
Verifying Hardware Optimizations for Efficient Acceleration
Qianzhou Wang

Imperial College London
London, UK

qianzhou.wang17@imperial.ac.uk

Yat Wong
Imperial College London

London, UK
yat.wong18@imperial.ac.uk

Zhiqiang Que
Imperial College London

London, UK
z.que@imperial.ac.uk

Wayne Luk
Imperial College London

London, UK
w.luk@imperial.ac.uk

ABSTRACT
Verifying the correctness of optimizations is a key challenge in
hardware acceleration. Incorrect optimizations can produce designs
unfit for purpose. This paper presents a novel approach, Covoh,
which captures families of hardware designs as parametric block
descriptions, such that the behaviour of design instances can be
verified by numerical and symbolic simulation. In this work, hard-
ware optimizations are expressed as transformations of parametric
descriptions, and their parametric verification based on the Coq
proof assistant is guided by verification strategies. Repositories of
design descriptions and verification strategies have been developed
to facilitate design development in Covoh. Its use in verifying two
optimizations illustrates the capability of Covoh. The first, a varia-
tion of Horner’s Rule, maps anO(n2) design to anO(n) design. The
second, used in optimizing avionics monitoring, maps an O(2n)
design to anO(n) design. The effectiveness of such optimizations is
demonstrated with FPGA implementations: varying the value of a
single parameter that controls pipelining would, for example, lead
to a family of functionally-verified designs with different trade-offs,
from ones with low throughput, low resource usage and low power
consumption to ones with high throughput, high resource usage
and high power consumption.

CCS CONCEPTS
• Hardware→ Theorem proving and SAT solving; Simulation
and emulation; Equivalence checking.

KEYWORDS
hardware verification, theorem proving, formal methods, simula-
tion, hardware optimization, functional programming

ACM Reference Format:
Qianzhou Wang, Yat Wong, Zhiqiang Que, and Wayne Luk. 2022. Veri-
fying Hardware Optimizations for Efficient Acceleration. In International
Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HEART2022, June 9–10, 2022, Tsukuba, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9660-8/22/06. . . $15.00
https://doi.org/10.1145/3535044.3535047

(HEART2022), June 9–10, 2022, Tsukuba, Japan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3535044.3535047

1 INTRODUCTION
Efficient implementations are often obtained from applying opti-
mizations to design descriptions which are obvious. However, veri-
fying the correctness of optimizations is challenging. Effective hard-
ware accelerator design increasingly depends on new approaches
that reduce the effort of verifying that hardware optimizations are
fit for purpose.

While proof assistants such as Coq [2][3], ACL2 [9], HOL [7]
and Isabelle [18] bring new opportunities to hardware verification,
these proof assistants often require significant experience before
they can be used for verifying designs. Is there an approach to make
use of these proof assistants such that it is straightforward to verify
instances of a hardware optimization (such as optimizing a 64-bit
multiplier), and useful support would be provided for verifying
optimizations captured parametrically (such as optimizing an n-bit
multiplier where 2 ≤ n ≤ 128)?

This paper addresses this challenge by introducing Covoh (short
for “COq for Verifying Optimizations of Hardware"), an approach
for verifying hardware optimizations based on the Coq proof assis-
tant [2]. The novel features of Covoh includes the following. (1) It
shows how Coq can be used in a straightforward way to obtain
numerical and symbolic simulation for instance verification. (2) It
provides repositories of designs and proof strategies to support
parametric verification. (3) It illustrates how the above features
can offer a foundation for practical hardware verification, starting
from numerical instance verification and then symbolic instance
verification, and finally parametric verification. The practical use of
Covoh will be illustrated by verification and evaluation of two con-
ditional optimizations: a variation of Horner’s Rule that optimizes
anO(n2) design to anO(n) design, and an optimization for avionics
monitoring that optimizes anO(2n) design to anO(n) design. While
this paper focuses on streaming and systolic designs, the approach
can cover other styles such as instruction processors.

The paper is structured as follows. Section 2 covers background
and related research. Section 3 introduces the Covoh library and the
associated repositories of designs, tools, and verification strategies.
Section 4 demonstrates how Covoh is used in verifying and evaluat-
ing two conditional optimizations, and compares Covoh with other
systems. Section 5 concludes the paper and presents opportunities
for further research.

17

https://doi.org/10.1145/3535044.3535047
https://doi.org/10.1145/3535044.3535047

HEART2022, June 9–10, 2022, Tsukuba, Japan Wang, et al.

2 BACKGROUND AND RELATEDWORK
2.1 Formal Verification
Formal verification of hardware is the process of proving the correct-
ness of designs via formal methods of mathematics. Model-checking
[5] is one of the standard methods for hardware verification. A
design model is verified by exploring the possible states and transi-
tions. Our approach uses deductive reasoning supported by a proof
assistant [2]. Proof assistant or interactive theorem prover is soft-
ware where logical reasoning can be captured by machine-aided
commands. The process involves axiomatization of the model, exe-
cutable algorithms, and machine-checked logical transformations.
Our goal is to model the hardware as mathematical functions and
prove the optimizations like proving mathematical theorems.

2.2 Related Work
Functional programming has been widely used in describing digital
circuits. Examples include the languages µFP [20], [13] and Ruby
[11], [8], which can capture both the behavioural and structural
aspects of digital designs. We adopt a similar notation with ba-
sic hardware elements modelled as functions, while higher-order
functions describe patterns of their interconnections. Then hard-
ware optimizations can be expressed as transformations involving
higher-order functions. Recently higher-order functions have been
adopted to support abstractions in C++ for hardware design [19].

There are many verification tools available. Some require more
manual interventions to carry out the proof, while others are more
automatic. The more manual ones like Coq and Isabelle can often
verify a wider class of theorems than those which are more auto-
matic, like CVC4 and Z3 used in CoSA [15]. Proof assistants like
Coq make use of tactics as verification strategies to prove theorems.

Other noteworthy approaches for hardware verification include
RubyZF [18], which supports Ruby verification in Isabelle. Quartz [17]
is also based on Isabelle, for verifying layout generation [16]. Fe-
Si [4] is a high-level hardware description language embedded
in Coq. Recently, Google proposes Silver Oak [21], a Coq-based
technique for formal specification and verification of hardware,
especially for security and privacy.

3 COVOH
This section introduces the Covoh development system, which
supports simulating, verifying and compiling designs captured in a
concise parametric description of block diagrams. Some experience
of functional languages such as Haskell [14] would help understand
the features of this parametric description, but it is not necessary
to have a complete understanding of this description to appreciate
Covoh’s capability to verify design optimisatons.

3.1 Parametric Design
Covoh uses parametric descriptions to model hardware designs. We
provide the complete list of definitions in the Covoh repository1,
while highlight some key features.

3.1.1 Blocks. A block in a circuit is modelled by a given function
with specified input and output. For example, AND2 and ADD2 are

1https://github.com/kingsalpaca/covoh

Figure 1: Series composition and parallel composition, and
a law involving them. A..F are the types of input, output or

internal connections.

Figure 2: Recursive higher-order functions: pow, mapn, rdr.

2-input-1-output blocks defined at bit and integer level with the
usual functional meaning. Wires, including identity (id), selection
(π1, π2), replication (fork, mforkn), and reordering (lsh, rsh, apln ,
aprn , half, ...), form a family of blocks that convert types. Their
converse, R−1, corresponds to reversing the type conversion.

3.1.2 Composing blocks. Circuits are constructed from composit-
ing blocks. “Q ;R” and “[Q,R]” denote series and parallel compo-
sitions of blocks Q and R [13], [11], as shown in Fig. 1. Series
composition executes one block followed by another, and parallel
composition applies two blocks to pair of inputs. They correspond
to Q;;R and [[Q,R]] in Covoh. The definition of parallel composi-
tion involves (fst p) which extracts the first element of a pair of
values p, while (snd p) extracts the second element of p.

Definition series {A B C} (Q:A->B) (R:B->C) :=

fun x : A ⇒ R (Q x)

where " Q ;; R " := (series Q R).

Definition para {A B C D} (Q:A->B) (R:C->D) :=

fun p : A * C ⇒ (Q (fst p), R (snd p))

where " [[Q , R]] " := (para Q R).

3.1.3 Higher-order functions. Higher-order functions capture com-
mon patterns of combining blocks. They can be defined recursively
to describe, for example, Rn , a repeated series composition with
n copies of R. Right reduction (rdr), also known as fold right in
functional programming, has the following description over a 2-
input-1-output block R.

Fixpoint rdr {A B} (n:nat) (R:(A*B)->B):

(t A n * B) -> B :=

match n with

0 ⇒ (fun x:t A 0 * B ⇒ snd x)

| S p ⇒ Fst (apr1 p);; lsh;; Snd R;; rdr p R

end.

18

Verifying Hardware Optimizations for Efficient Acceleration HEART2022, June 9–10, 2022, Tsukuba, Japan

Notice that the type agreement between the second input and the
output is a pre-condition for a block R to use rdr, since the output
is collected as the second input for the next computation. Hence the
type of block R is defined to be (A*B)->B. Fig. 2 shows further the
use of wiring blocks in this definition. Repeated series composition
(pow n R or pown R or R^^n or Rn), repeated parallel composition
(mapn n R or mapn R), triangular structure (tri n R or △n R), row
(row n R or rown R), and column (col n R or coln R) are frequently
used higher-order functions, some of them shown in Fig. 2. Covoh
supports defining new higher-order functions together with their
proof rules in describing and verifying designs.

3.2 Symbolic Simulation
Simulation is a commonly used technique for instance verification.
Results from simulation often help understand the behaviour of
designs and facilitate debugging.

Existing methods mainly focus on numerical input for simula-
tion, which may not be easy to check the correctness of complex
designs. We provide solutions for both numerical and symbolic
simulation. Covoh benefits from Coq’s capability to define free
variables of specified types and the high-level parametric descrip-
tions of blocks, making it possible to support symbolic input. While
numerical simulation reveals numerical properties of a design, sym-
bolic simulation offers a high degree of confidence in its correctness
with the output of a circuit given as a symbolic expression of its
input.

Covoh adopts the list type in Coq to model stream input/output.
A stream is a function mapping time to signal. The list is suitable for
modelling streams since its elements are ordered and of a uniform
type. Our Covoh simulator takes a list of input and generates a list
of output, where each element in the list corresponds to data at
each clock cycle.

3.3 Parametric Verification
Parametric verification is achieved in Coq by built-in and user-
defined tactics as verification strategies. A complex proof is often
constructed from simpler proofs, enabling the system to be modular
and flexible. Covoh adopts previously proved lemmas as rewrite
rules via rewrite tactics to transform expressions with matched
conditions. A pen-and-paper proof often involves applying multiple
algebraic laws. Covoh can check the soundness of pen-and-paper
proofs by chaining the corresponding rewrite rules. Verification is
completed by applying all the relevant rewrite rules.

A straightforward rewrite rule is the equivalence between paral-
lel of series composition and series of parallel composition: [Q ; S,R;T] =
[Q,R]; [S,T]. This is a lemma in Covoh with the following defini-
tion, which can be verified automatically via the built-in auto tactic
of Coq. A graphical interpretation of the lemma is available in Fig. 1.

Lemma para_series: forall A B C D E F

(Q:A->B) (R:D->E) (S:B->C) (T:E->F),

[[Q ;; S, R ;; T]] = [[Q,R]] ;; [[S, T]].

Some rewrite rules are only valid if specific pre-conditions are
met. An example is, given Q ;R = R;Q , one can show by induction
thatQn ;Rn = (Q ;R)n . This is a simplified version of Horner’s Rule;
see section 4.1 for details.

Figure 3: The 2-step Verilog generation of a MAC block

3.4 Verilog Generation
Covoh provides tools to generate Verilog code from verified designs
for evaluation and deployment. The generation is a 2-step operation.
We first compile Coq functional descriptions into a netlist format.
Then a Python script converts the netlist to a Verilog module by
adding appropriate decorations via string operations. The script
also selects the involved blocks from a list of predefined Verilog
modules. Options allow the user to choose the data type and the
need for a clock since Covoh supports proofs at various levels (bit
vs integer, timeless vs clocked, etc.). Case studies in section 4 show
the capability of Covoh to generate hundreds of lines of Verilog
code from a concise description.

Fig. 3 briefly demonstrates the process of compiling a Covoh
description of multiply–accumulate (MAC) block into a Verilog
module via a netlist.

3.5 Workflow
We outline the general workflow for verification (Fig. 4). The goal
is to start with a functional design description and finish with a
safe and trusted Verilog design description of the optimization. The
original description is transferred into optimized description by
manual and automated tools (A). The Covoh repository of designs
(I.) provides verified optimizations as reference and rewrite rules.
The descriptions are simulated for numerical and symbolic inputs
(B). Unmatched results indicate bugs in the optimization. Matched
circuits are manually examined by performing parametric pen-and-
paper proof (C). We provide automated validation of each step of
the pen-and-paper proof in Covoh by using the appropriate alge-
braic law as a rewrite rule (D). Unproved results cannot proceed,
hence requiring reconsideration of the optimization. A rewrite rule
can be either selected from the repository of verification strategies
(II.) or proved using automated tactics. A lemma, once verified, can
then be added to the repository (II.) for later use. Parametric tuning
over the functional description chooses the most appropriate de-
sign coefficients (E). Covoh provides tools for generating structural
Verilog code (F) from the description. Finally, FPGA design software
helps synthesize the circuit for further evaluation and implementa-
tion (G). Designs failing to meet the constraints are sent back for
rewriting the optimization.

While tools like Isabelle [18] and ACL2 [9] can support the pro-
posed design flow, we demonstrate that Coq provides a simple,

19

HEART2022, June 9–10, 2022, Tsukuba, Japan Wang, et al.

Figure 4: General workflow for Covoh verification
(sat/unsat: satified/unsatisfied)

Figure 5: The Covoh development system

easy-to-use development system covering both instance and para-
metric verification (Fig. 5). Covoh contains repositories of designs
and verification strategies to facilitate design development, avoid
starting designs from scratch, and maximize the reuse of design
and verification efforts. A list of Covoh definitions, pre-proved lem-
mas, and verification strategies are provided in our repositories for
compositions, wires, simple and recursive higher-order functions,
and delays.

4 CASE STUDIES
This section covers verifying and evaluating the optimizations of
Horner’s Rule and avionics monitoring, and compares Covoh with
other approaches. Our approach shows efficient ways of verification
via symbolic simulation and parametric methods. Section 4.1 and 4.2

Figure 6: Horner’s Rule: an optimization from O(n2) to O(n)

cover the steps (A), (B), (C), and (D), and section 4.3 covers the steps
(E), (F), and (G) in the Covoh verification workflow (Fig. 4).

4.1 Horner’s Rule
This method originates as a conditional optimization for polynomial
evaluation, reducing the amount of multiplications from n(n + 1)/2
to n. Note that this optimization is only valid if ax + bx = (a + b)x .

ax + bx = (a + b)x =⇒

a0 + a1x + a2x
2 + a3x

3 = a0 + x(a1 + x(a2 + a3x)) (1)

Horner’s Rule can be used for optimizing and pipelining hard-
ware design with a triangular array of blocks. The following expres-
sion and Fig. 6 show a general version of Horner’s Rule (Horners)
in terms of block description.

[P ,Q];R = R;Q =⇒ [△nP ,Q
n]; rdrnR = rdrn (sndQ ;R) (2)

The pre-condition for Horner’s Rule holds if we substitute the
blocks P andQ by a delay element (@D orD) such that [D,D];R=R;D.
Then, the right-hand circuit is a pipelined design obtained by retim-
ing the left-hand circuit. If we replace P andQ with a 1-input block
mult x which computes the product of x with an input value, and
replace R with a 2-input adder (ADD2), then the circuits correspond
to polynomial evaluation. We can confirm this result via symbolic
simulation, which is an efficient method for instance verification.
polyval1 and polyval2 are defined to the original and optimized
circuits respectively.

Eval cbn in polyval1 3 x ([a0;a1;a2], a3).

= a0 + (a1 * x + (a2 * x * x + a3 * x * x * x))

: nat

Eval cbn in polyval2 3 x ([a0;a1;a2], a3).

= a0 + (a1 + (a2 + a3 * x) * x) * x : nat

Parametric verification for the Horner’s Rule using induction
and rewrite tactics is supported by the repository of verification
strategies. The same strategies are used for the second case study
below, with more details of parametric verification.

20

Verifying Hardware Optimizations for Efficient Acceleration HEART2022, June 9–10, 2022, Tsukuba, Japan

Figure 7: Optimization for avionics monitoring:O(2n)(P8) to
O(n)(Q3).

4.2 Avionics monitoring
Runtime verification for avionics can be achieved by in-circuit
temporal monitors [22]. Avionics is safety-critical, so it would ben-
efit from verification to increase confidence in the correctness of
optimizations.

An optimization has been proposed for such in-circuit moni-
tors, which reduces the amount of its combinational elements from
O(2n) to O(n). The proof applies to not only adders for temporal
monitors, but also any associative operator S (2-input-1-output),
as shown in Fig. 5. We believe this is the first mechanized proof of
this optimization.

Consider the following parametric designs P and Q , where Q0
is defined as identity (id). Qn is an optimization of P2n since P2n
involves (2n − 1) S blocks while Q reduces its number to n. Fig. 7
shows these designs for n = 3.

Pm = fork; (snd(D; fork); rsh; fst S)m−1;π1 (3)

Qi+1 = Qi ; fork; sndD2i ; S (4)

Parametric verification ensures the correctness for any value ofn.
Usually, designers will sketch a proof of the optimization with pen-
and-paper, and then use Covoh’s verification strategies and tactics
to confirm the proof. We demonstrate this process by highlighting
some key steps.

Mathematical induction is often used for proving regular hard-
ware design since many higher-order functions are defined recur-
sively. Coq supports proof by induction by unpacking recursive
definitions into base case and inductive step. The proof proceeds
by applying a series of algebraic laws. Coq validates the transfor-
mations of algebraic expressions by checking the conditions of
previously-proved rewrite rules. One step of the proof by induction
of the avionics monitoring design is illustrated below.

Base case: P1 = fork;π1 = id = Q0.

Inductive step: P2n+1 = ...

= mfork2n+1 ; half; [△2nD; apl−12n−1; rdl2n−1R,

△2nD;map2nD2n ; apl−12n−1; rdl2n−1R];R (5)

= mfork2n+1 ; half; [△2nD; apl−12n−1; rdl2n−1R,

△2nD; apl−12n−1; rdl2n−1R;D
2n];R (6)

= ... = Qn+1 □

Figure 8: Example (n = 4) of using Horner’s Rule for partial
pipelining at different levels: k = 1 shows no pipelining,

and k = n shows full pipelining

The use of the rewrite rule pushD is highlighted above. Due to
the commutative property of delays with combinational blocks, a
pre-proved lemma states that a rectangle block of delays connected
to the inputs of a multi-input-single-output circuit can be pushed
to its output. This lemma converts expression (5) to (6). Covoh
provides a simple environment for verification, with the rewrite
rule pushD defined as,

pushD : forall (m : nat) (circuit : t A m -> A),

mapn m (@D ^^ m);; circuit = circuit;; @D ^^ m

Oncewe have reached expression (5), the “rewrite pushD” tactic
can be used for its transformation. The tactic matches the LHS of
the rewrite rule (in red) and replaces it with the RHS (in blue).

4.3 FPGA Evaluation
Covoh can compile optimized designs into structural Verilog RTL,
which can then be processed by other backend tools. This subsec-
tion evaluates the performance of the optimizations by generating
Verilog codes using Covoh and synthesising them using the Xilinx
Vivado 2021.02 tool. FPGA power consumption is also estimated by
the Xilinx Vivado. The Xilinx ZC702 evaluation board [10] is used,
which consists of a Zynq-7000 XC7Z020 SoC.

4.3.1 Horner’s Rule for partial pipelining. An extension of Horner’s
Rule is partial pipelining of right reduction. The optimization (sec-
tion 4.1) is slightly altered to provide a method for pipelining any
reduction of 2-input-1-output blocks. Fig. 8 gives an example of
different levels of pipelining for four blocks, where k indicates the
level of pipelining or the amount of clusters. k = 1 indicates no
pipelining, and k = n indicates full pipelining. Covoh proves the
structural equivalence, including cycles of latency, of three designs
in Fig. 8. We usually remove the D-chain at the output to achieve a
lower latency for the less pipelined designs.

We evaluate the effect of pipelining by estimating clock speed,
dynamic power consumption, and the amount of resources. We
use the right reduction (rdr in Fig. 2) of 128 XOR gates as a start-
ing point and apply partial pipelining to produce designs with k
pipeline stages, 1 ≤ k ≤ 128. Designs are repeated 20 times to get a
more accurate estimation of power consumption. The major benefit
of higher levels of pipelining is the increase of design throughput,
as reflected by the clock speed (Fig. 9). Unlike the optimization in
section 4.1, the increase in pipelining causes a significant increase

21

HEART2022, June 9–10, 2022, Tsukuba, Japan Wang, et al.

Figure 9: Estimated clock speed and dynamic power con-
sumption of right reduction of 128 XOR gates at different
levels of pipelining

Figure 10: Resources (FF/LUT/LUTRAM) used for FPGA syn-
thesis and estimated dynamic power consumption of right
reduction of 128 XOR gates at different levels of pipelining

in resources (Fig. 10). There can be up to around n2/2 delays (regis-
ters) for full pipelining (k = n), while no pipelining uses n delays.
It is because Vivado automatically replaces the long chain of delays
as a combination of registers, LUT, and LUTRAM. It almost flats the
amount of FF for larger k but significantly increases the amount of
LUT/LUTRAM. Since the combinational blocks are becoming finer-
grained, the opportunity of optimizing them before mapping into
LUT resources has reduced, which leads to further increase in the
amount of LUT/LUTRAM. Dynamic power consumption increases
due to an increase in resources. However, since these values are esti-
mated using Vivado tools, power consumption due to glitching may
be underestimated. Previous work [23] [1] reports power reduc-
tion with increased pipelining, and the estimation of FPGA power
consumption is known to be complicated [6]. Our purpose is to
illustrate that our parametric descriptions cover a family of designs
with different trade-offs. Varying a single parameter that controls
the level of pipelining produces functionally correct designs with
different trade-offs in throughput, latency, resource usage, power
consumption, etc. The parametric tuning step (E) in Fig. 4 finds the
most appropriate parameter value for a given application.

4.3.2 Resources of avionics monitoring. The optimization of the
avionics monitoring focuses on reducing the amount of resources
quantified by the amount of LUT and FF (flip-flops). We increase the

Figure 11: Resources (LUT/FF) used for FPGA synthesis of
the original and optimized designs for avionics monitoring

Table 1: Comparing Covoh with RubyZF

Covoh RubyZF
Series of parallel 1a 15
Composition of parallel and lsh 1 15
Commutativity of mapn and tri 10 19
Simplified Horner’s Rule 9 16
Honer’s Rule [11] 20 60
Avionics monitoring [22] 27 N/A
aRequired steps (line of commands)

complexity by changing the datatype to 32-bit unsigned integers. D
is now an array of D-type flip-flops that support 32-bit input, and
the associative operation S is chosen to be a 32-bit multiplier. The
user does not need to worry about the switching of datatype since
all the Verilog codes are generated automatically by the Covoh
compiler.

The experiment generates designs from expressions (3) and (4).
It varies the value ofm as a power of two due to the exponential
behaviours of the optimization. The amount of LUT and FF are
plotted on a log-log scale (Fig. 11). Increasing m from 22 to 28
increases the amount of LUT from around 102 to 105 in the original
design, while the amount of LUT is well controlled at around 102
in the optimized design. In theory, the amount of FF should be the
same for both designs, however, the optimized design reports much
fewer FF being used after synthesis. This is due to the Vivado’s
compile-time optimization for D-chain. Therefore, the amount of
FF closely matches the amount of LUT in both cases. The amount
of resources reported after synthesis confirms the optimization of
avionics monitoring being O(2n) to O(n).

4.4 Comparison with other formal tools
Let us compare Covoh with other tools. RubyZF [18] is the legacy
solution for verifying Ruby hardware designs. One driving force of
creating a new framework for Ruby-like design language is the diffi-
culties of proving complex designs. Several optimizations have been
confirmed in both Covoh and RubyZF with the required steps (line
of commands), as shown in Table 1. For basic designs, where Covoh
benefits from its automation tactics, it is up to 15 times simpler

22

Verifying Hardware Optimizations for Efficient Acceleration HEART2022, June 9–10, 2022, Tsukuba, Japan

Table 2: Features of Hardware Verification System

Name of Host Verifi- Symbolic VHDL/Verilog/
tool system cation simulation floorplan

Covoh Coq ✓ ✓ ✓
RubyZF [18] Isabelle ✓

µFP [13] Orwell ✓ ✓
Rebecca [8] SML ✓ ✓

Fe-Si [4] Coq ✓ ✓
Quartz [17] Isabelle ✓ ✓

Silver Oak [21] Coq ✓ ✓

than RubyZF. Besides, Covoh can save more than 40 commands for
more advantageous designs, which requires considerable human
effort in any interactive proof assistant. We believe the successful
verification of avionics monitoring [22] is the first machine-aided
formal proof of this optimization. RubyZF has not been used in
verifying such complicated designs.

We also compare the supported features for Covoh and other re-
lated work in Table 2, which shows the advantages of our approach.
Covoh is capable of supporting all three methods of verification,
while none of the other approaches support all three of them. The
main strength of Covoh is its capability of supporting both instance
and parametric verification.

4.5 Repository of verification strategies
Our repository (Fig. 5) facilitates verification of the above designs.
First, many designs, like the two discussed in this section, follow
a similar development flow. Our repository contains customizable
templates that help proof development. Second, the repository con-
tains generic rewrite rules to automate common proof steps. One
example is a simplification rule based on composing rewrite tactics,
in which the expression R;R−1 will be removed if detected. Such
generic rewrite rules reduce the amount of proof steps by half for
the two case studies.

5 CONCLUSION
Covoh is designed to lower the barrier to verification of optimiza-
tion for producing efficient acceleration by providing a modular
and robust development system. Numerical and symbolic simula-
tion can help debug at an early stage of design and can be used
for instance verification. Repositories provide pre-proved lemmas,
designs, and templates to reduce verification efforts. Compilation to
structural Verilog ensures the practical implementations of verified
circuits.

Further work on Covoh includes the following. First, extend
Covoh repositories with further designs and verification strategies
for a variety of applications. Second, explore how Covoh can be
interfaced with other verification systems, such as those based on
SMT solvers [12], which can enhance the automatic verification
and error detection capabilities of Covoh. Third, study how Covoh
can be integrated with other synthesis and visualization tools to
provide an end-to-end hardware development system for teaching
and research.

ACKNOWLEDGMENTS
The support of the UK EPSRC (No. EP/N031768/1, EP/P010040/1,
EP/V028251/1 and EP/S030069/1), Intel and Xilinx is gratefully ac-
knowledged.

REFERENCES
[1] Steve Bard and Nader I. Rafla. 2008. Reducing power consumption in FPGAs by

pipelining. In 2008 51st Midwest Symposium on Circuits and Systems. 173–176.
https://doi.org/10.1109/MWSCAS.2008.4616764

[2] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media.

[3] Thomas Braibant. 2011. Coquet: a Coq library for verifying hardware. (2011).
https://hal.inria.fr/inria-00611757 working paper or preprint.

[4] Thomas Braibant and Adam Chlipala. 2013. Formal Verification of Hardware
Synthesis. In Proceedings of the 25th International Conference on Computer Aided
Verification - Volume 8044 (Saint Petersburg, Russia) (CAV 2013). Springer-Verlag,
Berlin, Heidelberg, 213–228.

[5] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In Logics of Pro-
grams, Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–71.
https://doi.org/10.1007/BFb0025774

[6] Intel Corporation. 2017. Understanding and Meeting FPGA Power Requirements
White Paper. Technical Report.

[7] Michael J. C. Gordon. 1985. Why higher-order logic is a good formalism for
specifying and verifying hardware.

[8] Shaori Guo and Wayne Luk. 2001. An Integrated System for Developing Regular
Array Designs. J. Syst. Archit. 47, 3–4 (apr 2001), 315–337. https://doi.org/10.
1016/S1383-7621(00)00052-7

[9] Warren Hunt, Matt Kaufmann, J Moore, and Anna Slobodova. 2017. Industrial
hardware and software verification with ACL2. Philosophical Transactions of The
Royal Society A Mathematical Physical and Engineering Sciences 375 (10 2017),
20150399. https://doi.org/10.1098/rsta.2015.0399

[10] Xilinx Inc. 2019. ZC702 Evaluation Boardfor the Zynq-7000 XC7Z020 SoC - User
Guide. Technical Report.

[11] Geraint Jones and Mary Sheeran. 1990. Circuit design in Ruby. North-Holland,
13–70.

[12] Florian Lonsing, Karthik Ganesan, Makai Mann, Srinivasa Shashank Nuthakki,
Eshan Singh, Mario Srouji, Yahan Yang, Subhasish Mitra, and Clark Barrett. 2019.
Unlocking the Power of Formal Hardware Verification with CoSA and Symbolic
QED: Invited Paper. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942096

[13] Wayne Luk, Geraint Jones, and Mary Sheeran. 1990. Computer-Based Tools for
Regular Array Design. Prentice-Hall, Inc., USA, 589–598.

[14] Simon Marlow. 2010. Haskell 2010 language report. Technical Report.
[15] Cristian Mattarei, Makai Mann, Clark Barrett, Ross G. Daly, Dillon Huff, and Pat

Hanrahan. 2018. CoSA: Integrated Verification for Agile Hardware Design. In
2018 Formal Methods in Computer Aided Design (FMCAD). 1–5. https://doi.org/
10.23919/FMCAD.2018.8603014

[16] Oliver Pell. 2006. Verification of FPGA Layout Generators in Higher-Order Logic.
J. Autom. Reason. 37, 1–2 (aug 2006), 117–152. https://doi.org/10.1007/s10817-
006-9039-9

[17] Oliver Pell andWayne Luk. 2005. Quartz: a framework for correct and efficient re-
configurable design. In 2005 International Conference on Reconfigurable Computing
and FPGAs (ReConFig’05). 8 pp.–14. https://doi.org/10.1109/RECONFIG.2005.32

[18] Ole Rasmussen. 1996. Ensuring Correctness of Ruby Transformations. In Pro-
ceedings of the 3rd Workshop on Designing Correct Circuits. https://doi.org/10.
14236/ewic/DCC1996.11

[19] Dustin Richmond, Alric Althoff, and Ryan Kastner. 2018. Synthesizable Higher-
Order Functions for C++. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 37, 11 (2018), 2835–2844. https://doi.org/10.1109/
TCAD.2018.2857259

[20] Mary Sheeran. 1984. MuFP, a Language for VLSI Design. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming (Austin, Texas, USA)
(LFP ’84). Association for Computing Machinery, New York, NY, USA, 104–112.
https://doi.org/10.1145/800055.802026

[21] Satnam Singh. 2021. Silver Oak. https://github.com/project-oak/silveroak
[22] Tim Todman, Stephan Stilkerich, and Wayne Luk. 2015. In-Circuit Temporal

Monitors for Runtime Verification of Reconfigurable Designs (DAC ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 50, 6 pages.
https://doi.org/10.1145/2744769.2744856

[23] Steven J. E. Wilton, Su-Shin Ang, and Wayne Luk. 2004. The Impact of Pipelin-
ing on Energy per Operation in Field-Programmable Gate Arrays. In Field Pro-
grammable Logic and Application, Jürgen Becker, Marco Platzner, and Serge
Vernalde (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 719–728.

23

https://doi.org/10.1109/MWSCAS.2008.4616764
https://hal.inria.fr/inria-00611757
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1016/S1383-7621(00)00052-7
https://doi.org/10.1016/S1383-7621(00)00052-7
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1109/ICCAD45719.2019.8942096
https://doi.org/10.23919/FMCAD.2018.8603014
https://doi.org/10.23919/FMCAD.2018.8603014
https://doi.org/10.1007/s10817-006-9039-9
https://doi.org/10.1007/s10817-006-9039-9
https://doi.org/10.1109/RECONFIG.2005.32
https://doi.org/10.14236/ewic/DCC1996.11
https://doi.org/10.14236/ewic/DCC1996.11
https://doi.org/10.1109/TCAD.2018.2857259
https://doi.org/10.1109/TCAD.2018.2857259
https://doi.org/10.1145/800055.802026
https://github.com/project-oak/silveroak
https://doi.org/10.1145/2744769.2744856

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Formal Verification
	2.2 Related Work

	3 Covoh
	3.1 Parametric Design
	3.2 Symbolic Simulation
	3.3 Parametric Verification
	3.4 Verilog Generation
	3.5 Workflow

	4 Case Studies
	4.1 Horner's Rule
	4.2 Avionics monitoring
	4.3 FPGA Evaluation
	4.4 Comparison with other formal tools
	4.5 Repository of verification strategies

	5 Conclusion
	Acknowledgments
	References

