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Abstract

This paper describes the implementation of a functional
programming language interpreter. The interpreter is writ-
ten in Forth and runs on any Forth system, including a
novel processor called the Scalable Configurable Instru-
ment Processor (SCIP), designed at the Johns Hopkins Ap-
plied Physics Laboratory. The combination of this novel
processor, Forth, and functional programming provides a
layering of simple technologies that yields a unique pro-
gramming and execution environment. The SCIP processor
also has a clear transition path to use in space-borne appli-
cations.

1. Overview

1.1. Motivation

The goal of this work is to provide an ability for embed-
ded flight software applications to execute small functional
programs in a programming language similar to Haskell [4].
However, large general purpose functional programming
language systems like Haskell provide many features that
aren’t accessible to space qualified processing environments
that generally provide only limited resources and typically
run a real time operating system such as VxWorks. We illus-
trate a demonstrative evaluator that enables the evaluation
of small functional programs within a constrained embed-
ded environment.

The motivation for looking specifically at a functional
programming language is threefold. First, as will be dis-
cussed briefly in section 1.4, functional programs have a
mathematical style to them, which can increase the abil-
ity to reason and prove things about the behavior of pro-
grams. Secondly, because of this style, functional program-
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Figure 1. Software and Hardware Layering

ming languages are expressive, meaning more functionality
can be expressed in fewer lines of code. Many details are
abstracted away from the application programmer. Lastly,
functional programming languages like Haskell are stati-
cally typed. Programs can be guaranteed to be type-safe at
compile time. This is at odds with many current interpreted
languages.

The ability to interpret functional programs within a
spacecraft would enable execution of dynamically upload-
able maintenance and autonomy procedures without requir-
ing an entire flight software upload. On-board procedure
execution would also help to alleviate the burden of long
round trip light times or missions that are out of Earth con-
tact for long periods of time. For example many open loop
operations requiring contact with mission operators could
become closed loop operations by encoding the requisite
verification procedure as an on-board script.

Figure 1 illustrates the general architecture of the work
described in this paper.

1.2. SCIP – A Stack Based Processor

Computer systems designed for space flight require a
radiation-hardened processor that provides reasonable per-
formance with minimal power consumption. The number of
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processors that meet these requirements is small and dimin-
ishing. Given the increasing capability of rad-hard Field-
Programmable Gate Arrays (FPGAs) and the maturity of
hardware synthesis tools, we decided to develop our own
processor: the SCIP.

The SCIP [2] is a stack processor. Stack processors allow
efficient instruction encoding. The majority of SCIP’s in-
struction opcodes are 16 bits, and this instruction encoding
keeps program volume small for instrument applications.
Stack processors are also good targets for simple compil-
ers. SCIP’s data path is scalable: 16-bit or 32-bit versions
of SCIP can be instantiated. The processor is easily config-
ured with mission-specific peripherals.

SCIP’s instruction set is designed to efficiently imple-
ment Forth [1]. Forth programs typically define many short
functions, and consequently, function call and return are the
most frequently executed language primitives. SCIP exe-
cutes a call in one cycle and most returns take zero cycles.
Also, SCIP uses stack caches to provide the program with
the illusion of arbitrarily large on-chip stacks. Access to the
stack is as fast as a register access.

1.3. Forth Programming

Forth was designed as an embedded systems language,
so techniques required by embedded systems programmers
are readily available in Forth. It is straightforward to access
memory by address, so shared and I/O mapped memory ar-
eas are easily accessible. Forth can be extended to provide
support for concurrent programming with tasks, mutual ex-
clusion semaphores, and event timers.

When programming in Forth, functions are defined start-
ing with the function definition operator “:”. This operator
is followed by the name of the function to be defined, the
list of Forth instructions comprising the function, and by
the end of function marker “;”. For example, one possible
definition of a function that expects a number on the stack
and returns the product of the number multiplied by itself
could be written:

: square
dup *

;

This function, called square duplicates the top element
of the data stack using the Forth dup instruction and then
multiplies the top two stack elements with the multiplica-
tion operator *. Forth is postfix, so the square function
defined above would be used in the following way:

9 square .
81 ok

The operator “.” used above simply pops and prints the
value at the top of the data stack (in this case, 81). The

symbol ok is returned from the Forth interpreter to signify
it is ready to accept more input.

1.4. Functional Programming

Functional programming gets its name from the inclina-
tion to treat functions as first class objects. A first class ob-
ject is one that can be generated programmatically. The C
language doesn’t treat functions as first class objects, be-
cause the C language doesn’t support generation of new
functions at run-time. In a functional programming lan-
guage, function applications are created in the heap and
are garbage-collected when no longer needed, just like any
other program construct. While this may seem at first to be
an esoteric feature, it is pervasive in a functional program-
ming environment.

A functional program is a set of definitions of functions.
In general there is a special definition called main that rep-
resents the first function application evaluated in the pro-
gram. For example, a simple functional program (that eval-
uates to 3) contains definitions for the identity function I
and main:

I x = x;
main = I 3

Since each definition closely resembles a mathematical
statement of equality, it is said that functional programming
is declarative – a program resembles a specification more
than a step by step algorithmic procedure. This likeness
of functional programs to specifications carries benefits in
reasoning about the correctness of programs.

2 Approach

Note that the simple functional program described in
Section 1.4 looks nothing like Forth. This paper illustrates
several of the key steps by which functional programs can
be transformed for execution on Forth-based systems. The
particular execution model discussed is an interpreter that
interprets instructions for an abstract machine called the G-
Machine [7].

Functional programs are compiled to a sequence of G-
Machine instructions. Compilation permits some details to
be moved from execution time to compile time, resulting in
better execution time performance.

Using the approach described in [7], the execution of a
functional program can be considered a four step transfor-
mation:

1. Develop the program in a high level functional pro-
gramming language.
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2. Transform this high level functional program into a
simpler restricted functional programming language
called the Core Language, henceforth called Core.
Syntactic sugar provided by the high level functional
language is removed, and type-checking is done dur-
ing this step.

3. Transform the Core program into a sequence of G-
Machine instructions. Apply any suitable optimizing
transformations.

4. Load and execute the G-Machine instruction sequence
on a G-Machine based run-time system.

This section will briefly discuss one important aspect of
step 2: how the Core language supports pattern matching –
a useful feature of high level functional programming lan-
guages. Then, the bulk of the discussion will focus on steps
3 and 4, including a description of the components of the G-
Machine state machine, a simple example of the state ma-
chine in operation with the Mkap instruction, and a discus-
sion of a few of the important data structures useful during
compilation of text-based Core programs.

2.1. Pattern Matching

Modern functional programming languages support a
concept called pattern matching. For example, the standard
definition of the len function, which computes the length
of an arbitrary list is:

len [] = 0
len (x:xs) = 1 + (len xs)

(1)

The first line of Equation 1 represents the definition of
len used when the list passed as an argument is the empty
list (denoted by []). The second line represents the defi-
nition used when the argument is not the empty list. The
notation (x:xs) binds x to the first element of the list,
and binds xs to the remainder of the list. The first and sec-
ond lines are definitions of the len function with different
argument patterns. When the function is called with a spe-
cific argument, the proper definition is invoked based on the
structure of the argument. This is called pattern matching.

Figure 2 illustrates a canonical list, a list containing the
elements 1, 2, and 3. Lists are constructed out of two struc-
tural elements, called constructors: cons and nil. The G-
Machine supports constructors by providing a G-Machine
instruction called Pack (listed in Figure 3) that supports
the definition of data structures. As such, cons and nil
can be defined:

cons head tail = Pack{2,2} head tail;
nil = Pack{1,0};

(2)

cons

cons

cons

1

2

3
nil

(head) (tail)

Figure 2. Structure of a List

The expression Pack{x, y} contains enough informa-
tion about the data structure to describe it. The x value is
a tag: a unique number that is used to differentiate each
constructor from all others. The y value is the arity of the
constructor, or the number of associated arguments to the
constructor. For example cons has arity two, while nil
has arity zero. These are in accordance with Figure 2, where
each cons node contains two additional pointers: a “head”
pointer followed by a “tail” pointer. The nil node contains
no additional pointers.

Once the constructors are defined, they may be used as
targets of pattern matching. Pattern matching is supported
using a Core language construct called case. In general,
case is used as such:

f z = case z of
<tag1> bindings1 -> expr1

<tag2> bindings2 -> expr2
...
<tagn> bindingsn -> exprn

(3)

For example, the len function from Equation 1 can be
written in the Core language in the following way:

len list = case list of
<1> -> 0,
<2> x xs -> 1 + (len xs);

(4)
The first possibility, containing <1> as the target tag

matches the nil constructor defined with a tag of 1 in
Equation 2. The second possibility, <2>, matches the cons
constructor. Note cons requires two arguments, as speci-
fied by its arity from Equation 2. Both cons arguments are
bound to names in the bindings2 section, and (only) one of
them is used in the target expression expr2.

Based on this method, the Core language supports pat-
tern matching, a useful feature of functional programming
languages.

2.2. G-Machine State

The G-Machine is a state machine. The state of the G-
Machine is a 6-tuple containing the following elements:
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Unwind Pushglobal Pushint
Push Mkap Update
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Figure 3. G-Machine Instructions

• i – The current instruction stream. Contains the G-
Machine instructions to be executed.

• s – A stack of heap addresses. This stack is operated on
by many of the G-Machine instructions listed in Fig-
ure 3. This stack is called the s-stack.

• d – The current dump stack. Used to store the current
machine state when an Eval instruction is executed.
When the dump stack is empty, the evaluation is com-
plete.

• v – Allows primitive arithmetic operations to not re-
quire heap allocated operands. The use of the v-stack
is an optimization to the standard G-Machine. In this
implementation the Forth data stack serves as the v-
stack.

• h – The contents of the heap.

• m – The set of predefined function definitions. These
are the source for i, the instruction stream.

2.3. Run-time System

Each G-Machine instruction in Figure 3 interacts with
the G-Machine state in a prescribed way. For example,
the Mkap instruction is used to make a function application
from the top two heap addresses in the s-stack. The Mkap
instruction is typically used in a sequence of G-Machine in-
structions as follows:

[Pushint 3, Pushglobal I, Mkap, ...]
(5)

The above set of G-Machine instructions pushes the
number 3 and the definition of I onto the s-stack, makes
a function application applying I to 3 in the heap, pushes
this heap address onto the s-stack, and then execution con-
tinues with subsequent instructions. Figure 4 is a graphi-
cal illustration of the s-stack during these operations. Since

Mkap only supports applying a function to a single argu-
ment, functions that take multiple arguments are supported
via currying [6].

To more formally describe the operation of the Mkap in-
struction, a state transition definition is shown, using nota-
tion identical to that used in [7]. The first line illustrates the
state of the machine before the instruction, and the second
line illustrates the state after execution:

Mkap : i s1 : s2 : s d v h m
i h1 : s d v NAp s1 s2

︸ ︷︷ ︸

h1

: h m (6)

The Forth implementation is shown below. The two calls
to Forth function sStackPop pop the top two values from
the s-stack. The hAlloc function is used to allocate a new
heap node, in this case a node of type NAp (illustrated in
Figure 5). hAlloc returns the heap address of the newly
allocated element. This heap address is pushed onto the s-
stack using sStackPush:

: domkap
sStackPop
sStackPop
NAp
hAlloc
sStackPush

;

Note the above Forth code and Equation 6 are equivalent.

2.4. Core To G-Machine Instructions

Step 3 from the list defined in Section 2 transforms, or
compiles, the Core program into a sequence of G-Machine
instructions. The Core to G-Machine instruction compiler
has been implemented in the Haskell programming lan-
guage [9], due to its support of many useful libraries, in-
cluding a powerful parsing library called Parsec.

The first step of the transformation from Core to G-
Machine instructions involves transforming the text based
Core program into an internal representation that is suit-
able for algorithmic manipulation. Closely mirroring the
text based structure, the internal representation is a list of
definitions:

type CoreProgram = [ ScDefn Name ]

Each definition is a 3-tuple, consisting of a name, a list
of named arguments, and an expression:

type ScDefn Name =
( Name, [Name], Expr Name )
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Figure 4. The Mkap Instruction

The Expr Name component of the above definition
can represent an arbitrary expression: a variable (EVar),
a function application (EAp), or any of the possibilities
specified in the Expr data type below (again specified in
Haskell):

data Expr a
= EVar Name -- Variables
| ENum Int -- Numbers
| EConstr Int Int -- Constr, Tag, Arity
| EAp (Expr a) (Expr a) -- Application
| ELet -- Let Expression

IsRec -- Boolean, True = letrec
[(a, Expr a)] -- Definitions
(Expr a) -- Body of let(rec)

| ECase -- Case Expressions
(Expr a) -- Predicate
[Alter a] -- Alternatives

As an example, the following Core program:

I x = x;
main = I 3

is converted into the following internal representation:

[("I",["x"],EVar "x"),
("main",[],EAp (EVar "I") (ENum 3))]

This internal representation is subsequently converted
into a series of G-Machine instructions in preparation for
execution on the G-Machine run-time system. The defini-
tion of main:

("main",[],EAp (EVar "I") (ENum 3))

is compiled into the set of instructions illustrated in Sec-
tion 2.3, equation 5.

3 Heap Management

The heap is largely independent of the G-Machine run-
time system. While several instructions from Figure 3 use
the hAlloc Forth function to request heap space for a new
heap node, the run-time system leaves most heap node man-
agement to the garbage collector. The garbage collector is a
separate function, also written in Forth.

heap
node

heap
node

NAp

NNum val

num
vars

global
heap
node

NGlobal

num
addrs

heap
node

heap
node

heap
node

...tagNConstr

(fun) (arg)

(unused)

Figure 5. Heap Node Structures

3.1. Heap Structure

There are four types of heap nodes, each illustrated
in Figure 5. NConstr nodes provide support for data
types. Since user defined data structures can be arbitrary,
NConstr nodes must support the aggregation of a vari-
able number of heap addresses. This complicates garbage
collection, but eliminates the need to chain multiple fixed
sized heap nodes together to simulate variable sized nodes.
NAp nodes contain function applications. The function to
be applied is in the left node and its argument is in the right
node. NNum nodes hold heap allocated numbers, required
when the compiler can’t deduce the ability to use the v-stack
optimization.
NGlobal nodes point to predefined function definitions

which are stored in the global heap. The global heap is a
section of the heap that is not garbage collected, because
it holds the G-Machine instruction sequences. The global
heap can be considered the “text segment” of the applica-
tion. To keep track of the contents of the global heap, a
mapping is provided that maps the names of each of the pre-
defined function definitions to heap addresses of associated
NGlobal nodes (described in Figure 5). The non-dotted-
line portion of Figure 6 shows the mapping structure. This
mapping is used by the Pushglobal G-Machine instruc-
tion from Figure 3 in order to push the heap address of the
requested function definition’s NGlobal heap node onto
the s-stack.

3.2. Garbage Collector

In order to run larger programs, it is useful to imple-
ment a garbage collector that reclaims heap memory dis-
carded as the program executes. A two space stop and copy
garbage collector is attractive for several reasons. For one,
it compacts the heap at each collection, avoiding memory
fragmentation issues. Stop and copy is also immune to the
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Figure 6. Step 1 of Garbage Collection

problem of unfreeable mutually referential cycles plaguing
many implementations that rely on reference counting. Last
but not least, stop and copy is relatively easy to implement.

The goal of the collector is to move all relevant nodes in
the active heap over to the inactive heap. Then the inactive
heap is made the new active heap, and evaluation continues.
A general description of the process of garbage collection
is discussed below:

1. The mapping of predefined function definitions to heap
addresses is moved first – each heap element in the
mapping is moved to the inactive heap. (note the ele-
ment in the global heap is not touched). This activity
is shown through dotted lines and arrows in Figure 6.

2. Next, each heap address in the s-stack is visited and
each node is moved to the inactive heap.

3. The inactive heap is scanned, and all nodes that are
reachable that still reside in the active heap are brought
over to the inactive heap.

4. Finally, the inactive heap becomes the active heap. At
this point, the new active heap has no references to the
old heap, as all reachable elements have been brought
over. In addition, the newly active heap has been com-
pacted.

Since the garbage collector is independent of the G-
Machine run-time system, the current stop and copy col-
lector could be replaced with any of a variety of different
collectors that have different performance characteristics.

4. Results

One may develop simple functional programs and down-
load and execute them on Forth based embedded platforms.
A more substantial example than that described in Sec-
tion 1.4 is shown below. Note the map function is not de-
fined for brevity but assumes its standard definition of ap-
plying a function to a list, similar to its definition in other
functional programming languages.

double x = x + x;
downfrom n = if (n == 0)

nil
(cons n (downfrom (n-1)));

main = map double (downfrom 4)

The result of execution of main in the above example
results in the list [8,6,4,2]. The execution of this pro-
gram consumes, as of this writing, 888 bytes of heap, with
the result occupying 264 bytes of heap. This implies 624
bytes of garbage were generated.

The performance characteristics of this specific imple-
mentation are not the primary result of this work. The sig-
nificant result is that the ability to develop a working in-
terpreter for functional programs is within the grasp of a
typical embedded software developer: this implementation
was built in approximately 2 staff months.

Note the expressiveness of the above 5 line program.
The program involves the construction and iteration over
a linked list data structure – a set of operations that would
take at least an order of magnitude more lines of code if it
were written in C.

5. Related Work

There are other ways to evaluate functional programs.
There are closure-reducers such as the TIM machine [7],
and specialized reducers such as the TIGRE machine [5]
that treats the program graph itself as an executable pro-
gram and executes the graph itself to perform the reduction.
Indeed there is a Forth implementation of the TIGRE eval-
uator. We opted to perform our work using the standard
G-Machine because it is well documented and well under-
stood. Haskell, a modern functional programming language
uses a variant of the G-Machine model, called an STG-
Machine, or spineless, tagless G-Machine [8].
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6. Future Work

Ideally, programs aren’t written directly in the Core lan-
guage, the language which is the focus of this paper. Pro-
grams are instead written in a high level language and sub-
sequently compiled to Core. Access to a high level language
would provide more familiarity and features than program-
ming directly in the Core language. This would be a useful
future addition.

Adding a compile-time type checker would increase the
robustness of programs by allowing type discrepancies to
be detected before execution.

Adding support for stateful computations using monads
or arrows [3] would provide the ability to write programs
that require a method to preserve the result of a computation
and allow this result to be carried between computations.

7. Conclusion

We don’t intend for an evaluator of this type to be used
for time critical real-time software such as an interface to a
MIL-STD-1553-B bus, or attitude control software. How-
ever, there are many areas of flight software that are not time
critical that would benefit from having access to an evalua-
tor capable of evaluating small functional programs.

A Core language to G-Machine instruction compiler and
a G-Machine run time system have been built. This has
been done in a reasonable amount of time and is within the
reach of a typical embedded software developer. The com-
piler, discussed briefly in Section 2.4, is written in Haskell.
The G-Machine run time system, described in Section 2.3,
is written in Forth and can run on a variety of implemen-
tations of Forth, including one developed for a novel stack
processor developed at JHU/APL.
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