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Abstract—This work proposes a novel reconfigurable archi-
tecture for reducing the latency of JEDI-net, a Graph Neural
Network (GNN) based algorithm for jet tagging in particle
physics, which achieves state-of-the-art accuracy. Accelerating
JEDI-net is challenging since it requires low latency to deploy
the network for event selection at the CERN Large Hadron
Collider. This paper proposes an outer-product based matrix
multiplication approach customized for GNN-based JEDI-net,
which increases data spatial locality and reduces design latency.
It is further enhanced by code transformation with strength
reduction which exploits sparsity patterns and binary adjacency
matrices to increase hardware efficiency while reducing latency.
In addition, a customizable template for this architecture has
been designed and open-sourced, which enables the generation
of low-latency FPGA designs with efficient resource utilization
using high-level synthesis tools. Evaluation results show that our
FPGA implementation is up to 9.5 times faster and consumes up
to 6.5 times less power than a GPU implementation. Moreover,
the throughput of our FPGA design is sufficiently high to enable
deployment of JEDI-net in a sub-microsecond, real-time collider
trigger system, enabling it to benefit from improved accuracy.

I. INTRODUCTION

Real-time data processing from high-energy proton colli-

sions at the CERN Large Hadron Collider (LHC) is challeng-

ing since the particle detectors around the LHC ring produce

hundreds of terabytes of data per second [1] from collisions

that occur every 25 ns. The large data produced from the

detectors are reduced by a real-time processing system, known

as the trigger, which keeps interesting collision events while

discarding the others. In the trigger system, jet tagging is

an important but challenging task. It identifies the decays of

high-momentum heavy particles produced at the LHC and

distinguishes them from ordinary jets which come from the

hadronization of quarks and gluons. High accuracy in the

trigger is crucial to keep only the most interesting events

while keeping the output bandwidth low. [1, 2] utilize Multi-

Layer Perceptrons (MLP) networks for jet tagging on FPGAs,

which achieve an accuracy of around 75%. [3] presents JEDI-

net, a Graph Neural Network (GNN) based algorithm, which

achieves the state-of-the-art accuracy of over 80% for jet

tagging and is in high demand in the trigger system.

However, the GNN-based JEDI-net is more complex than

MLPs. It involves three MLP networks and three matrix-matrix

multiplication units with large adjacency matrices. It requires

large amounts of computation and suffers from large inference

latency, which makes it impossible to be deployed in real-time

in the level-1 trigger (L1T) system of an LHC experiment [3].

The L1T, using only FPGAs, requires processing latencies of

applications in a fixed time, within ˜1μs, in the updated High-

Luminosity Large Hadron Collider (HL-LHC) [4]. If algorithm

latency exceeds the limit, data or interesting events are lost.

Hence, accelerating JEDI-net inference using reconfigurable

accelerators such as FPGAs is essential in the LHC since it

would enable sophisticated processing to run in real time on

the data stream from detectors. This work proposes several

optimizations to accelerate the GNN-based JEDI-net using

high-level synthesis (HLS) on FPGAs. We also open-source

the HLS templates of the graph neural network of JEDI-net

for the community.

To efficiently accelerate the GNN-based JEDI-net, this work

proposes an outer-product based matrix-matrix multiplication

(MMM) approach for the GNN aggregation function com-

putation, which inputs and outputs the data in a column-

major order to increase the data spatial locality and reduce

the design latency. The design pipeline also adopts column-

major order instead of the conventional row-major order for

the data layout of the intermediate results traversed along the

hardware datapath. Working together with the column-major

order representation, the outer-product based MMM enables

a coarse-grained pipeline with a low Initiation Interval (II)

to improve the design throughput. Additionally, this approach

is further enhanced by a custom strength reduction for the

matrix multiplication operations based on the characters of the

adjacency matrices of JEDI-net. It not only avoids expensive

multiplication and involves just a few additions, but also

removes the input of the adjacency matrix to save memory

bandwidth. The outer-product MMM enhanced by the strength

reduction largely reduces the computation cost and memory

access as well as the power consumption of JEDI-net to

improve the hardware design throughput. Moreover, this work

introduces a two-level parallelism scheme which explores

potential design parallelism. Furthermore, design space ex-

ploration is performed to identify the appropriate parallelism

parameters. Finally, a fine-tuning step is conducted to find

the design with not only low II but also low end-to-end la-

tency. Our FPGA implementation of JEDI-net achieves a sub-

microsecond initiation interval, which makes the algorithm

compatible to LHC conditions where there are strict latency

constraints, while enabling improved accuracy.

We make the following contributions in this paper:
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• An outer-product based matrix multiplication approach

for the GNN-based JEDI-net with custom strength re-

duction as well as column-major order data layout, which

exploits the sparse adjacency matrix and the nature of the

column-based algorithm architecture to increase hardware

efficiency while reducing design latency.

• A scalable and low latency JEDI-net template which

enables the generation of low-latency FPGA designs with

efficient resource utilization by HLS tools. We open-

source the template1 for the community.

• A comprehensive evaluation of the proposed method and

hardware architecture.

II. BACKGROUND

A. Interaction Network

The JEDI-net is a graph neural network based on inter-

action network [5] architecture. The interaction network is a

powerful graph based framework for reasoning about objects

and relations in complex and dynamic systems. The input to

an interaction network is a graph of objects and the relations

between them. It learns to capture the complex interactions

that can be used to predict future states and abstract physi-

cal properties. The acceleration of interaction-network based

GNNs has also been studied for charged particle tracking at

the CERN LHC on FPGAs [6].

B. JEDI-net for Jet Tagging

The JEDI-net can be represented as a graph, G = 〈I, R〉
with the nodes, I , corresponding to physics particles, and the

edges, R, to the relations. The input of nodes (I) is defined

as a P ×No matrix, whose columns represent the node’s P -

length feature vectors, and No is the number of particles in a

jet. The relations are a triplet, R = 〈Rr, Rs, Rr
T 〉, where Rr

and Rs are No×NE binary matrices which index the receiver

and sender nodes, respectively. Each column of Rr and Rs is

a one-hot vector and it indicates the receiver node’s index; Rs

indicates the sender similarly. The number of the edges, Ne,

is No × (No − 1) since JEDI-net is a fully connected graph

with directional edges.

Fig. 1 shows the dataflow of JEDI-net. The input I matrix

is multiplied by the Rr and Rs matrices and the results are

then concatenated to form a B matrix, having dimension

2P × Ne. A trainable deep neural network (DNN) function

fR : R
2P → R

De is then applied to each column of B
and produces a matrix E. Then Ē = ERT

r is conducted in

the MMM3 to gather the cumulative effects of interactions

received by a given node. The Ē and I are then concatenated

to form the C matrix. Each column of the C matrix represents

a constituent in the jet, containing P input features and De

hidden features, representing the combined effect of all the

interactions between particles. Another trainable function fO
is introduced to build a post-interaction representation of each

jet constituent. It is applied to each column of C to produce

the O matrix, having dimension Do × No. A final trainable

1https://github.com/walkieq/GNN-JEDInet-FPGA

Fig. 1: Overview of the JEDI-net architecture

Fig. 2: Outer-product based matrix multiplication

function φO returns the probability for that jet to belong to

each of the five categories. fR, fO and φO are implemented

as 3-layer DNNs using Multi-Layer Perceptrons (MLPs).

III. DESIGN AND OPTIMIZATION

This section introduces several optimizations to accelerate

the GNN for JEDI-net. Although this work focuses on the ar-

chitecture of JEDI-net for jet tagging, the proposed techniques

could be adapted to optimize other GNN-based networks with

applications beyond jet tagging.

A. Outer-product based matrix multiplication with strength
reduction for JEDI-net

To multiply a matrix by another matrix we often do the

inner-product of rows from the 1st matrix and columns from

the 2nd matrix. For example, to compute the Ē = ERT
r in

the MMM3 unit, it requires a whole row of the E matrix

and a whole column of RT
r to perform the inner-product for

each entry of Ē. However, in JEDI-net, the input matrix of

the MMM3 unit comes from the output of fR, as shown

in Fig. 1, which produces the results column by column. With

an inner-product based MMM in the MMM3 unit, this unit

needs to wait for a long time until a whole row of E matrix

is ready, resulting in long latency. To solve this issue, this

work proposes an outer-product based matrix multiplication

for MMM3 to process the Ē = ERT
R for JEDI-net. Instead

of using a whole row from E matrix, now a whole column

of E matrix is multiplied by one element from RT
r matrix to

generate the partial result of the first column of result matrix Ē
as shown in Fig. 2. The partial result will then be accumulated

to form the column of the result matrix. Since the E matrix

is generated column by column, MMM3 can start as soon as

the first column of E is ready. It largely reduces the waiting

time of the MMM3 unit and reduces the design latency. It also
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Algorithm 1: The pseudocode of the outer-product

based MMM with strength reduction for JEDI-net.

1 Function MMM3( E, Ē):
2 for i = 0 to No do
3 for k = 0 to No − 1 do
4 // Reduced from No × (No − 1) to No − 1

because of the 1-hot feature.

5 for j = 0 to De do
6 index = i× (No − 1) + k;

7 tmp = (k == 0) ? 0 : acc[j];
8 acc[j] = tmp+ E[index][j];
9 // Multiplications can be avoided since

RT
r is binary.

10 end
11 end
12 for m = 0 to DE do
13 Ē[i][m] = acc[m];
14 end
15 end
16 End Function

enables a low initiation interval coarse-grained pipeline for the

whole design.

To efficiently support the outer-product based MMM, this

work adopts a column-major order data format for representing

the intermediate results (i.e., 2D matrix arrays) in the JEDI-

net instead of the conventional row-major order, which can in-

crease the spatial locality and design performance. Generally a

C/C++ based HLS tool, e.g., Xilinx Vivado/Vitis HLS, utilizes

a row-major order format when mapping a 2D matrix onto

memories, in which the consecutive elements of a row reside

next to each other. However, in JEDI-net, the DNN functions

fR and fO process the input matrix column by column as

well as output the result matrix column by column. Besides,

the proposed outer-product based MMM also performs the

calculation based on columns of input and output matrices.

Hence, if the data sits in memory in the default row-major

order, it is very time-consuming to collect a whole column for

these functions since elements in a column are not contiguous

in memory. But conversely, with the column-major order, the

input elements can be grouped as a vector (i.e., a whole

column as a vector) and can be processed efficiently in these

functions with high parallelism because the data can be fetched

sequentially.

Moreover, this work performs code transformation using

strength reduction to enhance the outer-product matrix mul-

tiplication of Ē = ERT
r , which exploits the sparsity patterns

of the adjacency matrix of RT
r as well as the binary feature. It

avoids costly multiplications but involves only load and store

operations with a small number of additions. The detailed

pseudocode of the strength reduction enhanced outer-product

based MMM3 has been illustrated in Algorithm 1. The input

Rr matrix is binary and each of its columns is one-hot

as introduced in Subsection II-B. Thus, the multiplication

operations are unnecessary since RT
r is binary. Besides, it

Fig. 3: The reduction in the number of multiplications, addi-

tions and iterations for MMM3 in JEDI-net-50p model.

has a fixed pattern, in which the element (Rr)ij is set to 1

when the ith node receives the jth edge and is 0 otherwise.

Hence, only 1
No

of total additions are required. Fig. 3 shows

that the number of additions can be reduced to 29.4k from

1470k while the multiplications can be totally removed for

the Ē = ERT
r in a JEDI-net-50p model with the proposed

approach. Moreover, the input of the adjacency matrices can

be also avoided to save memory bandwidth since their patterns

can be statically fused into the loop index. The technique of

strength reduction can also be applied to compute the MMM1

(B1 = IRr) and MMM2 (B2 = IRs) as shown in our

previous work [7]. Our proposed methods not only eliminate

the expensive matrix multiplication operation and reduce the

iterations but also avoid the input of the adjacency matrices

to improve the memory access efficiency, which reduces the

design latency and increases the throughput as well as the

hardware efficiency.

The latency could be further reduced by inputting multiple

columns of E. But this requires multiple fR hardware units to

be deployed and all the previous hardware units can process

the corresponding number of columns of their input matrix

in each cycle using more hardware resources. We quantify

the trade-off between the design initiation interval (II) and

the hardware resources from supporting 1-column to several

columns in our evaluation section.

B. Two-level parallelism

The trade-off between latency, throughput and FPGA re-

source usage is determined by the parallelization of the design.

This work exploits a two-level parallelism scheme. First, we

adopt the reuse factor [1] to fine tune the parallelism of the

MLPs in a JEDI-net model. The reuse factor is configured to

set the number of times a multiplier is used in the computation

of a module. The code transformation is performed manually

using strength reduction to optimize the matrix multiplications

in JEDI-net to avoid multiplications. Hence, only the three

MLPs (fR, fO, φO) consume multipliers in the design. We

apply the reuse factors RfR, RfO and RφO to these three

MLPs. This work always tries to achieve extremely low latency

by using as many hardware resources as possible, such as

unrolling all the layers in the MLPs by adopting a reuse factor

value of 1.

Second, this work deploys multiple copies of the fR unit to

further increase the design parallelism. The fR is applied to

each column of the B matrix, as mentioned in Section II-B,
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Fig. 4: Design space exploration of JEDI-net-50p model

targeting Xilinx U250 FPGAs with various configurations of

parallelism parameters (RfR, RfO, NfR).

resulting in a significant number of iterations since there are

NO × (NO − 1) columns in the B matrix. Fully unrolling

all the iterations requires thousands of hardware copies of

fR, leading to a large hardware resource consumption that

will easily exceed a given FPGA. Hence, this work partially

unrolls it with a factor, NfR, resulting in NfR copies of the

fR hardware units, each processing a vector of B matrix.

C. Implementation of the hardware accelerator

Fig. 4 shows the results of the design space exploration of

the JEDI-net-50p [3] model based on reuse factors and NfR

from value 0 to 15. For simplicity, we set the same reuse factor

for fO and φO which are cascaded. Additionally, both NfO

and NφO are set to 1 since only DNN1 is the bottleneck.

Each blue dot is an explored design while the red dots are

Pareto designs, forming the Pareto front. The sweet spot shows

the explored design candidates which have a good trade-off

between the Initiation Intervals (IIs) and the total DSPs on

the targeted U250 FPGA which has 12288 DSPs.

This work splits the whole JEDI-net into several sub-layers

and adopts a layer-wise hardware architecture [1, 8, 9, 10,

11, 12] to map all the sub-layers on-chip which is flexible and

able to take full advantage of the customizability of FPGAs. In

addition, different sub-layers run in a fashion of coarse-grained

pipeline to further increase the design throughput. Moreover,

we perform the calculation for different sub-layers on their

own units using dedicated optimization to achieve low latency

and high design throughput.

IV. EVALUATION AND ANALYSIS

This section presents the evaluation results of the GNN-

based JEDI-net on FPGAs demonstrating the scalability of the

proposed optimization for GNNs.

A. Experimental setup

This study focuses on JEDI-net-30p [3] models targeting a

dataset of 30 particles [13] and JEDI-net-50p models targeting

a 50 particles dataset [14]. To study the performance and

Fig. 5: The JEDI-net model accuracy with various bits

Fig. 6: The AUCs of five jet taggers

limitations of the proposed optimizations and hardware archi-

tecture, the design is implemented using Xilinx Vivado HLS

19.2 on a Xilinx Alveo U250 board to do the evaluation and

comparison with other implementations. It runs at 200MHz so

each cycle is 5ns. FPGA power consumption is reported by

the Xilinx Vivado tool. Besides, the weights and inputs of the

JEDI-net are quantized to 24-bit: one sign bit, 11 integer bits

and 12 fractional bits. It achieves the same accuracy as the

floating-point model.

B. Model quantization and accuracy

To find a proper fixed-point precision that can achieve no

reduction in the physics performance of the algorithm, we scan

the fixed-point precision with total bit widths from 16 to 26

bits and integer bits from 6 to 13, including the sign bit, as

shown in Fig. 5. For simplicity, a unified bitwidth is applied.

With 24 total bits and 12 integer bits, the fixed-point model

effectively achieves the same accuracy as the FP32 floating-

point counterpart. In addition, JEDI-net achieves much higher

accuracy than the previous work based on DNNs [1, 2] with an

accuracy below 75%. We also evaluate the Receiver Operating

Characteristic (ROC) curves with the area under the curve

(AUC) for the 5 jet classifiers, including gluon, light quarks,

W boson, Z boson and top quark, as shown in Fig. 6. The AUC
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TABLE I: Resource utilization

Task LUT FF BRAM DSP

Available 1728k 3456k 5376 12288

JEDI-net 30P Used [↓] 303k 104k 284 1831

(NfR = 1) Utilized [%, ↓] 17 3 5 14

JEDI-net-30P Used [↓] 1158k 246k 1392 11504

(NfR = 13) Utilized [%, ↓] 67 7 25 93

JEDI-net-50P Used [↓] 886k 31k 1511 7342

(NfR = 1) Utilized [%, ↓] 51 8 28 59

JEDI-net-50P Used [↓] 1515k 533k 1607 12284

(NfR = 4) Utilized [%, ↓] 87 15 29 99

TABLE II: Performance comparison of JEDI-net-50p FPGA

implementations with various parallelism parameters

U1 U2 U3 U4 U5

NN Model / FPGA JEDI-net-50p / U250

RfR 1 1 1 1 1

RfO 1 1 1 12 4

NfR 1 2 3 4 4

DSP used
7342

(59%)
10062
(81%)

12894
(104%)

11440
(93%)

12284
(94%)

Latency (cycles) 6519 3474 2493 2565 2131

Latency (μs) 32.60 17.37 12.47 12.83 10.66

II (cycles) 2462 1242 854 650 650

II (μs) 12.31 6.21 4.27 3.25 3.25

of the light quarks tagger (blue lines) using 24-bit fixed-point

data representation seems different from the floating-point one,

but note there is a logarithmic scale on the x-axis of Fig. 6

and the AUC loss of the q tagger is less than 1%.

C. Resource Utilization

Table I shows the resource utilization of our designs on

the U250 FPGA with different parallelism parameters. For the

model JEDI-net-30p, the input particle number NO is 30 with

a feature size P as 16, which are defined in the dataset. For

JEDI-net-50p, NO is 50 with the same size of P . The number

of edges, NE , increases dramatically when NO increases. It

is NO ∗ (NO− 1) which equals 870 when NO = 30 and 2450

when NO = 50. The two models also have different sized

fR, fO and φO.

D. Performance and analysis

To achieve low latency and high throughput, each of the

layers in the fR, fO, φO units are firstly fully unrolled. Be-

sides, the proposed strength reduction enhanced outer-product

MMM is applied with a column-major data format. The

initiation interval of our design reduces from sub-millisecond

to a few microseconds. To further improve the latency and

II, multiple fR hardware units are deployed since it is the

design bottleneck. But simply increasing the copy of fR could

work but may not be able to result in the optimal design.

The II decreases from 12.31μs to 6.21μs when NfR increases

from 1 to 2 as shown in Table II. When NfR increases to

Fig. 7: The latency and initiation interval (II) with various

NfR for JEDI-net-30p.

3, the required number of DSPs has exceeded the total DSPs

on this FPGA. To solve this issue, we re-allocate some DSP

blocks from DNN2 (fO) and DNN3 (φO) to DNN1 (fR)

to decrease the design II. TO get the appropriate values of

the parallelism parameters (RfR, RfO, NfR), we conduct the

design space exploration as shown in Fig. 4. The candidate

design is (1,12,4), which is shown as design U4 in Table II.

Although the II is often the most important metric of the

design since it decides the throughput, some other metrics are

also important, such as the end to end latency. Besides, the

number of the DSPs on an FPGA is fixed and if we do not

use up all the DSPs, the left ones will be wasted. Thus, if

we take the latency into consideration, an extra fine-tuning

step can be applied to achieve a better design, e.g., the design

U5. First, the U4 is found, which is on the Pareto Front. And

then we check if there is a design which has the same II and

demands more DSP blocks but does not exceed the total DSPs

of the given FPGA. Since the Pareto Front line is based on

the II and DSP blocks, it always gives the minimum number

of DSP blocks that can achieve the lowest II. But there might

be some unused DSPs in this FPGA, which are not sufficient

to be used to reduce the II. However, they can still be used

to achieve a better latency. Thus, the final design is based

on the (RfR, RfO, NfR) of (1,4,4), which achieves not only

a smaller II than U3 but also a smaller latency. The JEDI-

net-30p model is much smaller than the large one, JEDI-net-

50p. With the (RfR, RfO, NfR) as (1,1,1), it only cost 14%

DSPs while the JEDI-net-50p costs near 60% DSPs with the

same parameters. With the proposed approach, the optimal II

of JEDI-net-30p is 0.40μs based on the (RfR, RfO, NfR) of

(1,1,13) as shown in Fig. 7.

When the jet tagging is part of the whole processing in

the trigger, our approach can still lead to an appropriate set

of parameters to get the optimal II and latency with a given

hardware budget, as shown in Fig. 7 and Table II. Besides, in

a realistic use case, the cardinality of the input dataset might

be much smaller. In that case, one would be able to speed up

the algorithm even more than what we show in this work, as

well as to reduce the resource utilization.
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TABLE III: Comparison of the FPGA, CPU and GPU designs

Platform
CPU

Gold 6154
GPU

GeForce 2080Ti
FPGA U250

Frequency 3.00 GHz 1.63 GHz 200 MHz

Technology 14 nm 12 nm 28 nm

Precision F32 F32 24 Fixed

NN Model
JEDI-net

50p 30p 50p 30p 50p 30p

Power (W) 103 106 250 245 61.3 37.9

Batch Size 1000

Average Lat.
(μs)

593.1 56.9 16.8 3.8 3.25 0.40

Throughput
(KGPS)

1.69 17.6 59.52 263.2 307.7 2500

Power Effic.
(KGPS/W)

0.02 0.17 0.24 1.07 5.02 65.96

E. Comparison with GPUs and CPUs

To compare the performance of the proposed design on

FPGA with other platforms, we run the JEDI-net models

implemented in [3] on Intel Xeon Gold 6154 CPU and

NVIDIA GeForce RTX 2080 Ti (CUDA 10.2) based on

PyTorch (1.8.1) framework. The CuDNN libraries are used

for optimizing the hardware performance on GPUs. Each

batch has 1000 graph events (samples) according to [3], so

we set the same batch size for all the hardware platforms

for a fair comparison. CPU power consumption is measured

by the pcm-power utility [15], excluding the DRAM power

consumption. GPU power consumption is measured using

nvidia-smi utility. We adopt KGPS (Kilo Graphs Per Second),

which denotes the number of graph events inferences that run

per second, as an indicator of throughput. This work uses the

same CPU and GPU implementations like the one in [3].

Compared with the JEDI-net implementation on GPU, our

FPGA design is 5.2∼9.5 times faster and consumes 4.1∼6.5

times less power. In terms of the power efficiency, which

is denoted as KGPS per Watt, our design is 21∼62 times

higher than the GPU implementation. When compared to the

CPU implementation, our FPGA implementation is 142∼185

times faster. In addition, our design achieves 306∼397 times

higher power efficiency than the CPU implementation. We

believe the proposed custom strength reduction can also be

applied to CPU and GPU implementations, but the latency

profiling shows that the three MMMs cost less than 15%

of the total latency. We leave that for future work since it

has a limited impact on the conclusions in this paper. The

FPGA implementation is faster and more efficient because it

is unrolled on-chip with a coarse-grained pipeline and benefits

from tailor-made optimizations for the JEDI-net based on the

proposed approach.

V. RELATED WORK

There have been some studies exploring GNNs for particle

physics applications, such as jet tagging [3], charged particle

tracking [16], and calorimeter energy measurements [17]. To

achieve low latency, FPGAs are involved. [6] extends the

hls4ml [1] tool to translate GNNs into FPGA firmware auto-

matically for charged particle tracking. Besides, GarNet [18],

a GNN-based algorithm, is proposed for calorimeter energy

regression. Our previous work [7] only focuses on accelerating

the JEDI-net-30p with an II reduced to 0.6μs. With the newly

proposed technique, the II in this work is 50% better.

There are also many studies about general GNN acceler-

ations [19, 20, 21, 22, 23]. AWB-GCN [19] is based on a

column-wise-product architecture for GCN acceleration. The

updated version I-GCN [22] proposes Islandization, a new

runtime graph restructuring algorithm, which can increase the

regularity of the adjacency matrix to improve data locality

for better performance. BoostGCN [20] presents a novel

hardware-aware Partition-Centric Feature Aggregation (PCFA)

scheme to enable pipelined execution of GCN inferences

on FPGAs. [21] proposes to accelerate GCNs using HLS

with several hardware-friendly optimizations. [23] proposes

a model-architecture co-design with a light-weight algorithm

for temporal GNN inferences on FPGAs. Some previous

studies focus on accelerating GNN training [24, 25, 26].

GraphACT [24] introduces an FPGA-based accelerator with a

subgraph-based algorithm for Graph Convolutional Networks

(GCNs) training. [25] presents an efficient graph sampling

accelerator on high bandwidth memory based FPGAs for

training GNNs. [26] proposes HP-GNN which maps GNN

training on the CPU-FPGA platform automatically. All of

these studies utilize the single engine architecture. This work

focuses on layer-wise architecture and proposes several novel

optimizations for ultra low latency and high throughput. These

previous studies are orthogonal to our proposed approach and

hardware architecture. Their techniques can be complementary

to our approach, which could be extended in future to achieve

even lower latency.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for minimizing the

initiation interval and latency for the GNN-based JEDI-net on

an FPGA. It involves execution optimizing the matrix oper-

ations and coarse-grained pipeline to support next-generation

low-latency collider trigger systems, key to many fundamental

physics experiments including jet tagging. We propose an

outer-product based matrix multiplication approach enhanced

by code transformation of strength reduction and column-

major order representation. Results show up to 9.5 times

reduction in latency over the existing GPU-based JEDI-net

implementation. Our future work includes exploring the use of

new FPGA resources such as the AI Engines [27] and the AI

Tensor Blocks [28], and incorporating the proposed techniques

into the design and implementation of the data processing

architecture for next-generation collider trigger systems.
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