
340 Chapter 5 The Processor: Datapath and Control

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of con-
trol is implementing exceptions and interrupts—events other than branches or
jumps that change the normal flow of instruction execution. An exception is an
unexpected event from within the processor; arithmetic overflow is an example of
an exception. An interrupt is an event that also causes an unexpected change in
control flow but comes from outside of the processor. Interrupts are used by I/O
devices to communicate with the processor, as we will see in Chapter 8.

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
We follow the MIPS convention, using the term exception to refer to any unex-
pected change in control flow without distinguishing whether the cause is internal

5.6 Exceptions 5.6

exception Also called inter-
rupt. An unscheduled event that
disrupts program execution;
used to detect overflow.

interrupt An exception that
comes from outside of the pro-
cessor. (Some architectures
use the term interrupt for all
exceptions.)

5.6 Exceptions 341

or external; we use the term interrupt only when the event is externally caused.
The Intel IA-32 architecture uses the word interrupt for all these events.

Interrupts were initially created to handle unexpected events like arithmetic
overflow and to signal requests for service from I/O devices. The same basic
mechanism was extended to handle internally generated exceptions as well. Here
are some examples showing whether the situation is generated internally by the
processor or externally generated:

Many of the requirements to support exceptions come from the specific situa-
tion that causes an exception to occur. Accordingly, we will return to this topic in
Chapter 7, when we discuss memory hierarchies, and in Chapter 8, when we dis-
cuss I/O, and we better understand the motivation for additional capabilities in
the exception mechanism. In this section, we deal with the control implementa-
tion for detecting two types of exceptions that arise from the portions of the
instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often on the
critical timing path of a machine, which determines the clock cycle time and thus
performance. Without proper attention to exceptions during design of the control
unit, attempts to add exceptions to a complicated implementation can significantly
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. The basic
action that the machine must perform when an exception occurs is to save the
address of the offending instruction in the exception program counter (EPC) and
then transfer control to the operating system at some specified address.

The operating system can then take the appropriate action, which may
involve providing some service to the user program, taking some predefined
action in response to an overflow, or stopping the execution of the program
and reporting an error. After performing whatever action is required because
of the exception, the operating system can terminate the program or may con-
tinue its execution, using the EPC to determine where to restart the execution

Type of event From where? MIPS terminology

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

342 Chapter 5 The Processor: Datapath and Control

of the program. In Chapter 7, we will look more closely at the issue of restart-
ing the execution.

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main
methods used to communicate the reason for an exception. The method used in
the MIPS architecture is to include a status register (called the Cause register),
which holds a field that indicates the reason for the exception.

A second method is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the excep-
tion. For example, to accommodate the two exception types listed above, we
might define the following two exception vector addresses:

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or 8 instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause.

We can perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementation and by slightly extend-
ing the finite state machine. Let’s assume that we are implementing the exception
system used in the MIPS architecture. (Implementing vectored exceptions is no
more difficult.) We will need to add two additional registers to the datapath:

■ EPC: A 32-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

■ Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently unused.
Assume that the low-order bit of this register encodes the two possible
exception sources mentioned above: undefined instruction = 0 and arith-
metic overflow = 1.

We will need to add two control signals to cause the EPC and Cause registers to be
written; call these EPCWrite and CauseWrite. In addition, we will need a 1-bit
control signal to set the low-order bit of the Cause register appropriately; call this
signal IntCause. Finally, we will need to be able to write the exception address,
which is the operating system entry point for exception handling, into the PC; in

Exception type Exception vector address (in hex)

Undefined instruction C000 0000hex

Arithmetic overflow C000 0020hex

vectored interrupt An inter-
rupt for which the address to
which control is transferred is
determined by the cause of the
exception.

5.6 Exceptions 343

the MIPS architecture, this address is 8000 0180hex. (The SPIM simulator for
MIPS uses 8000 0080 hex.) Currently, the PC is fed from the output of a three-way
multiplexor, which is controlled by the signal PCSource (see Figure 5.28 on page
323). We can change this to a four-way multiplexor, with additional input wired to
the constant value 8000 0180hex. Then PCSource can be set to 11two to select this
value to be written into the PC.

Because the PC is incremented during the first cycle of every instruction, we
cannot just write the value of the PC into the EPC, since the value in the PC will
be the instruction address plus 4. However, we can use the ALU to subtract 4 from
the PC and write the output into the EPC. This requires no additional control sig-
nals or paths, since we can use the ALU to subtract, and the constant 4 is already a
selectable ALU input. The data write port of the EPC, therefore, is connected to
the ALU output. Figure 5.39 shows the multicycle datapath with these additions
needed for implementing exceptions.

Using the datapath of Figure 5.39, the action to be taken for each different type
of exception can be handled in one state apiece. In each case, the state sets the
Cause register, computes and saves the original PC into the EPC, and writes the
exception address into the PC. Thus, to handle the two exception types we are
considering, we will need to add only the two states, but before we add them we
must determine how to check for exceptions, since these checks will control the
arcs to the new states.

How Control Checks for Exceptions

Now we have to design a method to detect these exceptions and to transfer control
to the appropriate state in the exception states. Figure 5.40 shows the two new
states (10 and 11) as well as their connection to the rest of the finite state control.
Each of the two possible exceptions is detected differently:

■ Undefined instruction: This is detected when no next state is defined from
state 1 for the op value. We handle this exception by defining the next-state
value for all op values other than lw, sw, 0 (R-type), j, and beq as state 10.
We show this by symbolically using other to indicate that the op field does
not match any of the opcodes that label arcs out of state 1 to the new state
10, which is used for this exception.

■ Arithmetic overflow: The ALU, designed in Appendix B, included logic to
detect overflow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finite state machine to specify an
additional possible next state (state 11) for state 7, as shown in Figure 5.40.

344 Chapter 5 The Processor: Datapath and Control

Figure 5.40 represents a complete specification of the control for this MIPS
subset with two types of exceptions. Remember that the challenge in designing the
control of a real machine is to handle the variety of different interactions between
instructions and other exception-causing events in such a way that the control
logic remains both small and fast. The complex interactions that are possible are
what make the control unit the most challenging aspect of hardware design.

FIGURE 5.39 The multicycle datapath with the addition needed to implement exceptions. The specific additions include the Cause
and EPC registers, a multiplexor to control the value sent to the Cause register, an expansion of the multiplexor controlling the value written into the
PC, and control lines for the added multiplexor and registers. For simplicity, this figure does not show the ALU overflow signal, which would need to
be stored in a one-bit register and delivered as an additional input to the control unit (see Figure 5.40 to see how it is used).

Read
register 1

Read
register 2

Write
register

Write
data

Registers
ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

M
u
x

0

1

2

3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

CauseWrite

IntCause

EPCWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU

control

PC [31–28]

Instruction [25–0]

Instruction [5–0]

Jump
address
[31–0]

EPC

Cause

8000 0180

0

1

5.6 Exceptions 345

FIGURE 5.40 This shows the finite state machine with the additions to handle exception detection. States 10 and 11 are the new
states that generate the appropriate control for exceptions. The branch out of state 1 labeled (Op = other) indicates the next state when the input does
not match the opcode of any of lw, sw, 0 (R-type), j, or beq. The branch out of state 7 labeled Overflow indicates the action to be taken when the
ALU signals an overflow.

MemRead
ALUSrcA = 0
IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00
PCWrite

PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

Instruction decode/
register fetch

Instruction fetch

0 1

Start

(O
p =
 'L
W
') o
r (
Op
 =
'SW

')
(O
p
=
R
-ty
pe
)

(O
p
 =
 'B
E
Q
')

(O
p
 =
 'J
')

Jump
completion

9862

3

4

5 7

Write-back step

R-type completion

Memory
access

Memory
access

Execution
Branch

completion
Memory address
computation

(O
p = 'S

W
')

(O
p
 =
 'L
W
')

IntCause = 1
CauseWrite
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01
EPCWrite
PCWrite

PCSource = 11

IntCause = 0
CauseWrite
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01
EPCWrite
PCWrite

PCSource = 11

Overflow

Overflow

11 10

(O
p =
 other)

