the AI Engines [14] and the AI Tensor
Blocks [15], and incorporating the proposed approach into the
design of the data analysis architecture for next-generation
collider trigger systems.

ACKNOWLEDGEMENT

The support of the United Kingdom EPSRC (grant numbers
EP/V028251/1, EP/L016796/1, EP/N031768/1, EP/P010040/1,
and EP/S030069/1), CERN and Xilinx is gratefully acknowl-
edged.

REFERENCES
[1] E. A. Moreno et al., “Jedi-net: a jet identification algorithm based on interaction

networks,” The European Physical Journal C, 2020.
[2] X. Ju et al., “Performance of a geometric deep learning pipeline for HL-LHC

particle tracking,” The European Physical Journal C, 2021.
[3] A. Elabd et al., “Graph Neural Networks for Charged Particle Tracking on FPGAs,”

arXiv preprint arXiv:2112.02048, 2021.
[4] S. R. Qasim et al., “Learning representations of irregular particle-detector geometry

with distance-weighted graph networks,” The European Physical Journal C, 2019.
[5] J. Duarte, S. Han et al., “Fast inference of deep neural networks in fpgas for particle

physics,” Journal of Instrumentation, 2018.
[6] Z. Que et al., “Accelerating recurrent neural networks for gravitational wave

experiments,” in 2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2021, pp. 117–124.

[7] J. Duarte et al., “HLS4ML LHC Jet dataset (30 particles),” January, 2020.
[Online]. Available: doi:10.5281/zenodo.3601436

[8] J. Duarte and J.-R. Vlimant, “Graph neural networks for particle tracking and
reconstruction,” arXiv preprint arXiv:2012.01249, 2020.

[9] A. M. Deiana et al., “Applications and techniques for fast machine learning in
science,” arXiv preprint arXiv:2110.13041, 2021.

[10] Y. Iiyama et al., “Distance-weighted graph neural networks on FPGAs for real-time
particle reconstruction in high energy physics,” Frontiers in big Data, 2021.

[11] B. Zhang et al., “BoostGCN: A Framework for Optimizing GCN Inference
on FPGA,” in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2021.

[12] C. Su et al., “Graph Sampling with Fast Random Walker on HBM-enabled FPGA
Accelerators,” in 31st FPL. IEEE, 2021.

[13] T. Geng et al., “AWB-GCN: A graph convolutional network accelerator with
runtime workload rebalancing,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[14] “Xilinx AI Engines and Their Applications,” in WP506(v1.1), July 10, 2020.
[15] M. Langhammer et al., “Stratix 10 NX Architecture and Applications,” in The 2021

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021.

doi:10.5281/zenodo.3601436

	Introduction
	Background
	Design, Optimization and Implementation
	Strength reduction for matrix multiplications of JEDI-net
	Row-major and column-major orders
	Implementation of the hardware accelerator

	Evaluation and Analysis
	Experimental setup
	Resource Utilization
	Performance and analysis

	Related work
	Conclusions and Future Work

