
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

FPGA-based Acceleration for
Bayesian Convolutional Neural Networks

Hongxiang Fan†∗, Martin Ferianc†, Zhiqiang Que, Shuanglong Liu, Xinyu Niu,
Miguel Rodrigues, Senior Member, IEEE, Wayne Luk, Fellow, IEEE

Abstract—Neural networks (NNs) have demonstrated their
potential in a variety of domains ranging from computer
vision to natural language processing. Among various NNs,
two-dimensional (2D) and three-dimensional (3D) convolutional
neural networks (CNNs) have been widely adopted for a broad
spectrum of applications such as image classification and video
recognition, due to their excellent capabilities in extracting 2D
and 3D features. However, standard 2D and 3D CNNs are
not able to capture their model uncertainty which is crucial
for many safety-critical applications including healthcare and
autonomous driving. In contrast, Bayesian convolutional neural
networks (BayesCNNs), as a variant of CNNs, have demonstrated
their ability to express uncertainty in their prediction via a
mathematical grounding. Nevertheless, BayesCNNs have not been
widely used in industrial practice due to their compute require-
ments stemming from sampling and subsequent forward passes
through the whole network multiple times. As a result, these
requirements significantly increase the amount of computation
and memory consumption in comparison to standard CNNs. This
paper proposes a novel FPGA-based hardware architecture to
accelerate both 2D and 3D BayesCNNs based on Monte Carlo
Dropout. Compared with other state-of-the-art accelerators for
BayesCNNs, the proposed design can achieve up to 4 times
higher energy efficiency and 9 times better compute efficiency.
An automatic framework capable of supporting partial Bayesian
inference is proposed to explore the trade-off between algorithm
and hardware performance. Extensive experiments are conducted
to demonstrate that our framework can effectively find the
optimal implementations in the design space.

Index Terms—Bayesian convolutional neural network
(BayesCNN), Three-dimensional convolutional neural network
(3D CNN), Field-programmable gate array (FPGA), Deep
learning

I. INTRODUCTION

The past decade has witnessed a great success of neural
networks (NNs) in a wide range of artificial intelligence
(AI) tasks [1], [2]. Among various NNs, two-dimensional

This work was supported in part by the United Kingdom EPSRC un-
der Grant EP/L016796/1, Grant EP/N031768/1, Grant EP/P010040/1, Grant
EP/V028251/1 and Grant EP/S030069/1, the National Natural Science Foun-
dation of China (No. 62001165), Hunan Provincial Natural Science Foun-
dation of China (No. 2021JJ40357), Changsha Municipal Natural Science
Foundation (No. kq2014079) and in part by the funds from Corerain, Maxeler,
Intel, Xilinx and SGIIT. Martin Ferianc was sponsored through a scholarship
from the Institute of Communications and Connected Systems at UCL.

H. Fan, Z. Que and W. Luk are with the Department of Computing, Imperial
College London, London, SW7 2AZ, UK.

M. Ferianc and M. Rodrigues are with the Department of Electronic and
Electrical Engineering, University College London, London, WC1E 6BT, UK.

S. Liu is with the School of Physics and Electronics, Hunan Normal
University, Changsha 410081, China.

X. Niu is with Corerain Technologies Ltd., Shenzhen, China.
† Equal Contribution.
∗ Corresponding author: Hongxiang Fan (h.fan17@imperial.ac.uk).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Bayesian neural network
Standard neural network

Fig. 1. Comparison of prediction confidence histograms for random noise
input between Bayesian neural network and a standard neural network.
Bayesian neural network correctly shows higher uncertainty, and its confidence
histogram is wider and with a lower normalised frequency than a standard
neural network.

(2D) convolutional neural networks (CNNs) have demon-
strated their excellent algorithm performance primarily in
2D computer vision (CV) applications, such as in semantic
segmentation [3], [4] or object detection [5], due to their ability
to extract 2D patterns. To incorporate temporal information
into analysis and prediction, three-dimensional (3D) CNNs
have been proposed [6], which are more suitable for 3D CV
applications such as human action recognition [7] or video
segmentation [8]. Although both 2D and 3D CNNs have
become popular in various CV applications, these models are
not able to express their model uncertainty which is crucial for
a variety of safety-critical applications such as in healthcare [9]
or autonomous vehicles [10].

Bayesian convolutional neural networks (BayesCNNs) [11],
including both 2D BayesCNNs [12] and 3D BayesCNNs [13],
represent a variant of CNNs that are able to treat their uncer-
tainty by modelling their weights as probability distributions.
A comparison between 2D BayesCNN and a standard 2D CNN
in an image classification task is presented in Figure 1. Given a
completely irrelevant input, 2D BayesCNN demonstrates low
confidence and thus high uncertainty, while the standard 2D
CNN is overconfident in its incorrect prediction. Therefore,
through the use of BayesCNNs, practitioners are able to explic-
itly capture special cases [12] and they have become relevant
to applications where the notion of uncertainty estimation is
essential, such as in medicine [4].

Nevertheless, the algorithm complexity of BayesCNNs puts
a large burden on their real-world hardware performance.
Due to the high dimensionality of modern BayesCNNs, it is
intractable to analytically compute their predictive uncertainty.
Instead, the predictive distribution can be approximated by
Monte Carlo (MC) sampling that requires repeated sam-
pling of the weight distributions, and then the input data
are run through the BayesCNNs multiple times, which can

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

prevent real-time applications. For instance, Bayesian ResNet-
18 requires nearly 132 seconds to predict the outcome with
respect to only a single input on an Intel Core i9-9900K
CPU, which cannot meet the requirements of practical real-
time applications [14]. This problem is further exacerbated
while considering 3D BayesCNNs, as they are more compute-
intensive and memory-intensive than 2D BayesCNNs [15].
Therefore, there is a great demand for specific hardware
designs for accelerating BayesCNNs.

Although several hardware accelerators and algorithm ap-
proximation techniques [16]–[19] have been proposed to im-
prove the hardware performance of BayesCNNs, there are
several drawbacks in these approaches:
• The implementation needs of both a compute engine and

weight samplers makes the hardware design resource and
memory-demanding, which degrades the hardware perfor-
mance of BayesCNNs.

• Current accelerators can only support 2D BayesCNNs. It is
especially challenging to accelerate Bayesian 3D CNNs as
they require more memory and computation.

• To obtain the uncertainty estimation, these accelerators
repeatedly perform S forward passes through the whole
BayesCNN without considering whether it is actually nec-
essary from the algorithm perspective, which makes them S
times slower than standard CNNs.
To address these challenges, we propose an field-

programmable gate array (FPGA)-based hardware design
to accelerate BayesCNNs based on Monte Carlo Dropout
(MCD) [12], [20]. The proposed accelerator is versatile to
run both 2D and 3D BayesCNNs with the support of fine-
grained parallelism. To improve the hardware performance, we
consider partial BayesCNNs to decrease the amount of compu-
tation required. An intermediate-layer caching (IC) hardware
implementation is also proposed to reduce the on-chip and
off-chip memory traffic. To explore the trade-off between
algorithm and hardware performance, an automatic framework
is proposed to find the suitable hardware configurations and
algorithm parameters given users’ hardware constraints and
algorithm requirements. We choose FPGAs as our hardware
platform because of its better flexibility over ASICs, which we
utilize in our hardware optimizations for different BayesCNNs,
and higher energy efficiency than GPUs [21]–[27].

In summary, our contributions include:
• A novel hardware architecture to accelerate Monte Carlo

Dropout-based 2D and 3D Bayesian convolutional neural
networks (BayesCNNs). A new intermediate-layer caching
technique also helps the proposed design to achieve high
performance and efficiency (Section III and IV).

• An automatic framework for both 2D and 3D BayesC-
NNs to explore algorithm-hardware performance trade-off
provided by partial Bayesian inference under user-defined
constraints (Section V).

• A comprehensive evaluation of algorithm and hardware
performance on different datasets with respect to various
state-of-the-art Bayesian 2D and 3D CNNs (Section VI),
which demonstrates the versatility and effectiveness of our
hardware architecture and automatic framework.

Fig. 2. 2D and 3D convolutional operations. The channel dimension of feature
maps is not shown for simplicity.

This work extends our conference publication [14]. The ex-
tended material includes: 1) an improved hardware architecture
to accelerate both 2D and 3D BayesCNNs; 2) an extended
automatic framework to optimize the algorithm and hardware
performance for both 2D and 3D BayesCNNs; 3) an extensive
evaluation of a wide range of BayesCNNs targeting various 2D
and 3D image datasets.

II. BACKGROUND

A. 2D and 3D Convolutional neural networks

In general, 2D or 3D CNNs are constructed by sequential
layering of 2D or 3D convolution and pooling operations,
which gradually refines the input into a prediction [28]. 2D
CNNs have been widely deployed in various 2D computer
vision (CV) applications such as image segmentation [4],
image classification [29] or object detection [30].

To efficiently extract 2D spatial features, 2D CNNs adopt
the 2D convolutional operation to process and analyse images,
which is illustrated in Figure 2(a). In this example, a 2D
convolutional filter (2D Conv Filter) with KH = KW = 3
is applied to all the pixels in a sliding-window fashion in an
input channel to extract relevant features. The notation used
in this paper is summarised in Table I.

However, when considering 3D data with an additional
temporal dimension, such as a video clip, the 2D convolution is

TABLE I
PARAMETER NOTATION USED IN THIS PAPER.

Parameter Description
H The height of input feature map
W The width of input feature map
KH The kernel height
KW The kernel width
KL The kernel length along temporal dimension
C The number of channels
F The number of filters
L The length along temporal dimension
PV The data parallelism level
PC The channel parallelism level
PF The filter parallelism level
N Number of layers or network depth
S Number of Monte Carlo samples
B Number of Bayesian layers from the end

Nlfsr Number of LFSRs to implement Bernoulli sampler
p Dropout probability

EFFio IO communication efficiency
FREQio IO clock frequency
FREQpl Clock frequency of programmable logic (PL)
DFIFO The depth of FIFO
BW Bandwidth between on-chip and off-chip memory
V Data bit-width

DSP DSP consumption
MEM Memory consumption

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

(a) 2D Max Pooling Operation

1.3 0.6 1.9

0.5 3.1 0.0

1.8
0.0
1.1 0.8

0.2 0.9 2.2

0.6 1.8 0.00.1 0.7 0.3

1.2 2.3 1.6

0.6 1.8 0.0

4.2

3.5

2.3

4.2 3.5

(b) 3D Max Pooling Operation

1.3 0.6 1.9

0.5 3.1 0.0

1.8
0.0
1.1 0.8

0.2 0.9 2.2

0.6 1.8 0.00.1 0.7 0.3

1.2 2.3 1.6

0.6 1.8 0.0

4.2
4.2 3.5

Tim
e

Fig. 3. 2D and 3D Max Pooling Operations.

no longer suitable. In 2D CNNs, 2D convolution would use the
same 2D filter for different temporal frames, and thus it would
not be able to capture the temporal information. To address
this issue, 3D CNNs were proposed [31] with the ability of
incorporating the third-dimensional information. Due to their
capability to factor in the third-dimensional information in
their prediction, 3D CNNs have been widely adopted in 3D
CV tasks such as human action recognition [30], [31] and
video segmentation [32]. 3D CNNs adopt 3D convolution that
applies different convolutional filters for different consecu-
tive frames along the temporal dimension. The results from
different convolutions-frames are then aggregated together to
generate output feature maps. Hence, the 3D CNN is able
to capture and preserve the information existing in the third-
temporal dimension. An example of 3D convolution with a 3D
convolutional filter (3D Conv Filter) (KH = KW = KL = 3)
is illustrated in Figure 2(b). The 3D convolutional filter is
formed as a cube and each frame, given a video input, is
processed by a different filter with kernel size 3× 3× 3.

Apart from convolutional operations, 2D and 3D CNNs
adopt different pooling operations, namely 2D and 3D pooling
to distillate the retrieved information from previous convolu-
tions. An example of 2D and 3D maximum pooling (Max
Pooling) is presented in Figure 3(a,b). In 2D CNNs, the 2D
pooling is applied in each frame separately, and thus it can
only distillate information to reduce the input size in the
spatial dimension. Whereas, 3D CNNs perform 3D pooling
in both spatial and temporal dimensions, and therefore 3D
pooling operations are able to consider all three dimensions
by reducing the input size in both temporal and spatial
dimensions.

B. Bayesian Convolutional Neural Networks

Bayesian inference [11] aims to make the previously dis-
cussed 2D or 3D CNNs more robust to overfitting and enable
them to quantify their model uncertainty [33]. Bayesian infer-
ence does this through learning a distribution over the weights
of the NN, e.g. when considering the previously described
Conv filters, instead of pointwise estimates, adopt a Bayesian
NN or a BayesCNN. The learning of the distribution p(w|D)
for the weights w with respect to some observed data D is
hence done through the Bayes rule. The Bayes rule combines
the belief about the noise in the data in the form of the
likelihood p(D|w) and the prior distribution over weights
p(w), such that p(w|D) = p(D|w)p(w)

p(D) . p(w|D) is the target
posterior distribution over the weights w that we wish to learn
and use to make predictions about previously unobserved data.

Nevertheless, due to the high dimensionality of modern
Bayesian NNs it is intractable to analytically compute the
posterior distribution p(w|D) and it needs to be approxi-
mated with respect to a parametrizable variational distribution
q(w|θ,D) and some learnable parameters θ. The resultant
distribution q(.) can then be used to make predictions for
previously unseen data D∗ through an integral p(D∗) =∫
p(D∗|w)q(w|θ,D)dw. This integral is again intractable

due to the nonexistent closed-form analytical solution of the
variational posterior and it needs to be approximated through
MC sampling with S samples as shown in (1):

p(D∗) = 1

S

S∑
s=1

p(D∗|ws); ws ∼ q(w|θ,D) (1)

Given p(D∗), it is then possible to quantify the previously
discussed uncertainty. The required repeated runs with respect
to the variational posterior and sampling demand efficient
hardware processing to reduce the compute cost of the forward
pass through the Bayesian NN S times. To target this chal-
lenge, this work proposes an efficient FPGA-based accelerator
for Bayesian NNs as well as an accompanying automatic
framework for optimization.

1) Monte Carlo Dropout (MCD): Monte Carlo Dropout
(MCD) approaches the learning of the variational distribution
over weights q(w|θ,D) [12], [34] as casting dropout [35] with
weight decay or L2 regularisation as Bayesian inference. The
concept of dropout lays in randomly dropping out connections
in a NN in order to achieve more robust feature detection and
independence between neighboring units. Hence, MCD can be
described as applying a random filter-wise mask M i ∈ RFi ,
to the output feature maps Y i of layer i with Fi dimensional
filters [20]. The mask M i follows a Bernoulli distribution
p(M i|pi) which generates binary random variables (0 or 1)
with the probability pi ∈ (0, 1). To get the final output Oi

for layer i under MCD, the computation can be formulated as
shown in (2):

Oi = Y iM i (2)

The uncertainty estimation and prediction are thus obtained by
running the same input through the BayesCNNs S times, each
time with a different set of sampled masks M which translate
into sampling q(wi|θi,D) for each layer i where MCD is
applied, and averaging the outputs as shown in (1). The θi are
the learnt variational parameters, e.g. the Conv filters. Unlike
the dropout used in standard NNs which is only enabled during
training, MCD applies the dropout during both training and
evaluation. The works [4], [12], [20], [36] demonstrate that
MCD can achieve a high quality of uncertainty estimation.

2) Partial Bayesian Inference: A completely Bayesian NN
should be inferred such that every layer’s parameters are
modelled as distributions instead of pointwise estimates, which
translates into applying MCD to every layer [12]. However, the
authors in [10], [36]–[38] have demonstrated theoretically and
empirically that combining Bayesian and non-Bayesian layers
in the same network, and thus making the network partially
Bayesian, can bring algorithm benefits such as improved
uncertainty estimation and accuracy. Assuming there is an N -
layer NN, in this work we assume ordered partial Bayesian NN

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

by being Bayesian in the last B layers (B ≤ N) layers which
makes the first N −B layers behave as a feature extractor for
the Bayesian remainder. Partially applied dropout then enables
trade-off between algorithm and hardware performance and
uncertainty estimation [36]. In this work, we explore this trade-
off by proposing a framework for determining the positioning
of MCD at different parts of the NN which results in a partial
Bayesian NN.

C. Related Work
1) FPGA-based CNN Accelerator: Various FPGA-based

accelerators have been proposed to accelerate standard 2D
CNNs with high energy, compute, memory and resource
consumption efficiency. By thoroughly exploring the hardware
design space and utilizing the roofline model [39] Zhang et
al. [21] optimized an FPGA-based accelerator for 2D CNNs.
Ma et al. [22] further improved the hardware performance
of 2D CNNs on FPGAs by studying and exploiting the
convolution’s looping. Yu et al. [23] proposed an end-to-
end compiler called DNNVM that leverages heterogeneous
optimizations to accelerate 2D CNNs on FPGAs. However,
the support of 3D CNNs on these designs was not established
and optimized.

Fan et al. [15], [40] proposed an FPGA-based accelerator
for 3D CNNs with an optimized computational pattern to
decrease the memory traffic between the off-chip and on-
chip memory. By utilizing different spatial and temporal tiling
strategies, Kartik et al. [41] proposed Morph to accelerate
3D CNNs with high energy efficiency. While both [15], [41]
focused on accelerating 3D CNNs, Shen et al. [42] were
the first to accelerate both 2D and 3D CNNs on a uniform
template-based architecture using a Winograd algorithm [43].
However, the use of the Winograd algorithm requires extra
logic resources to implement the transformation of input
and output matrices. Liu et al. [44] proposed an uniform
architecture based on 2D multiply-accumulate (MAC) array.
Their design uses low bit-width fixed-point arithmetic and
hence the algorithm accuracy cannot be guaranteed.

At the same time, a significant research effort has been
invested into studying compression techniques for accelera-
tion, such as quantization [45]–[48], pruning [49], [50] and
neural architecture adaptation towards hardware-efficient de-
ployment [51], [52]. A comprehensive literature review of
compression techniques for custom hardware was summarized
in [24]. However, these techniques and designs mainly focus
on accelerating standard CNNs, without considering the sup-
port for 2D or 3D BayesCNNs.

2) Acceleration for BayesCNNs: Compared with standard
CNNs, BayesCNNs are more compute and memory-intensive
as discussed in Section II-B. They require the MC sampling
which demands repeated random number generation and mul-
tiple feed-forward passes to obtain the predictive distribution
and hence quantification of uncertainty. Cai et al. [16] pro-
posed a hardware design named VIBNN to accelerate Bayesian
NNs on an FPGA. However, VIBNN can only support linear
feed-forward layers, which limits its generality to solving
real-world problems. Myojin et al. [17] proposed an FPGA-
based accelerator with multiple computational engines that

run multiple samples in parallel. However, their design can
only support binarised Bayesian NNs. An efficient inference
algorithm for Bayesian NNs named BYNQNet with a corre-
sponding FPGA-based implementation was proposed in [18].
The work employs quadratic nonlinear activation functions to
simplify the hardware design for sampling-free Bayesian NNs.
However, the restriction placed on the nonlinear activation
function limits their applicability to modern architectures. Wan
et al. [19] proposed an FPGA-based hardware accelerator
that intelligently skips the redundant computations in 2D
BayesCNNs. Nevertheless, its support for Bayesian 3D CNNs
is unknown and several algorithm metrics such as the quality
of uncertainty prediction and confidence were not evaluated
and explored. Jia et al. [53] proposed the feature decomposi-
tion and memorization techniques to reduce the computation
required by 2D BayesCNNs. Nevertheless, their optimization
is only performed on the software level.

Different from the previous work, our paper proposes a
unified hardware architecture to accelerate both Bayesian 2D
and 3D CNNs based on MCD. To further improve the hard-
ware performance, we overlap the Bernoulli sampling with
the computation, and propose a hardware-efficient intermediate
layer caching implementation to reduce the unnecessary mem-
ory traffic and computation. By exploiting partial Bayesian
inference, an automatic tool is introduced to explore algorithm-
hardware design space.

III. HARDWARE DEVELOPMENT

A. Hardware Design

1) Design Overview: An overview of our proposed FPGA-
based accelerator is presented in Figure 4. It mainly consists
of a neural network engine (NNE) and a Bernoulli sampler
along with an interface to interact with the off-chip memory.
As the channel size, filter size and the size of feature maps
vary among different BayesCNNs, the NNE is designed to
support three categories of configurable parallelism, including
channel parallelism (PC), vector parallelism (PV) and filter
parallelism (PF) to meet different algorithm needs.

...

MAC (PC)

PV

... ...

ReLU Pool SC
Dropout

Mask

...

PF

Bernoulli
Random
Variables

Processing Engine Functional Engine Dropout Engine

PU

FU

FU DM

DM

Smart
Data

Buffer
Controller

Neural Network Engine

Bernouli
Sampler

Off-chip Memory

InterfaceOn-chip

Output
SC/Pool
Buffer

PU ReLU

ReLU

Quant

MAC (PC) Quant

Smart
Weight
Buffer

Fig. 4. Overview of the FPGA-based accelerator.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

R120 R121 R122 R123 R124 R125 R126 R127R0

FIFO
...… SIPO

128-bit LFSR (4-tap)

1-bitPF-bit

128-bit LFSR (4-tap)

…
…

Nlfsr

Bit-wise
Logic

Fig. 5. Hardware architecture of the Bernoulli sampler.

2) Neural Network Engine (NNE): We design the NNE to
perform 2D or 3D convolution and its following functional
layers such as rectified linear unit (ReLU) and pooling at
a given time. The NNE is composed of a processing en-
gine (PE), a functional engine (FE), a dropout engine (DE)
and different memory buffers to cache inputs, weights and
intermediate results. In PE, there are PC processing units
(PUs) with each PU followed by a ReLU unit which can be
optionally bypassed. The PU is where we perform the 2D or
3D convolutional operation. At the beginning of the PU is a
MAC unit with PC multipliers followed by a log2PC-level
adder tree and an accumulator. As our accelerator adopts the
8-bit linear quantization [54] to improve the overall hardware
performance, a quantization (Quant) module is designed after
the MAC unit to map the accumulated 32-bit results back to
8-bit integers for the use in the next layer. The functional
engine is designed to perform 2D or 3D pooling and shortcut
(SC) addition. Since the 3D pooling needs compute results
from adjacent frames and the SC addition requires to perform
addition between the outputs and the input, a memory buffer
is designed to cache the necessary data required by both
operations. To perform dropout, the DE receives the Bernoulli
random variables (1 or 0) from the Bernoulli sampler and
creates a mask to randomly drop intermediate output filters.

As there are limited on-chip memory resources on FPGAs,
especially considering FPGAs for edge deployment, it is
impossible to cache all intermediate results of multiple con-
volutional layers in a deep BayesCNNs on-chip. To improve
the generality of our accelerator, we only deploy one NNE
on-chip and run the whole network layer-by-layer using the
same NNE. In this manner, outputs generated from the DE will
be transferred back to the off-chip memory from the on-chip
memory. At the same time, the inputs of the next convolutional
layer need to be loaded from off-chip memory into the on-chip
memory. To decrease the memory transfer time between on-
chip and off-chip memory, double buffer technique is used for
both input buffer and weight buffer design to hide the transfer
time into the computation time [55].

3) Bernoulli Sampler: To perform MCD, it is required to
generate random 1s and 0s at runtime to randomly dropout
some filters in the output feature map as illustrated in (2).
The probability of 1s and 0s is specified by the dropout
rate p, which is a user-defined hyperparameter. To generate
random binary values with user-defined probability, we design
a Bernoulli sampler as illustrated in Figure 5.

The basic hardware module in the proposed Bernoulli
sampler is a 4-tap linear feedback shift register (LFSR), which
generates a pseudo-random single bit, being 0 or 1, per cycle
with a probability 50%. The LFSR is composed of a chain
of shift registers formed as a closed loop. The maximum
sequence length Smax of the LFSR depends on the number of
shift registers Nreg used in the loop: Smax = 2Nreg − 1. As
the Nreg is equal to 128 in this work, the used LFSR design
would take 1500 years to iterate through the whole sequence
when clocked at 160MHz [56]. To perform the Bernoulli sam-
pling with user-defined probability, we deploy Nlfsr LFSRs
with extra logic, where Nlfsr is a reconfigurable hardware
parameter specified by users. For instance, to perform the
Bernoulli sampling with 25% probability for generating a 1,
the design would consist of two LFSRs with an extra AND
gate processing the outputs of the two LFSRs each clock cycle.
In this paper, we set the maximum value of Nlfsr as 5, and
thus the minimum Bernoulli probability for keeping an output
filter is p = 1

25 .
As shown in Figure 4, there can be up to PF dropout masks

in each dropout engine and each dropout mask requires one
random bit from the Bernoulli sampler. Therefore, we design
a serial-in-parallel-out (SIPO) module after the bit-wise logic
module to cache and expand the output bitwidth to PF -bits
using different random bits.

Since different convolutions in different layers are processed
at different speeds, a first-in-first-out (FIFO) buffer is placed at
the end of the Bernoulli sampler to cache generated Bernoulli
random variables and pop out the mask when required. To
improve the hardware performance, we overlap the random
mask generation of the Bernoulli sampler with the main
execution in the NNE, e.g. convolution or pooling.

4) Smart Buffers: The design of both data and weight
buffers needs to consider the support of the previously dis-
cussed parallelism in the proposed NNE. As mentioned in Sec-
tion III-A2, the NNE adopts parallelism in filter (PF), channel
(PC) and vector (PV) dimensions. In this work, we propose
smart data and weight buffers to support the computation with
respect to the three types of parallelism.

Smart Data Buffer — A design overview of the smart data
buffer is presented in Figure 6. It mainly consists of a read
address generator (RAG), a tree-like fan-out, a crossbar and
PC × PV random access memory (RAM) banks. Before the
processing of each layer, the input data is loaded from the off-
chip memory, and then cached in the on-chip RAM banks. To
generate the read address for each layer, the RAG receives
signals such as the kernel size and stride length from the
controller, and outputs the read address to RAG. Together
with the crossbar and RAG, the RAM banks are able to output
PC×PV data in parallel in a sliding window manner required
by both 2D and 3D convolutions. Because one convolutional
layer shares the same input feature maps among different
filters, we use the tree-like fan-out at the end of the smart data
buffer to simply duplicate the outputs by PF times to support
the parallelism in the filter dimension, which is implemented
through a hand-written hardware module to explicitly improve
the timing of the design.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

...

RAM Bank 1

RAM Bank M

PV × PC

Read Address
Generator

…
…
…

Tree Fan-out

…
…

..Off-chip
Memory

Controller Smart Data Buffer

Crossbar

Fig. 6. Hardware design of the smart data buffer.

In terms of the RAM banks, we first separate them into PV
groups where each group contains PC RAM banks. Within
each bank group, the data arrangement follows the channel-
first rule, which means the data from different channels at
the same spatial position are stored first, and spanned equally
across different banks within one group. Then, the data be-
longing to the same row are distributed across different bank
groups vertically. Following this manner to store one row, we
store the rest of data in our smart data buffer horizontally
row-by-row and frame-by-frame.

An example of the data arrangement when the input height
H = 2, the input width W = 2, the input channel size C = 4
and the temporal length L = 2 is illustrated in Figure 7,
where the spatial and temporal positions are denoted by
different colors and the different channels are represented
using C1∼C4. As it can be observed, the data with the same
color, i.e. position, from different channels are stored first
within each bank group. Then, the first and second data in
the first row of the first frame are distributed in the first and
second bank groups respectively. The rest of data are then
stored horizontally row-by-row and frame-by-frame.

Smart Weight Buffer — The design of the smart weight
buffer is relatively simple in comparison to the data buffer
since weights or the variational parameters do not need to be
fetched in the sliding window manner. Therefore, the smart
weight buffer only contains PC × PF FIFOs and a tree-like
fan-out as illustrated in Figure 8. The weights of current layer
are loaded from the off-chip memory to on-chip FIFOs before
the processing for a given layer. Then, FIFOs operated by the
controller output PC × PF weights in parallel to the PE.
The fetched weights will flow back to FIFOs for data reuse.
Since different data vectors along PV parallelism share the
same weights, a tree-like fan-out is designed at the end of
the buffer to duplicate the weights PV times. In FIFOs, the
weights are stored according to the data arrangement in the
smart data buffer described in the previous Section to ensure
that the PE receives the corresponding weights.

Bank 1
C4 C4

C2 C4

C4 C4

C2 C4C3 C3

C3 C3

C3 C3

C3 C3

1st Frame 2nd Frame

Bank 2

Bank 3

Bank 4

C2 C2

C2 C2C1 C1

C1 C1

C2 C2

C2 C2C1 C1

C1 C1

C1

C2

C1

C2

C3

C4

C3

C4

C1

C2

C1

C2

C3

C4

C3

C4

C1

C2

C1

C2

C3

C4

C3

C4

C1

C2

C1

C2

C3

C4

C3

C4

PV × PC
(2 × 2)

Data
Arrange

2nd Frame
H × W

1st Frame
H × W

Group 1

Group 2

Fig. 7. The data arrangement in the smart data buffer.

...

FIFO 1

FIFO K

PV × PF

…
…
…

Tree Fan-out

…
…

..

Off-chip
Memory

Controller

Smart Weight Buffer

Fig. 8. Hardware design of the smart weight buffer.

B. Mapping 2D and 3D Operations

Based on the hardware accelerator proposed in Section III,
we now present a way how to map both 2D and 3D operations
into the described unified architecture.

1) 2D and 3D Convolution: As indicated in [57], both
2D and 3D convolutions are the most memory and compute-
intensive operations in modern CNNs [2]. To improve the
overall performance, we optimize the 2D and 3D convolutions
as illustrated in the Algorithm 1. Note that 2D convolution is
a special case of 3D Convolution where the temporal length
L,KL = 1.

Algorithm 1 Optimized 2D and 3D Convolution.
1: for (l = 0; l < L; l ++)
2: for (f = 0; f < F/PF ; f ++) . Tiled
3: for (h = 0;h < H;h++)
4: for (w = 0;w < W/PV ;w ++) . Tiled
5: for (kl = 0; kl < KL; kl ++)
6: for (kh = 0; kh < KH ; kh ++)
7: for (kw = 0; kw < KW ; kw ++)
8: for (c = 0; c < C/PC; c++) . Tiled
9: for (i = 0; i < PC × PV × PF ; i++)

10: Perform Convolution

Since our hardware design supports three categories of
parallelism, i.e. PF , PC and PV , we first tile the filter,
channel and width loops so that the innermost loop marked by
the blue box in Algorithm 1 can be mapped into the NNE. In
the innermost loop, because the results are only accumulated
together along the channel dimension, the tiling will produce
PF × PV intermediate results. To avoid caching too many
intermediate results, only the computation associated with the
PF × PV intermediate results is performed, such that they
can be transferred to off-chip memory as soon as possible.
Therefore, we compute the channel and kernel (c, kh and kw)
loops right after the innermost loop, which is highlighted by
the red box in Algorithm 1. The temporal (kl) loop is set as
the outermost loop so that only KL input frames need to be
cached in the on-chip memory. To decrease the memory usage
of the smart weight buffer, the convolution is then performed
PF filters by PF filters such that only PF filters of weights
are cached on-chip each time.

2) 2D and 3D Shortcut Addition: The shortcut (SC) ad-
dition was originally proposed in a ResNet pointwise 2D
CNN architecture to fast-track gradient propagation and thus
achieve better accuracy [2]. Given its success, the SC has
been widely adopted in various BayesCNNs to achieve better
algorithm performance [58]. While performing SC addition for
2D BayesCNNs, we store a copy of the input data in the SC
buffer as illustrated in Figure 9(a). The cached input frame is
then added with the output of a convolution to generate the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

FEPE

(a) 2D SC

Smart Data Buffer

1st Framein

2nd Framein

3rd Framein

SC/Pool Buffer

1st/2nd/3rd Framein

FEPE

Smart Data Buffer

1st Framein

SC/Pool Buffer

1st Framein

(b) 3D SC

Fig. 9. Hardware implementation of the 2D and 3D SC addition.

final result for that layer. When our design is used to accelerate
3D BayesCNNs, there are KL consecutive frames cached in
the smart data buffer. Instead of caching the entire input,
3D SC addition only caches a single corresponding frame in
the SC buffer to reduce the on-chip memory consumption.
An example of 3D SC addition when KL = 3 is presented
in Figure 9(b), where only one input frame is stored in the SC
buffer when required.

3) Other Operations: Similarly to SC addition, the 3D
pooling caches the previously-generated results in a buffer.
The cached results will then be used together with the outputs
of current convolution to perform 3D maximum or average
pooling. Note that, the SC buffer is reused as a pooling
buffer to reduce the on-chip memory consumption. The batch
normalization (BN) [59] is fused into the convolution to reduce
computation and memory consumption [60].

In terms of other operations, such as ReLU and MCD, since
they do not include any data dependency, 3D operations can be
performed by applying their corresponding 2D implementation
frame by frame.

IV. HARDWARE OPTIMIZATION

A. Overlapping Sampling with Convolution

To improve the overall hardware performance, we propose
to overlap the Bernoulli sampling with the computation of the
BayesCNN. We observe that the sampling does not depend
on the input data, and thus it can be performed independently
before or during the evaluation of the BayesCNN. Since
generating random binaries for all layers B and samples
S will consume too much on-chip memory, we propose an
overlapping strategy as shown in Figure 10.

To reduce the on-chip memory consumption, our proposed
overlapping strategy only pre-samples Bernoulli random vari-
ables for one layer before each 2D or 3D convolutional layer is
executed. In this way, since all the random variables required
by the currently executing convolutional layer were generated
and cached in the on-chip memory, the computation can be
executed without any stalls. At the same time, the sampling
of the next convolutional layer can be overlapped with the
computation of the current layer, which improves the overall
hardware performance.

Compute
1st Layer

2nd Sample

Sampling
1st Layer

2nd Sample
……

Compute
1st Layer

1st Sample

Sampling
1st Layer

1st Sample

Compute
N-th Layer
1st Sample

Sampling
N-th Layer
1st Sample

……

……

…… Compute
N-thLayer

2nd Sample

Sampling
N-th Layer

2nd Sample

Bernoulli
Sampler

NNE

Time

Fig. 10. An example of overlapping sampling with computation. The
BayesCNN contains B Bayesian layers and performs S = 2 MC samples.

Image

Off-chip
Memory

On-chip

Image Out11

Off-chip
Memory

On-chip

Out22

(b) Naïve implementation runs all layers multiple times

(c) Last-layer Bayesian inference with last-layer caching

2D Conv1

Sample 1

Sample 2

(a) Two-layer Bayesian 2D CNN with MCD on last layer

Conv1 Conv2 MCD

Image Out21

Conv1 Conv2 MCD

Out12 Out22

Last-Layer Caching

Image Out11

Conv1 Conv2 MCD

Out12

MCD

2D Conv2

2D Conv2

MCD

MCD

Sample 1 Sample 2

Sample 1 Sample 2

Standard Bayesian

Fig. 11. An example of a two-layer Bayesian CNN which computes two
samples to obtain the prediction. The input and output data are denoted by
Inij and Outij where i means ith iteration and j represents jth layer. The last
linear layer is not shown for simplicity.

An example of this procedure is presented in Figure 10.
Since our NNE is designed to perform one operation at a
time, i.e. convolution, the computation is performed layer-
by-layer for each sample sequentially. With the proposed
overlapping strategy, all the random variable sampling is
performed in advance of the layer that requires it, which avoids
any additional latency.

B. Intermediate-layer Caching

As discussed in Section II-B, from an algorithm stand-
point, it might not be necessary to place MCD after every
layer to achieve fine algorithm performance [10], [36], [38],
[61]. Figure 11(a) presents an example of a three-layer 2D
BayesCNN with the MCD only applied on the output of the
penultimate layer. To perform S = 2 MC samples, it is then
only required to run the partially Bayesian part B two times
instead of inefficiently processing the input through the whole
network with depth N . In this work, to avoid the redundant
computation and reduce the data transfer between off-chip
and on-chip memory, we propose a general hardware-efficient
intermediate-layer caching (IC) technique with respect to
caching the intermediate results directly in on-chip memory.
IC was previously proposed with respect to software caching
of the last Bayesian layer [10] and recently extended to the
whole network architecture [61]. However, these approaches
store the intermediate results in the off-chip memory, which
introduces extra data transfer between on-chip and off-chip
memory.

In the naive implementation, as shown in Figure 11(b), the
evaluation is performed with respect to all the convolutional
layers twice and the data is transferred between off-chip and
on-chip memory in total eight times. With the IC, as illustrated
in Figure 11(c), the output of the second convolutional layer

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

will be cached on the chip while performing the first MC
sample. Then the final result of the second MC sample can be
obtained by applying MCD on the cached data, which halves
the amount of computation and decreases data transfer up to 5
times. Generally, assuming the NN requires to run the last B
layers S times to obtain the prediction, the IC can reduce the
compute by (N − B) × S times and the number of memory
accesses by S ×B times.

V. OPTIMIZATION FRAMEWORK

A. Workflow of Framework

The reconfigurable accelerator together with partial
Bayesian inference provide a large design space for algorithm
and hardware performance exploration and trade-off. To ex-
plore such a large design space, an automatic framework is
proposed to perform the design space exploration for opti-
mizing the algorithm and hardware performance under user-
defined constraints and requirements.

The design space in this work contains two categories of
configurable parameters, hardware parameters and algorithm
parameters. The hardware parameters affect the hardware
configuration and they consist of configurable parallelism
levels (PF , PC, PV) of the NNE, number of LSFRs in the
Bernoulli sampler Nlfsr and the memory size of each buffer.
The optimization of hardware configurations considers both
resource consumption and hardware performance. Since the
channel size, filter size, input size or the dropout rate may
vary among different BayesCNNs, improper choice of these
parameters may lead to unused resources in the hardware,
which can decrease the overall hardware performance. At
the same time, the recourse consumption of the configured
accelerator needs to be smaller than the resource budget the
underlying FPGA board provided. Therefore, in our hardware
design space, we consider the domains for both PF and PC as
{8, 16, 32, 64, 128} and PV can be chosen from {1, 4, 8, 16}.
The number of LFSRs Nlfsr is an integer ranging from 1 to
5 and the buffers can have arbitrary memory sizes that can be
fitted on the given FPGA.

On the algorithm level, there are three parameters that
may affect both the algorithmic and hardware performance:
the portion of Bayesian layers B supporting partial Bayesian
inference mentioned in Section II-B2, the dropout rate p and
the number of MC samples S, which represents how many
times the B designated layers need to be repetitively run.
These three algorithm parameters enable trade-off between
latency, accuracy, confidence and uncertainty estimation. For
instance, applying MCD only with respect to the penultimate
layer and running it with respect to only two MC samples
can significantly decrease the latency due to the reduced
computation, but may also degrade the quality of uncertainty
quantification or the accuracy.

An overview of our proposed framework is presented in Fig-
ure 12. There are four metrics optimized by our framework,
i.e., algorithm accuracy, hardware latency, uncertainty quan-
tification and calibration confidence. Users are allowed to set
maximum or minimum constraints on these four metrics. As
mentioned before, since these metrics cover trade-off between

Optimized
HW Config

Optimized
SW Config

Parallelism Levels,
Memory Sizes,

Number of LFSRs
Opt-Lat or
Opt-Acc or

Opt-Uncertn or
Opt-Confid

Generate
Candidate
Hardware

Resource
Model

Hardware
Constraints

Network
Architecture

Latency,
Accuracy,

Uncertainty,
Confidence

Mode
Selection

Metric
Requirements

Performance
Model

PC, PF, PW
MEMin, MEMweight

B, S

Design Space
Exploration

Grid Search

Fig. 12. Overview of the optimization framework.

each other, we design our framework to support four optimiza-
tion modes, i.e., optimal-latency, optimal-accuracy, optimal-
uncertainty quantification and optimal-confidence. These opti-
mization modes indicate the priority to minimise or maximise
the chosen objective.

The flow of the framework starts with considering candidate
hardware configurations under the hardware constraints using
the proposed resource model. Then, the feasible hardware
configurations together with a performance model are fed
as inputs for the design space exploration. The resource
model is used to avoid the time-consuming synthesis and
implementation to accelerate the design space exploration.
Note that, the estimation of resource consumption is only used
during the design space exploration and the final design is
implemented and evaluated at the board-level. At the same
time, the framework also receives the network architecture
of the target BayesCNNs as input. Together with the user-
defined constraints and optimization modes, the design space
exploration is performed through greedy optimization with re-
spect to software and hardware configurations. The framework
optimizes PC, PF , PV , Nlfsr and memory sizes as hardware
configurations, and B and S as algorithm configurations.

B. Resource Model

The resource model in our paper mainly considers the
memory and DSPs resource consumption since they are the
limiting resources in FPGA-based NN accelerators [55] and
also in our design. The DSPs are mainly consumed by the
NNE where one DSP with some extra logic resources are
used to implement two 8-bit multipliers for high computational
utilization. Hence, the DSP usage in our resource model can be
estimated as DSP = PC×PF×PV

2 . The memory consumption
mainly accumulates from the FIFOs in the Bernoulli sampler,
the weight and input buffers in the NNE. Since there are PF
FIFOs in the Bernoulli sampler, its memory consumption can
be represented as MEMFIFO = DFIFO × PF × V , where
DFIFO denotes the depth of each FIFO and V represents
the bit-width of data. Since the NNE processes the layers in a
BayesCNN one-by-one, the memory consumption of the input
buffer is dominated by the layer with the maximal input size.
Therefore, it can be formulated as MEMin = max

i=1,...,N
(Ci ×

Hi ×Wi) × V , where Hi,Wi and Ci are the height, width
and channel size of the input in the ith layer respectively. As
mentioned in Section III, we design the weight buffer to cache

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

PF filters at a time. Therefore, the memory usage of weight
buffer can be modelled as MEMweight = max

i=1,...,N
(Ci ×

Ki
H × Ki

W × Ki
L) × PF × V , where Ki

H ,Ki
W ,Ki

L are the
kernel height, width and temporal length sizes of the ith layer.
Since we used the double buffer technique in both weight
and input buffers to overlap the loading time between two
consecutive layers, the total memory consumption is estimated
as MEM = 2× (MEMin +MEMweight) +MEMFIFO.

VI. EXPERIMENTS

A. Experimental Setup

We implemented our proposed hardware architecture (Sec-
tion III) on an Intel Arria 10 SX660 FPGA with a 1GB DDR4
SDRAM installed as off-chip memory. We set PV, PC and
PF to be 1, 64 and 64 according to the estimated resource con-
sumption provided by our resource model (Section V-B) and
the available resources offered by the underlying hardware.
The final design was implemented using Verilog. Quartus 17
Prime Pro was used for synthesis and implementation. Our
final design was clocked at 225 MHz. The real resource
usage of our accelerator generated by Quartus after the im-
plementation is presented in Table II. We also provide a
resource breakdown on two parts: the Bayesian part that is
designed to support MCD, and the non-Bayesian part that is
used to perform the main computation. We adopted the 8-
bit linear quantization [54] for a high hardware performance
on our design. [54] demonstrated that 8-bit representation
does not have a detrimental effect on BayesCNNs’ algorithm
performance. To fully utilize the hardware resources, we used
one DSP with some extra logic resources to implement two
8-bit multipliers. As mentioned in Section V-B, DSPs are the
limiting resource in our accelerator which consume nearly
97% of available DSPs. The non-Bayesian part occupied most
of resources compared with the Bayesian part.

Our target applications were image and video classification.
In both of these applications, the inputs and the correct
classification labels can be represented as tuples (x,y), where
x is the input and y denotes the one-hot encoded categories.
Given an input x we approximated the predictive distribution
according to (1) by averaging the provided output probabilities
given by softmax activation at the end of the network with
respect to S samples to give p(y′|x). Given the predictive
distribution, we evaluated the algorithm performance with
respect to different metrics. We considered accuracy, average
predictive entropy (aPE) for evaluating the quality of quanti-
fied uncertainty and expected calibration error (ECE) [62] to
measure the calibration of the confidence in the predictions.

TABLE II
RESOURCE UTILIZATION OF THE ACCELERATOR ON THE FPGA.

Resources ALMs Registers DSPs M20K

Bayesian Part Utilization 2% 1% 0% 1%

Non-Bayesian Part Utilization 69% 51% 97% 85%

Overall
Used 303,913 889,869 1,473 2,334

Design Total 427,200 1,708,800 1,518 2,713

Utilization 71% 52% 97% 86%

Note that, our design can be also used to accelerate other
applications such as object detection [30] and image segmen-
tation [4] with proper blocking strategies [55].

For the input that should rightfully confuse the net, we
measured the quality of the uncertainty prediction with respect
to random Gaussian noise with mean and variance of the
training data with aPE over a dataset of size E with K classes
as: aPE = 1

E

∑E
e=1−

∑K
k=1 p(y

′,k
e |xe) log p(y

′,k
e |xe).

Furthermore, we measured the calibration of the confi-
dence of the BayesCNN with respect to ECE and unmodified
test data. ECE quantifies if the BayesCNN is uncalibrated
by observing whether the net is making predictions whose
confidence are not matching its accuracy. ECE computes a
weighted average between accuracy and confidence across bins
as: ECE =

∑B
b=1

nB

N |accuracy(b) − confidence(b)|, where
nb is the number of predictions in bin b and accuracy(b)
and confidence(b) are the accuracy and confidence of bin b,
respectively. We set B = 10.

In terms of the datasets, we evaluated the 2D BayesCNNs
with respect to image datasets and 3D BayesCNNs with
respect to video datasets. To stay consistent with previous de-
signs [16], [18], [19], we considered MNIST [28], SVHN [63]
and CIFAR-10/100 [64] for image classification. The datasets
were paired with Bayes-LeNet5 [28], Bayes-VGG11 [65], and
Bayes-ResNet18/34 [2] respectively. With respect to video
datasets we performed the evaluation with respect to UCF-11,
video size ranging from 160×120×3 to 480×360×3 across
several seconds [66],where the first two dimensions stand for
the spatial size and the last dimension is the number of color
channels, and we used two different architectures: Bayes-C3D
and Bayes-R3D18 [15] for evaluation. We picked architectures
that are core to different tasks across different applications, e.g.
ResNet-like architectures to demonstrate the versatility of this
work. We varied both the datasets as well as the architectures
to vary the complexity of the experiments from the algorithm
and hardware execution perspectives.

In this work, we explored partial Bayesian inference which
is motivated by provided hardware execution efficiency. We
considered adding dropout at different parts of the networks,
always following a 2D or 3D convolutional, BN and ReLU lay-
ers, and optionally pooling. We consider p = 0.25 for all MCD
instances. This value was picked with respect to observing the
validation performance across different dataset, architecture
and dropout combinations. We considered partial BayesCNNs,
such that B = {1, 1

3 ×N, 1
2 ×N, 2

3 ×N,N}. The number of
samples S could be S = {3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100}.
All experiments were repeated 5 times.

B. Effectiveness of Framework

As introduced in Section V, our proposed framework ex-
plores the trade-off between different hardware and algorithm
performance metrics, i.e., latency, uncertainty estimation, con-
fidence and accuracy. To meet different users’ needs, we
design our framework to support four different optimization
modes. In this part, we first applied the optimization frame-
work without user constraints to investigate the performance
limits of our design under different optimization modes. Then,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

TABLE III
THE RESULTANT CONFIGURATIONS, AND THE CORRESPONDING HARDWARE AND ALGORITHM PERFORMANCE OF 2D AND 3D BAYESCNNS UNDER

DIFFERENT OPTIMIZATION MODES ON OUR FPGA-BASED ACCELERATOR.

Opt-Mode {B,S} Latency [ms] ↓ aPE [nats] ↑ ECE [%] ↓ Accuracy [%] ↑

Bayes-LeNet5

Opt-Latency 1, 3 0.42 0.63± 0.09 0.25± 0.05 99.27± 0.04

Opt-Uncertainty N , 100 14.83 1.06± 0.19 0.17± 0.04 99.32± 0.04

Opt-Confidence N , 9 1.29 0.98± 0.18 0.1± 0.04 99.31± 0.03

Opt-Accuracy 2
3
×N , 100 14.32 0.75± 0.15 0.13± 0.03 99.39± 0.05

Bayes-VGG11

Opt-Latency 1, 3 0.57 1.38± 0.28 2.8± 0.12 95.38± 0.1

Bayesian Opt-Uncertainty 2
3
×N , 100 42.89 2.02± 0.11 0.41± 0.05 96.13± 0.1

2D CNNs Opt-Confidence 2
3
×N , 100 42.89 2.02± 0.11 0.41± 0.05 96.13± 0.1

Opt-Accuracy N , 100 57.32 1.97± 0.05 2.42± 0.19 96.49± 0.05

Bayes-ResNet18

Opt-Latency 1, 3 0.47 0.36± 0.26 4.85± 0.19 92.84± 0.16

Opt-Uncertainty 1
2
×N , 100 32.04 1.27± 0.27 2.74± 0.31 91.12± 0.2

Opt-Confidence 2
3
×N , 3 1.20 1.05± 0.26 1.08± 0.06 89.99± 0.17

Opt-Accuracy 1, 8 0.50 0.38± 0.27 4.74± 0.14 92.91± 0.14

Bayes-ResNet34

Opt-Latency 1, 3 0.93 0.14± 0.15 18.06± 0.49 69.63± 0.39

Opt-Uncertainty N , 100 65.61 1.97± 0.29 14.73± 0.33 63.79± 0.69

Opt-Confidence 2
3
×N , 3 2.01 1.23± 0.65 1.83± 0.32 66.43± 0.39

Opt-Accuracy 1
2
×N , 50 19.03 1.1± 0.24 3.95± 0.44 71.83± 0.31

Bayes-C3D

Opt-Latency 1, 3 93.99 0.438± 0.001 5.23± 0.73 85.35± 1.1

Opt-Uncertainty 1
2
×N , 100 531.90 1.443± 0.001 3.71± 1.65 84.92± 1.1

Opt-Confidence 1
2
×N , 100 531.90 1.443± 0.001 3.71± 1.65 84.92± 1.1

Bayesian Opt-Accuracy 1, 50 95.92 0.442± 0.001 4.98± 0.9 85.41± 1.2

3D CNNs

Bayes-R3D18

Opt-Latency 1, 3 51.01 0.491± 0.001 4.88± 0.92 84.63± 0.88

Opt-Uncertainty 2
3
×N , 100 1513.42 1.660± 0.001 9.21± 0.85 73.88± 0.95

Opt-Confidence 1
3
×N , 50 262.62 0.217± 0.001 2.75± 0.57 83.43± 1.45

Opt-Accuracy 1, 50 51.22 0.525± 0.001 4.57± 0.53 84.89± 1.13

we optimized the hardware design as well as the algorithm
parameters with respect to user-specific constraints to demon-
strate the effectiveness of our framework.

1) Unconstrained Exploration: To determine the global op-
timal algorithm and hardware performance that our design can
achieve, we applied our framework with respect to four dif-
ferent optimization modes: Opt-Latency, Opt-Accuracy, Opt-
Uncertainty and Opt-Confidence, on all BayesCNNs without
any user constraints. We evaluated both 2D and 3D BayesC-
NNs with different optimized configurations on our FPGA-
based accelerators. The results are presented in Table III, the
down and up arrows indicate the desired tendency for a given
metric.

Under Opt-Latency mode, our framework choose the con-
figuration with the minimal number of samples and Bayesian
layers, i.e., {B = 1, S = 3}, for all the 2D and 3D
BayesCNNs. In 2D BayesCNNs, our accelerator achieved
0.42ms, 0.57ms, 0.47 and 0.93 ms on Bayes-LeNet5, Bayes-
VGG11, Bayes-ResNet18 and Bayes-ResNet34 respectively.
Similarly, Bayes-C3D and Bayes-R3D18 needed only 93.99ms
and 51.01 ms. With the Opt-Accuracy mode enabled, these
five BayesCNNs achieved 99.39%, 96.49%, 92.91%, 71.83%,
85.41% and 84.89% accuracy respectively on their corre-
sponding datasets. Under both Opt-Uncertainty and Opt-
Confidence modes, our framework generated different {B,S}
configurations to achieve better aPE and ECE. For instance, the
Bayes-VGG11 optimized by Opt-Uncertainty mode improved

the aPE metric by 0.64 compared with the design proposed
by Opt-Latency. Similarly, Opt-Confidence mode reduces the
ECE by 2.13% compared with the Opt-Latency mode on
Bayes-R3D18.

2) Constrained Exploration: To validate the effectiveness
of our framework in finding the optimal configurations when
the user’s requirements are provided, we adopted the Opt-
Confidence mode to optimize Bayes-ResNet18 on CIFAR-
10 dataset with uncertainty, accuracy and latency constraints
applied. To demonstrate the optimality of the found con-
figuration, we evaluated all the candidate configurations in
terms of latency, aPE, ECE and accuracy. The results are
presented in Figure 13. The feasible design space constructed
by accuracy, latency and uncertainty constraints is represented
by the black box. As we can see, the configuration with
the lowest ECE, which is highlighted by the red arrow, is
chosen as the optimal configuration under the Opt-Confidence
mode when user’s constraints were given. Therefore, our
framework is able to find the optimal configurations with
user-specified constraints. In Figure 13, we also visualize
the global optimal points generated by Opt-Latency, Opt-
Accuracy, Opt-Uncertainty modes without constraints applied,
which are highlighted by the black arrows. As we can observe,
these global optimal configurations represent the best latency,
accuracy and uncertainty that the Bayes-ResNet18 achieved on
its design space.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE IV
PERFORMANCE COMPARISON OF OUR FPGA DESIGN VERSUS CPU AND GPU PLATFORMS.

CPU GPU Our Work

Platform Intel Xeon E5-2680 v2 GeForce RTX 2080 Ti Intel Arria 10 GX1150

Frequency 2.8GHz 1.545GHz 220MHz

Technology 22nm 12nm 20nm

Acceleration Library MKLDNN, PyTorch 1.9.0 CuDNN, PyTorch 1.9.0 -

Power [W] ↓ 135 248 45

{B,S} 1
2
×N , 100 2

3
×N , 50 1

2
×N , 100 2

3
×N , 50 1

2
×N , 100 2

3
×N , 50

Use IC Yes [10], [61] Yes [10], [61] No Yes No Yes

Latency [ms] ↓ Bayes-ResNet18 733.16 583.33 372.92 262.08 44.97 32.04 22.48 18.90

Bayes-R3D18 5170.0 4920.0 948.27 728.77 5100.7 686.89 2550.3 772.35

Energy Eff. Bayes-ResNet18 0.99 1.57 0.93 1.29 0.020 0.014 0.021 0.017

[J/Sample] ↓ Bayes-R3D18 6.98 13.28 2.35 3.61 2.29 0.31 2.30 0.69

TABLE V
PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART ACCELERATORS FOR BAYESIAN NNS.

ASPLOS’18 [16] DATE’20 [18] Micro’20 [19] Our Work

Platform Altera Cyclone V Zynq XC7Z020 Virtex-7 VC709 Arria 10 GX1150

Frequency [MHz] 213 200 100 220

Technology 28 nm 28 nm 28 nm 20 nm

Available DSPs 342 220 3600 1518

Power [W] ↓ 6.11 2.76 - 43.6

Model Bayes-MLP Bayes-MLP Bayes-GoogLeNet Bayes-VGG11 Bayes-ResNet18 Bayes-C3D

Throughput [GOP/s] ↑ 59.6 24.22 - 533.75 1590 1449

Speedup Compared with Baseline - - 3.1× 49.6× 48.3× 49.9×

Energy Efficiency [GOP/s/W] ↑ 9.75 8.77 - 19.6 41.57 34.2

Comp. Eff. [GOP/s/DSP] ↑ 0.174 0.121 - 0.362 1.079 0.983

Opt-Latency
(Lat : 0.47, aPE: 0.36,
ECE: 4.85, Acc: 92.8)

Opt-Uncertainty
(Lat : 32.0, aPE: 1.27,
ECE: 2.74, Acc: 91.12)

Opt-Confidence with Constraints
(Lat : 1.20, aPE: 1.05, ECE: 1.08, Acc: 89.9)

Opt-Accuracy
(Lat : 0.50, aPE: 0.38
ECE: 4.74, Acc: 92.9)

Fig. 13. Design space exploration with latency, accuracy and uncertainty
constraints for Bayes-ResNet18 on CIFAR-10.

C. Performance Comparison against CPU and GPU Imple-
mentations

To demonstrate the advantages of our proposed accelerator
over other hardware platforms, we measured the hardware
performance on the FPGA, Intel Xeon E5-2680 v2 CPU and
NVIDIA Titan Xp GPU. Both CPU and GPU versions were
implemented using PyTorch 1.9.0 [67]. The CPU implemen-
tation was optimized by MKLDNN and the CuDNN library
was used to improve the hardware performance of the GPU
implementation. As this paper only targets accelerating the
evaluation of BayesCNNs, where the inputs are produced
sequentially as in real-life scenarios, we set the batch size
as 1 for all models on all evaluated hardware platforms. Since

PyTorch does not support 8-bit quantization on a GPU, the
performance of GPU implementations is reported based on
32-bit floating point. The results are presented in Table IV.
We evaluated two configurations for each model, i.e. {B =
1
2 × N,S = 100} and {B = 2

3 × N,S = 50}. In both CPU
and GPU implementations, we enabled the IC optimization
by caching the intermediate results of the last non-Bayesian
layer as PyTorch tensor variables for the reuse in the following
Bayesian layers [10], [61]. To demonstrate the effect of the IC
implementation on our accelerator, we evaluated the hardware
performance with and without IC optimization on the FPGA.

As we can observe from Table IV, our accelerator achieved
different speedup compared with CPU and GPU implementa-
tions, depending on the model and configuration. For instance,
our design achieved 11∼13 times speedup than the GPU
implementations on Bayes-ResNet18. At the same time, our
design was more energy-efficient than CPU and GPU imple-
mentations. For example, we achieved up to 92 and 76 times
higher energy efficiency than CPU and GPU implementations
on Bayes-ResNet18 with {B = 2

3 × N,S = 50}. While
comparing FPGA implementations with and without on-chip
IC, it can be seen that the speedup brought by IC is decreasing
when the S becomes smaller and B increases for most of 2D
and 3D BayesCNNs. There are three reasons for the achieved
higher hardware performance:

• The hardware-level implementation of IC technique that
precisely caches the intermediate results of the last non-
Bayesian layer in on-chip memory, which decreases the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

number of memory accesses and the amount of computation.
• The support for fine-grained parallelism in our design, which

fully utilized the extensive concurrency in BayesCNNs.
• The quantization adopted in our design, which reduces the

computational complexity and bandwidth requirements.

D. Performance Comparison with Existing Work

To demonstrate the advantages of our hardware architecture
and optimization framework over the other state-of-the-art
designs, we compared our work with the existing accelerators
for Bayesian NNs [16], [18], [19] in Table V. The hardware
performance was evaluated in terms of throughput, energy
efficiency and compute efficiency for a fair comparison. The
energy efficiency was measured in giga-operations per second
per watt (GOP/s/W) and the compute efficiency refers to the
giga-operations per second per DSP provided (GOP/s/DSP).
The results are shown in Table V. As it can be seen, our
accelerator was the only design supporting both 2D and
3D BayesCNNs, which demonstrates the versatility of our
hardware architecture.

Since both [16] and [18] only support multi-layer percep-
trons (MLP), we quoted their performance from the original
papers, which was evaluated on a three-layer Bayesian MLP
(Bayes-MLP). As it can be observed, our design achieved
nearly 9∼30 and 22∼66 times higher throughput than [16]
and [18] respectively, depending on the model and configura-
tions. As both [16] and [18] consumed fewer DSPs, we also
compared them in terms of the compute efficiency through
GOP/s/DSP. It can be seen that our accelerator achieved nearly
2∼9 times higher compute efficiency than [16] and [18]. In
Fast-BCNN proposed by [19], the authors accelerated BayesC-
NNs by intelligently skipping the zeros generated by MCD
and ReLU activation functions. However, they only reported
the normalized speedup without mentioning the real hardware
performance. Thus, we were not able to compare with them
directly. In order to compare with them, we evaluated the
speedup brought by our algorithm and hardware optimizations.
We first measured the baseline performance on the fully-
BayesCNN with IC hardware implementation disabled in our
design, which keeps the same configuration as [19]. Then, we
measured the speedup by applying the IC and our optimization
framework under Opt-Latency mode. As observed, our design
achieved nearly 16 times higher speedup than [19].

There are three reasons for the higher hardware performance
when compared with previous work:
• The partial Bayesian inference together with the hardware-

level implementation of IC optimization, which skips the
redundant computation in BayesCNNs.

• The fine-grained parallelism and control provided by our
hardware architecture.

• The optimization framework with different optimization
modes, which optimizes the network configuration for the
given BayesCNNs.

VII. CONCLUSION AND FUTURE WORK

This work proposes a high-performance FPGA-based de-
sign to accelerate 2D and 3D Bayesian convolutional neural

networks (BayesCNNs) based on Monte Carlo Dropout. The
accelerator is sufficiently versatile to support a variety of 2D
and 3D BayesCNNs to achieve up to 4 times higher energy
efficiency and 9 times better compute efficiency than other
state-of-the-art accelerators. A framework is also proposed
to automatically explore the trade-off between algorithm and
hardware performance with different priorities, given algo-
rithm requirements and hardware constraints. In future work,
we aim to explore neural architecture search and development
of a hardware-efficient Bayesian inference scheme that would
directly account for hardware performance metrics.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings of
the 2017 Advances in Neural Information Processing Systems (NeurIPS),
2017.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481–2495, 2017.

[4] M. Ferianc, D. Manocha, H. Fan, and M. Rodrigues, “Combinet: Com-
pact convolutional Bayesian neural network for image segmentation,”
arXiv preprint arXiv:2104.06957, 2021.

[5] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via
region-based fully convolutional networks,” in Proceedings of the 2016
Advances in Neural Information Processing Systems (NeurIPS), 2016,
pp. 379–387.

[6] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proceedings
of the 2015 IEEE International Conference on Computer Vision (CVPR),
2015, pp. 4489–4497.

[7] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and Imagenet?” in Proceedings of the
2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 6546–6555.

[8] H. Lu, H. Wang, Q. Zhang, S. W. Yoon, and D. Won, “A 3D convo-
lutional neural network for volumetric image semantic segmentation,”
Procedia Manufacturing, vol. 39, pp. 422–428, 2019.

[9] F. Liang, Q. Li, and L. Zhou, “Bayesian neural networks for selection of
drug sensitive genes,” Journal of the American Statistical Association,
vol. 113, no. 523, pp. 955–972, 2018.

[10] T. Azevedo, R. de Jong, M. Mattina, and P. Maji, “Stochastic-YOLO:
Efficient probabilistic object detection under dataset shifts,” 2020.

[11] R. M. Neal, “Bayesian learning via stochastic dynamics,” in Proceed-
ings of the 1993 Advances in Neural Information Processing Systems
(NeurIPS), 1993, pp. 475–482.

[12] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings of
the 2016 International Conference on Machine Learning (ICML), 2016,
pp. 1050–1059.

[13] M. de la Riva and P. Mettes, “Bayesian 3D convnets for action
recognition from few examples,” in Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops, 2019,
pp. 0–0.

[14] H. Fan, M. Ferianc, M. Rodrigues, H. Zhou, X. Niu, and W. Luk, “High-
performance FPGA-based accelerator for Bayesian neural networks,”
in Proceedings of the 2021 ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 1–6.

[15] H. Fan, X. Niu, Q. Liu, and W. Luk, “F-C3D: FPGA-based 3-
Dimensional convolutional neural network,” in Proceedings of the 2017
International Conference on Field Programmable Logic and Applica-
tions (FPL). IEEE, 2017, pp. 1–4.

[16] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian, M. Pedram, and
Y. Wang, “Vibnn: Hardware acceleration of Bayesian neural networks,”
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 476–488, 2018.

[17] T. Myojin, S. Hashimoto, and N. Ishihama, “Detecting uncertain BNN
outputs on FPGA using Monte Carlo Dropout sampling,” in Proceedings
of the 2020 International Conference on Artificial Neural Networks
(ICANN). Springer, 2020, pp. 27–38.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

[18] H. Awano and M. Hashimoto, “Bynqnet: Bayesian neural network
with quadratic activations for sampling-free uncertainty estimation on
FPGA,” in Proceedings of the 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 1402–1407.

[19] Q. Wan and X. Fu, “Fast-BCNN: Massive neuron skipping in Bayesian
convolutional neural networks,” in Proceedings of the 2020 Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 229–240.

[20] Z. Zhang, A. V. Dalca, and M. R. Sabuncu, “Confidence calibration for
convolutional neural networks using structured dropout,” arXiv preprint
arXiv:1906.09551, 2019.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[22] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on FPGA,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 7,
pp. 1354–1367, 2018.

[23] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y. Shan,
and Y. Wang, “Dnnvm: End-to-end compiler leveraging heterogeneous
optimizations on FPGA-based CNN accelerators,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[24] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. Cheung,
and G. A. Constantinides, “Deep neural network approximation for
custom hardware: Where we’ve been, where we’re going,” arXiv preprint
arXiv:1901.06955, 2019.

[25] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on FPGAs,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017, pp. 1–6.

[26] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded FPGA platform
for convolutional neural network,” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 26–35.

[27] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[29] M. Ferianc, H. Fan, and M. Rodrigues, “Vinnas: Variational
inference-based neural network architecture search,” arXiv preprint
arXiv:2007.06103, 2020.

[30] H. Fan, S. Liu, M. Ferianc, H.-C. Ng, Z. Que, S. Liu, X. Niu, and
W. Luk, “A real-time object detection accelerator with compressed SS-
DLite on FPGA,” in Proceedings of the 2018 International Conference
on Field-Programmable Technology (FPT). IEEE, 2018, pp. 14–21.

[31] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[32] R. Hou, C. Chen, R. Sukthankar, and M. Shah, “An efficient 3D CNN for
action/object segmentation in video,” arXiv preprint arXiv:1907.08895,
2019.

[33] Z. Ghahramani, “Probabilistic machine learning and artificial intelli-
gence,” Nature, vol. 521, no. 7553, pp. 452–459, 2015.

[34] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approxima-
tion: representing model uncertainty in deep learning,” arXiv preprint
arxiv:1506.02142, 2015.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[36] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for
scene understanding,” arXiv preprint arXiv:1511.02680, 2015.

[37] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antorán, and J. M.
Hernández-Lobato, “Expressive yet tractable Bayesian deep learning via
subnetwork inference,” arXiv preprint arXiv:2010.14689, 2020.

[38] A. Kristiadi, M. Hein, and P. Hennig, “Being Bayesian, even
just a bit, fixes overconfidence in ReLU networks,” arXiv preprint
arXiv:2002.10118, 2020.

[39] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and
M. Püschel, “Applying the roofline model,” in Proceedings of 2014

IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2014, pp. 76–85.

[40] H. Fan, C. Luo, C. Zeng, M. Ferianc, Z. Que, S. Liu, X. Niu, and W. Luk,
“F-E3D: FPGA-based acceleration of an efficient 3D convolutional
neural network for human action recognition,” in Proceedings of the
IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), vol. 2160. IEEE, 2019, pp. 1–8.

[41] K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher, “Morph: Flexible
acceleration for 3D CNN-based video understanding,” in Proceedings
of the 2018 Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2018, pp. 933–946.

[42] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards
a uniform template-based architecture for accelerating 2D and 3D CNNs
on FPGA,” in Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), 2018, pp. 97–106.

[43] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 4013–4021.

[44] Z. Liu, P. Chow, J. Xu, J. Jiang, Y. Dou, and J. Zhou, “A uniform
architecture design for accelerating 2D and 3D CNNs on FPGAs,”
Electronics, vol. 8, no. 1, p. 65, 2019.

[45] T. Liang, J. Glossner, L. Wang, and S. Shi, “Pruning and quantiza-
tion for deep neural network acceleration: A survey,” arXiv preprint
arXiv:2101.09671, 2021.

[46] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the 2018
IEEE Conference on Computer Vision and Pattern Recognition (ICPR),
2018, pp. 2704–2713.

[47] H. Fan, H.-C. Ng, S. Liu, Z. Que, X. Niu, and W. Luk, “Reconfigurable
acceleration of 3D-CNNs for human action recognition with block
floating-point representation,” in Proceedings of the 2018 International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2018, pp. 287–2877.

[48] H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, “Static block floating-
point quantization for convolutional neural networks on FPGA,” in Pro-
ceedings of the 2019 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 2019, pp. 28–35.

[49] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2017, pp. 75–
84.

[50] M. Sun, P. Zhao, M. Gungor, M. Pedram, M. Leeser, and X. Lin,
“3D CNN acceleration on FPGA using hardware-aware pruning,” in
Proceedings of the 2020 ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[51] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “FPGA/DNN co-design: An efficient design methodology
for 1ot intelligence on the edge,” in Proceedings of the 2019 ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[52] H. Fan, M. Ferianc, S. Liu, Z. Que, X. Niu, and W. Luk, “Optimizing
FPGA-based CNN accelerator using differentiable neural architecture
search,” in Proceedings of the 2020 IEEE International Conference on
Computer Design (ICCD). IEEE, 2020, pp. 465–468.

[53] X. Jia, J. Yang, R. Liu, X. Wang, S. D. Cotofana, and W. Zhao,
“Efficient computation reduction in Bayesian neural networks through
feature decomposition and memorization,” IEEE Transactions on Neural
Networks and Learning Systems, 2020.

[54] M. Ferianc, P. Maji, M. Mattina, and M. Rodrigues, “On the effects of
quantisation on model uncertainty in bayesian neural networks,” arXiv
preprint arXiv:2102.11062, 2021.

[55] S. Liu, H. Fan, X. Niu, H.-c. Ng, Y. Chu, and W. Luk, “Optimizing CNN-
based segmentation with deeply customized convolutional and deconvo-
lutional architectures on FPGA,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 11, no. 3, pp. 1–22, 2018.

[56] R. Andraka and R. Phelps, “An FPGA based processor yields a real time
high fidelity radar environment simulator,” in Proceedings of the Military
and Aerospace Applications of Programmable Devices and Technologies
Conference, 1998, pp. 220–224.

[57] G. Habib and S. Qureshi, “Optimization and acceleration of convolu-
tional neural networks: A survey,” Journal of King Saud University-
Computer and Information Sciences, 2020.

[58] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artificial
Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[60] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[61] J. Rock, T. Azevedo, R. de Jong, D. Ruiz-Muñoz, and P. Maji, “On
efficient uncertainty estimation for resource-constrained mobile applica-
tions,” arXiv preprint arXiv:2111.09838, 2021.

[62] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” arXiv preprint arXiv:1706.04599, 2017.

[63] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in Proceedings of the 2011 NeurIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011. [Online]. Available:
http://ufldl.stanford.edu/housenumbers/nips2011 housenumbers.pdf

[64] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

[65] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[66] K. Soomro and A. R. Zamir, “Action recognition in realistic sports
videos,” in Computer vision in sports. Springer, 2014, pp. 181–208.

[67] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” Proceedings of
the 2019 Advances in neural information processing systems (NeurIPS),
vol. 32, pp. 8026–8037, 2019.

Hongxiang Fan received the B.S. degree in elec-
tronic engineering from Tianjin University, Tianjin,
China, in 2017, and the master’s degree from the
Department of Computing, Imperial College Lon-
don, London, U.K., in 2018. He is currently a Ph.D.
student in Machine Learning and High-Performance
Computing at Imperial College London. His current
research focuses on efficient algorithm and acceler-
ation for Machine Learning applications.

Martin Ferianc is a PhD candidate in the Depart-
ment of Electronic and Electrical Engineering at
University College London. His research interests
include Neural architecture search, Bayesian neural
network, Deep Learning and Hardware acceleration
of neural networks. Martin has obtained an MEng
in Electronic and Information Engineering from Im-
perial College London.

Zhiqiang Que is a research assistant pursuing his
Ph.D. degree in the department of Computing, Im-
perial College London, UK. He received his B.S in
Microelectronics and M.S in CS from Shanghai Jiao
Tong University in 2008 and 2011 respectively. From
2011 to 2016, he worked on microachitecture design
and verification of ARM CPUs with the Marvell
semiconductor Ltd., Shanghai. His research inter-
ests include computer architectures, embedded sys-
tems, high-performance computing and computer-
aided design tools for hardware design optimization.

Shuanglong Liu received the B.Sc. and M.Sc. de-
grees from the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China, in 2010
and 2013 respectively, and Ph.D. degree in Electric
Engineering from Imperial College London, London,
U.K, in 2017. From 2017 to 2020, he was a Research
Associate with the Department of Computing, Impe-
rial College London. He is currently a Distinguished
Professor in the School of Physics and Electronics,
Hunan Normal University, Changsha, China.

Xinyu Niu is the Co-Founder and CEO of Cor-
erain Technologies in Shenzhen, China. He received
the B.Sc. Degree from Fudan University, Shang-
hai, China, and the M.Sc. and Ph.D. degrees in
computing science from Imperial College London,
London, U.K. His current research interests include
developing applications and tools for reconfigurable
computing that involves runtime reconfiguration.

Miguel R. D. Rodrigues (Senior Member, IEEE)
received the Licenciatura degree in electrical and
computer engineering from the University of Porto,
Porto, Portugal, and the Ph.D. degree in electronic
and electrical engineering from the University Col-
lege London (UCL), London, U.K. He is currently
a Professor of Information Theory and Processing,
UCL, and a Turing Fellow with the Alan Turing
Institute - the UK National Institute of Data Science
and Artificial Intelligence. His research lies in the
general areas of information theory, information pro-

cessing, and machine learning. He is a member of the IEEE Signal Processing
Society Technical Committee on “Signal Processing Theory and Methods”,
and the EURASIP SAT on Signal and Data Analytics for Machine Learning.

Wayne Luk (Fellow, IEEE) received the M.A.,
M.Sc., and D.Phil. degrees in engineering and com-
puting science from Oxford University, Oxford, U.K.
He founded and leads the Custom Computing Group,
Department of Computing at Imperial College Lon-
don, where he is Professor of Computer Engineering.
He was a Visiting Professor at Stanford University,
Stanford, CA, USA. Dr. Luk is a Fellow of the
Royal Academy of Engineering and the BCS. He had
15 papers that received awards from international
conferences, and he received a Research Excellence

Award from Imperial College London. He was a founding Editor-in-Chief of
the ACM Transactions on Reconfigurable Technology and Systems, and has
been a member of the Steering Committee and Program Committee of various
international conferences.

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

	Introduction
	Background
	2D and 3D Convolutional neural networks
	Bayesian Convolutional Neural Networks
	Monte Carlo Dropout (MCD)
	Partial Bayesian Inference

	Related Work
	FPGA-based CNN Accelerator
	Acceleration for BayesCNNs

	Hardware Development
	Hardware Design
	Design Overview
	Neural Network Engine (NNE)
	Bernoulli Sampler
	Smart Buffers

	Mapping 2D and 3D Operations
	2D and 3D Convolution
	2D and 3D Shortcut Addition
	Other Operations

	Hardware Optimization
	Overlapping Sampling with Convolution
	Intermediate-layer Caching

	Optimization Framework
	Workflow of Framework
	Resource Model

	Experiments
	Experimental Setup
	Effectiveness of Framework
	Unconstrained Exploration
	 Constrained Exploration

	Performance Comparison against CPU and GPU Implementations
	Performance Comparison with Existing Work

	Conclusion and Future Work
	References
	Biographies
	Hongxiang Fan
	Martin Ferianc
	Zhiqiang Que
	Shuanglong Liu
	Xinyu Niu
	Miguel R. D. Rodrigues
	Wayne Luk

