
Reconfigurable Computing: A Survey of Systems and Software

KATHERINE COMPTON

Northwestern University

AND

SCOTT HAUCK

University of Washington

Due to its potential to greatly accelerate a wide variety of applications, reconfigurable
computing has become a subject of a great deal of research. Its key feature is the ability
to perform computations in hardware to increase performance, while retaining much of
the flexibility of a software solution. In this survey, we explore the hardware aspects of
reconfigurable computing machines, from single chip architectures to multi-chip
systems, including internal structures and external coupling. We also focus on the
software that targets these machines, such as compilation tools that map high-level
algorithms directly to the reconfigurable substrate. Finally, we consider the issues
involved in run-time reconfigurable systems, which reuse the configurable hardware
during program execution.

Categories and Subject Descriptors: A.1 [Introductory and Survey]; B.6.1 [Logic
Design]: Design Style—logic arrays; B.6.3 [Logic Design]: Design Aids; B.7.1
[Integrated Circuits]: Types and Design Styles—gate arrays

General Terms: Design, Performance

Additional Key Words and Phrases: Automatic design, field-programmable, FPGA,
manual design, reconfigurable architectures, reconfigurable computing, reconfigurable
systems

1. INTRODUCTION

There are two primary methods in con-
ventional computing for the execution

This research was supported in part by Motorola, Inc., DARPA, and NSF.

K. Compton was supported by an NSF fellowship.

S. Hauck was supported in part by an NSF CAREER award and a Sloan Research Fellowship.

Authors’ addresses: K. Compton, Department of Electrical and Computer Engineering, Northwestern Uni-
versity, 2145 Sheridan Road, Evanston, IL 60208-3118; e-mail: kati@ece.northwestern.edu; S. Hauck, De-
partment of Electrical Engineering, The University of Washington, Box 352500, Seattle, WA 98195; e-mail:
hauck@ee.washington.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any compo-
nent of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c©2002 ACM 0360-0300/02/0600-0171 $5.00

of algorithms. The first is to use hard-
wired technology, either an Application
Specific Integrated Circuit (ASIC) or a
group of individual components forming a

ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp. 171–210.

172 K. Compton and S. Hauck

board-level solution, to perform the oper-
ations in hardware. ASICs are designed
specifically to perform a given computa-
tion, and thus they are very fast and
efficient when executing the exact com-
putation for which they were designed.
However, the circuit cannot be altered af-
ter fabrication. This forces a redesign and
refabrication of the chip if any part of its
circuit requires modification. This is an ex-
pensive process, especially when one con-
siders the difficulties in replacing ASICs
in a large number of deployed systems.
Board-level circuits are also somewhat in-
flexible, frequently requiring a board re-
design and replacement in the event of
changes to the application.

The second method is to use soft-
ware-programmed microprocessors—a far
more flexible solution. Processors execute
a set of instructions to perform a compu-
tation. By changing the software instruc-
tions, the functionality of the system is
altered without changing the hardware.
However, the downside of this flexibility
is that the performance can suffer, if not
in clock speed then in work rate, and is
far below that of an ASIC. The processor
must read each instruction from memory,
decode its meaning, and only then exe-
cute it. This results in a high execution
overhead for each individual operation.
Additionally, the set of instructions that
may be used by a program is determined
at the fabrication time of the processor.
Any other operations that are to be im-
plemented must be built out of existing
instructions.

Reconfigurable computing is intended to
fill the gap between hardware and soft-
ware, achieving potentially much higher
performance than software, while main-
taining a higher level of flexibility than
hardware. Reconfigurable devices, in-
cluding field-programmable gate arrays
(FPGAs), contain an array of computa-
tional elements whose functionality is de-
termined through multiple programmable
configuration bits. These elements, some-
times known as logic blocks, are connected
using a set of routing resources that are
also programmable. In this way, custom
digital circuits can be mapped to the recon-

figurable hardware by computing the logic
functions of the circuit within the logic
blocks, and using the configurable routing
to connect the blocks together to form the
necessary circuit.

FPGAs and reconfigurable computing
have been shown to accelerate a variety of
applications. Data encryption, for exam-
ple, is able to leverage both parallelism
and fine-grained data manipulation. An
implementation of the Serpent Block
Cipher in the Xilinx Virtex XCV1000
shows a throughput increase by a factor
of over 18 compared to a Pentium Pro
PC running at 200 MHz [Elbirt and Paar
2000]. Additionally, a reconfigurable com-
puting implementation of sieving for fac-
toring large numbers (useful in breaking
encryption schemes) was accelerated by a
factor of 28 over a 200-MHz UltraSparc
workstation [Kim and Mangione-Smith
2000]. The Garp architecture shows a
comparable speed-up for DES [Hauser
and Wawrzynek 1997], as does an
FPGA implementation of an elliptic curve
cryptography application [Leung et al.
2000].

Other recent applications that have
been shown to exhibit significant speed-
ups using reconfigurable hardware
include: automatic target recognition
[Rencher and Hutchings 1997], string pat-
tern matching [Weinhardt and Luk 1999],
Golomb Ruler Derivation [Dollas et al.
1998; Sotiriades et al. 2000], transitive
closure of dynamic graphs [Huelsbergen
2000], Boolean satisfiability [Zhong et al.
1998], data compression [Huang et al.
2000], and genetic algorithms for the tra-
velling salesman problem [Graham and
Nelson 1996].

In order to achieve these performance
benefits, yet support a wide range of appli-
cations, reconfigurable systems are usu-
ally formed with a combination of re-
configurable logic and a general-purpose
microprocessor. The processor performs
the operations that cannot be done effi-
ciently in the reconfigurable logic, such
as data-dependent control and possibly
memory accesses, while the computational
cores are mapped to the reconfigurable
hardware. This reconfigurable logic can be

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 173

composed of either commercial FPGAs or
custom configurable hardware.

Compilation environments for reconfig-
urable hardware range from tools to assist
a programmer in performing a hand map-
ping of a circuit to the hardware, to com-
plete automated systems that take a cir-
cuit description in a high-level language
to a configuration for a reconfigurable sys-
tem. The design process involves first par-
titioning a program into sections to be im-
plemented on hardware, and those which
are to be implemented in software on the
host processor. The computations destined
for the reconfigurable hardware are syn-
thesized into a gate level or register trans-
fer level circuit description. This circuit is
mapped onto the logic blocks within the re-
configurable hardware during the technol-
ogy mapping phase. These mapped blocks
are then placed into the specific physi-
cal blocks within the hardware, and the
pieces of the circuit are connected using
the reconfigurable routing. After compi-
lation, the circuit is ready for configura-
tion onto the hardware at run-time. These
steps, when performed using an automatic
compilation system, require very little ef-
fort on the part of the programmer to
utilize the reconfigurable hardware. How-
ever, performing some or all of these oper-
ations by hand can result in a more highly
optimized circuit for performance-critical
applications.

Since FPGAs must pay an area penalty
because of their reconfigurability, device
capacity can sometimes be a concern. Sys-
tems that are configured only at power-
up are able to accelerate only as much
of the program as will fit within the pro-
grammable structures. Additional areas of
a program might be accelerated by reusing
the reconfigurable hardware during pro-
gram execution. This process is known
as run-time reconfiguration (RTR). While
this style of computing has the benefit of
allowing for the acceleration of a greater
portion of an application, it also introduces
the overhead of configuration, which lim-
its the amount of acceleration possible. Be-
cause configuration can take milliseconds
or longer, rapid and efficient configuration
is a critical issue. Methods such as config-

uration compression and the partial reuse
of already programmed configurations can
be used to reduce this overhead.

This article presents a survey of cur-
rent research in hardware and software
systems for reconfigurable computing, as
well as techniques that specifically target
run-time reconfigurability. We lead off this
discussion by examining the technology
required for reconfigurable computing, fol-
lowed by a more in-depth examination of
the various hardware structures used in
reconfigurable systems. Next, we look at
the software required for compilation of
algorithms to configurable computers, and
the trade-offs between hand-mapping and
automatic compilation. Finally, we discuss
run-time reconfigurable systems, which
further utilize the intrinsic flexibility of
configurable computing platforms by opti-
mizing the hardware not only for different
applications, but for different operations
within a single application as well.

This survey does not seek to cover ev-
ery technique and research project in the
area of reconfigurable computing. Instead,
it hopes to serve as an introduction to
this rapidly evolving field, bringing in-
terested readers quickly up to speed on
developments from the last half-decade.
Those interested in further background
can find coverage of older techniques
and systems elsewhere [Rose et al. 1993;
Hauck and Agarwal 1996; Vuillemin et al.
1996; Mangione-Smith et al. 1997; Hauck
1998b].

2. TECHNOLOGY

Reconfigurable computing as a concept
has been in existence for quite some time
[Estrin et al. 1963]. Even general-purpose
processors use some of the same basic
ideas, such as reusing computational com-
ponents for independent computations,
and using multiplexers to control the
routing between these components. How-
ever, the term reconfigurable comput-
ing, as it is used in current research
(and within this survey), refers to sys-
tems incorporating some form of hard-
ware programmability—customizing how
the hardware is used using a number

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

174 K. Compton and S. Hauck

Fig. 1 . A programming bit for SRAM-based FPGAs [Xilinx 1994] (left) and a pro-
grammable routing connection (right).

of physical control points. These control
points can then be changed periodically in
order to execute different applications us-
ing the same hardware.

The recent advances in reconfigurable
computing are for the most part de-
rived from the technologies developed
for FPGAs in the mid-1980s. FPGAs
were originally created to serve as a hy-
brid device between PALs and Mask-
Programmable Gate Arrays (MPGAs).
Like PALs, FPGAs are fully electrically
programmable, meaning that the physical
design costs are amortized over multiple
application circuit implementations, and
the hardware can be customized nearly in-
stantaneously. Like MPGAs, they can im-
plement very complex computations on a
single chip, with devices currently in pro-
duction containing the equivalent of over
a million gates. Because of these features,
FPGAs had been primarily viewed as glue-
logic replacement and rapid-prototyping
vehicles. However, as we show through-
out this article, the flexibility, capacity,
and performance of these devices has
opened up completely new avenues in
high-performance computation, forming
the basis of reconfigurable computing.

Most current FPGAs and reconfig-
urable devices are SRAM-programmable
(Figure 1 left), meaning that SRAM1

bits are connected to the configuration
points in the FPGA, and programming
the SRAM bits configures the FPGA.

1 The term “SRAM” is technically incorrect for many
FPGA architectures, given that the configuration
memory may or may not support random access. In
fact, the configuration memory tends to be continu-
ally read in order to perform its function. However,
this is the generally accepted term in the field and
correctly conveys the concept of static volatile mem-
ory using an easily understandable label.

Thus, these chips can be programmed and
reprogrammed about as easily as a stan-
dard static RAM. In fact, one research
project, the PAM project [Vuillemin et al.
1996], considers a group of one or more
FPGAs to be a RAM unit that performs
computation between the memory write
(sending the configuration information
and input data) and memory read (read-
ing the results of the computation). This
leads some to use the term Programmable
Active Memory or PAM.

One example of how the SRAM configu-
ration points can be used is to control rout-
ing within a reconfigurable device [Chow
et al. 1999a]. To configure the routing on
an FPGA, typically a passgate structure
is employed (see Figure 1 right). Here the
programming bit will turn on a routing
connection when it is configured with a
true value, allowing a signal to flow from
one wire to another, and will disconnect
these resources when the bit is set to false.
With a proper interconnection of these ele-
ments, which may include millions of rout-
ing choice points within a single device, a
rich routing fabric can be created.

Another example of how these configu-
ration bits may be used is to control mul-
tiplexers, which will choose between the
output of different logic resources within
the array. For example, to provide optional
stateholding elements a D flip-flop (DFF)
may be included with a multiplexer se-
lecting whether to forward the latched
or unlatched signal value (see Figure 2
left). Thus, for systems that require state-
holding the programming bits controlling
the multiplexer would be configured to se-
lect the DFF output, while systems that
do not need this function would choose
the bypass route that sends the input di-
rectly to the output. Similar structures

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 175

Fig. 2 . D flip-flop with optional bypass (left) and a 3-input LUT (right).

can choose between other on-chip func-
tionalities, such as fixed-logic computation
elements, memories, carry chains, or other
functions.

Finally, the configuration bits may be
used as control signals for a computational
unit or as the basis for computation it-
self. As a control signal, a configuration
bit may determine whether an ALU per-
forms an addition, subtraction, or other
logic computations. On the other hand,
with a structure such as a lookup table
(LUT), the configuration bits themselves
form the result of the computation (see
Figure 2 right). These elements are essen-
tially small memories provided for com-
puting arbitrary logic functions. LUTs can
compute any function of N inputs (where
N is the number of control signals for the
LUT’s multiplexer) by programming the
2N programming bits with the truth ta-
ble of the desired function. Thus, if all
programming bits except the one corre-
sponding to the input pattern 111 were
set to zero a 3-input LUT would act as a
3-input AND gate, while programming it
with all ones except in 000 would compute
a NAND.

3. HARDWARE

Reconfigurable computing systems use
FPGAs or other programmable hardware
to accelerate algorithm execution by map-
ping compute-intensive calculations to the
reconfigurable substrate. These hardware
resources are frequently coupled with a
general-purpose microprocessor that is
responsible for controlling the reconfig-
urable logic and executing program code
that cannot be efficiently accelerated. In

very closely coupled systems, the recon-
figurability lies within customizable func-
tional units on the regular datapath of
the microprocessor. On the other hand, a
reconfigurable computing system can be
as loosely coupled as a networked stand-
alone unit. Most reconfigurable systems
are categorized somewhere between these
two extremes, frequently with the recon-
figurable hardware acting as a coproces-
sor to a host microprocessor. The pro-
grammable array itself can be comprised
of one or more commercially available
FPGAs, or can be a custom device designed
specifically for reconfigurable computing.

The design of the actual computation
blocks within the reconfigurable hardware
varies from system to system. Each unit of
computation, or logic block, can be as sim-
ple as a 3-input lookup table (LUT), or as
complex as a 4-bit ALU. This difference
in block size is commonly referred to as
the granularity of the logic block, where
the 3-bit LUT is an example of a very
fine-grained computational element, and a
4-bit ALU is an example of a quite coarse-
grained unit. The finer-grained blocks are
useful for bit-level manipulations, while
the coarse-grained blocks are better opti-
mized for standard datapath applications.
Some architectures employ different sizes
or types of blocks within a single recon-
figurable array in order to efficiently sup-
port different types of computation. For
example, memory is frequently embedded
within the reconfigurable hardware to pro-
vide temporary data storage, forming a
heterogeneous structure composed of both
logic blocks and memory blocks [Ebeling
et al. 1996; Altera 1998; Lucent 1998;
Marshall et al. 1999; Xilinx 1999].

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

176 K. Compton and S. Hauck

The routing between the logic blocks
within the reconfigurable hardware is also
of great importance. Routing contributes
significantly to the overall area of the re-
configurable hardware. Yet, when the per-
centage of logic blocks used in an FPGA be-
comes very high, automatic routing tools
frequently have difficulty achieving the
necessary connections between the blocks.
Good routing structures are therefore es-
sential to ensure that a design can be suc-
cessfully placed and routed onto the recon-
figurable hardware.

Once a circuit has been programmed
onto the reconfigurable hardware, it is
ready to be used by the host processor dur-
ing program execution. The run-time op-
eration of a reconfigurable system occurs
in two distinct phases: configuration and
execution. The programming of the recon-
figurable hardware is under the control of
the host processor. This host processor di-
rects a stream of configuration data to the
reconfigurable hardware, and this config-
uration data is used to define the actual
operation of the hardware. Configurations
can be loaded solely at start-up of a pro-
gram, or periodically during runtime, de-
pending on the design of the system. More
concepts involved in run-time reconfigu-
ration (the dynamic reconfiguration of de-
vices during computation execution) are
discussed in a later section.

The actual execution model of the re-
configurable hardware varies from sys-
tem to system. For example, the NAPA
system [Rupp et al. 1998] by default
suspends the execution of the host pro-
cessor during execution on the recon-
figurable hardware. However, simulta-
neous computation can occur with the
use of fork-and-join primitives, similar to
multiprocessor programming. REMARC
[Miyamori and Olukotun 1998] is a re-
configurable system that uses a pipelined
set of execution phases within the recon-
figurable hardware. These pipeline stages
overlap with the pipeline stages of the host
processor, allowing for simultaneous ex-
ecution. In the Chimaera system [Hauck
et al. 1997], the reconfigurable hardware
is constantly executing based upon the in-
put values held in a subset of the host pro-

cessor’s registers. A call to the Chimaera
unit is in actuality only a fetch of the re-
sult value. This value is stable and valid
after the correct input values have been
written to the registers and have filtered
through the computation.

In the next sections, we consider in
greater depth the hardware issues in re-
configurable computing, including both
logic and routing. To support the compu-
tation demands of reconfigurable comput-
ing, we consider the logic block architec-
tures of these devices, including possibly
the integration of heterogeneous logic re-
sources within a device. Heterogeneity
also extends between chips, where one of
the most important concerns is the cou-
pling of the reconfigurable logic with stan-
dard, general-purpose processors. How-
ever, reconfigurable devices are more than
just logic devices; the routing resources
are at least as important as logic re-
sources, and thus we consider intercon-
nect structures, including 1D-oriented de-
vices that are beginning to appear.

3.1. Coupling

Frequently, reconfigurable hardware is
coupled with a traditional microprocessor.
Programmable logic tends to be inefficient
at implementing certain types of opera-
tions, such as variable-length loops and
branch control. In order to run an applica-
tion in a reconfigurable computing system
most efficiently, the areas of the program
that cannot be easily mapped to the recon-
figurable logic are executed on a host mi-
croprocessor. Meanwhile, the areas with a
high density of computation that can ben-
efit from implementation in hardware are
mapped to the reconfigurable logic. For the
systems that use a microprocessor in con-
junction with reconfigurable logic, there
are several ways in which these two com-
putation structures may be coupled, as
Figure 3 shows.

First, reconfigurable hardware can be
used solely to provide reconfigurable
functional units within a host proces-
sor [Razdan and Smith 1994; Hauck
et al. 1997]. This allows for a tradi-
tional programming environment with the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 177

Fig. 3 . Different levels of coupling in a reconfigurable system. Reconfigurable logic
is shaded.

addition of custom instructions that may
change over time. Here, the reconfigurable
units execute as functional units on the
main microprocessor datapath, with reg-
isters used to hold the input and output
operands.

Second, a reconfigurable unit may
be used as a coprocessor [Wittig and
Chow 1996; Hauser and Wawrzynek 1997;
Miyamori and Olukotun 1998; Rupp et al.
1998; Chameleon 2000]. A coprocessor is,
in general, larger than a functional unit,
and is able to perform computations with-
out the constant supervision of the host
processor. Instead, the processor initial-
izes the reconfigurable hardware and ei-
ther sends the necessary data to the logic,
or provides information on where this data
might be found in memory. The reconfig-
urable unit performs the actual computa-
tions independently of the main processor,
and returns the results after completion.
This type of coupling allows the reconfig-
urable logic to operate for a large num-
ber of cycles without intervention from
the host processor, and generally permits
the host processor and the reconfigurable
logic to execute simultaneously. This re-
duces the overhead incurred by the use
of the reconfigurable logic, compared to a
reconfigurable functional unit that must
communicate with the host processor each
time a reconfigurable “instruction” is used.
One idea that is somewhat of a hybrid be-
tween the first and second coupling meth-
ods, is the use of programmable hardware
within a configurable cache [Kim et al.
2000]. In this situation, the reconfigurable

logic is embedded into the data cache.
This cache can then be used as either a
regular cache or as an additional com-
puting resource depending on the target
application.

Third, an attached reconfigurable
processing unit [Vuillemin et al. 1996;
Annapolis 1998; Laufer et al. 1999] be-
haves as if it is an additional processor in
a multiprocessor system or an additional
compute engine accessed semifrequently
through external I/O. The host processor’s
data cache is not visible to the attached
reconfigurable processing unit. There is,
therefore, a higher delay in communica-
tion between the host processor and the re-
configurable hardware, such as when com-
municating configuration information,
input data, and results. This communi-
cation is performed though specialized
primitives similar to multiprocessor sys-
tems. However, this type of reconfigurable
hardware does allow for a great deal of
computation independence, by shifting
large chunks of a computation over to the
reconfigurable hardware.

Finally, the most loosely coupled form
of reconfigurable hardware is that of
an external stand-alone processing unit
[Quickturn 1999a, 1999b]. This type of
reconfigurable hardware communicates
infrequently with a host processor (if
present). This model is similar to that
of networked workstations, where pro-
cessing may occur for very long periods
of time without a great deal of commu-
nication. In the case of the Quickturn
systems, however, this hardware is geared

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

178 K. Compton and S. Hauck

more towards emulation than reconfig-
urable computing.

Each of these styles has distinct ben-
efits and drawbacks. The tighter the in-
tegration of the reconfigurable hardware,
the more frequently it can be used within
an application or set of applications due
to a lower communication overhead. How-
ever, the hardware is unable to operate
for significant portions of time without in-
tervention from a host processor, and the
amount of reconfigurable logic available is
often quite limited. The more loosely cou-
pled styles allow for greater parallelism in
program execution, but suffer from higher
communications overhead. In applications
that require a great deal of communica-
tion, this can reduce or remove any accel-
eration benefits gained through this type
of reconfigurable hardware.

3.2. Traditional FPGAs

Before discussing the detailed architec-
ture design of reconfigurable devices in
general, we will first describe the logic
and routing of FPGAs. These concepts
apply directly to reconfigurable systems
using commercial FPGAs, such as PAM
[Vuillemin et al. 1996] and Splash 2
[Arnold et al. 1992; Buell et al. 1996],
and many also extend to architectures
designed specifically for reconfigurable
computing. Hardware concepts applying
specifically to architectures designed for
reconfigurable computing, as well as vari-
ations on the generic FPGA description
provided here, are discussed following this
section. More detailed surveys of FPGA ar-
chitectures themselves can be found else-
where [Brown et al. 1992a; Rose et al.
1993].

Since the introduction of FPGAs in the
mid-1980s, there have been many differ-
ent investigations into what computation
element(s) should be built into the ar-
ray [Rose et al. 1993]. One could consider
FPGAs that were created with PAL-like
product term arrays, or multiplexer-based
functionality, or even basic fixed functions
such as simple NAND and XOR gates. In
fact, many such architectures have been
built. However, it seems to be fairly well

Fig. 4 . A basic logic block, with a 4-input
LUT, carry chain, and a D-type flip-flop with
bypass.

established that the best function block
for a standard FPGA, a device whose pri-
mary role is the implementation of ran-
dom digital logic, is the one found in the
first devices deployed—the lookup table
(Figure 2 right). As described in the pre-
vious section, an N-input LUT is basically
a memory that, when programmed appro-
priately, can compute any function of up to
N inputs. This flexibility, with relatively
simple routing requirements (each input
need only be routed to a single multiplexer
control input) turns out to be very power-
ful for logic implementation. Although it is
less area-efficient than fixed logic blocks,
such as a standard NAND gate, the truth
is that most current FPGAs use less than
10% of their chip area for logic, devoting
the majority of the silicon real estate for
routing resources.

The typical FPGA has a logic block
with one or more 4-input LUT(s), op-
tional D flip-flops (DFF), and some form
of fast carry logic (Figure 4). The LUTs
allow any function to be implemented, pro-
viding generic logic. The flip-flop can be
used for pipelining, registers, statehold-
ing functions for finite state machines, or
any other situation where clocking is re-
quired. Note that the flip-flops will typi-
cally include programmable set/reset lines
and clock signals, which may come from
global signals routed on special resources,
or could be routed via the standard in-
terconnect structures from some other
input or logic block. The fast carry logic

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 179

Fig. 5 . A generic island-style FPGA routing archi-
tecture.

is a special resource provided in the cell
to speed up carry-based computations,
such as addition, parity, wide AND op-
erations, and other functions. These re-
sources will bypass the general routing
structure, connecting instead directly be-
tween neighbors in the same column.
Since there are very few routing choices
in the carry chain, and thus less delay on
the computation, the inclusion of these re-
sources can significantly speed up carry-
based computations.

Just as there has been a great deal
of experimentation in FPGA logic block
architectures, there has been equally
as much investigation into interconnect
structures. As logic blocks have basically
standardized on LUT-based structures,
routing resources have become primarily
island-style, with logic surrounded by gen-
eral routing channels.

Most FPGA architectures organize their
routing structures as a relatively smooth
sea of routing resources, allowing fast and
efficient communication along the rows
and columns of logic blocks. As shown
in Figure 5, the logic blocks are em-
bedded in a general routing structure,
with input and output signals attaching
to the routing fabric through connection
blocks. The connection blocks provide pro-
grammable multiplexers, selecting which
of the signals in the given routing channel
will be connected to the logic block’s ter-

minals. These blocks also connect shorter
local wires to longer-distance routing re-
sources. Signals flow from the logic block
into the connection block, and then along
longer wires within the routing channels.
At the switchboxes, there are connections
between the horizontal and vertical rout-
ing resources to allow signals to change
their routing direction. Once the signal
has traversed through routing resources
and intervening switchboxes, it arrives at
the destination logic block through one of
its local connection blocks. In this man-
ner, relatively arbitrary interconnections
can be achieved between the logic blocks
in the system.

Within a given routing channel, there
may be a number of different lengths of
routing resources. Some local interconnec-
tions may only move between adjacent
logic blocks (carry chains are a good ex-
ample of this), providing high-speed lo-
cal interconnect. Medium length lines may
run the width of several logic blocks, pro-
viding for some longer distance intercon-
nect. Finally, longlines that run the entire
chip width or height may provide for more
global signals. Also, many architectures
contain special “global lines” that provide
high-speed, and often low-skew, connec-
tions to all of the logic blocks in the array.
These are primarily used for clocks, resets,
and other truly global signals.

While the routing architecture of an
FPGA is typically quite complex—the con-
nection blocks and switchboxes surround-
ing a single logic block typically have thou-
sands of programming points—they are
designed to be able to support fairly arbi-
trary interconnection patterns. Most users
ignore the exact details of these architec-
tures and allow the automatic physical de-
sign tools to choose appropriate resources
to use in order to achieve a given intercon-
nect pattern.

3.3. Logic Block Granularity

Most reconfigurable hardware is based
upon a set of computation structures that
are repeated to form an array. These
structures, commonly called logic blocks
or cells, vary in complexity from a very

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

180 K. Compton and S. Hauck

Fig. 6 . The functional unit from a Xilinx 6200 cell
[Xilinx 1996].

small and simple block that can calculate
a function of only three inputs, to a struc-
ture that is essentially a 4-bit ALU. Some
of these block types are configurable, in
that the actual operation is determined by
a set of loaded configuration data. Other
blocks are fixed structures, and the config-
urability lies in the connections between
them. The size and complexity of the ba-
sic computing blocks is referred to as the
block’s granularity.

An example of a very fine-grained logic
block can be found in the Xilinx 6200 series
of FPGAs [Xilinx 1996]. The functional
unit from one of these cells, as shown in
Figure 6, can implement any two-input
function and some three-input functions.
However, although this type of architec-
ture is useful for very fine-grained bit ma-
nipulation, it can be too fine-grained to ef-
ficiently implement many types of circuits,
such as multipliers. Similarly, finite state
machines are frequently too complex to
easily map to a reasonable number of
very fine-grained logic blocks. However, fi-
nite state machines are also too dependent
upon single bit values to be efficiently im-
plemented in a very coarse-grained archi-
tecture. This type of circuit is more suited
to an architecture that provides more
connections and computational power per
logic block, yet still provides sufficient ca-
pability for bit-level manipulation.

The logic cell in the Altera FLEX 10K ar-
chitecture [Altera 1998] is a fine-grained
structure that is somewhat coarser than
the 6200. This architecture mainly con-
sists of a single 4-input LUT with a

flip-flop. Additionally, there is specialized
carry-chain circuitry that helps to acceler-
ate addition, parity, and other operations
that use a carry chain. These types of logic
blocks are useful for fine-grained bit-level
manipulation of data, as can frequently be
found in encryption and image processing
applications. Also, because the cells are
fine-grained, computation structures of
arbitrary bit widths can be created. This
can be useful for implementing datapath
circuits that are based on data widths not
implemented on the host processor (5 bit
multiply, 18 bit addition, etc). Reconfig-
urable hardware can not only take advan-
tage of small bit widths, but also large data
widths. When a program uses bit widths
in excess of what is normally available in
a host processor, the processor must per-
form the computations using a number of
extra steps in order to handle the full data
width. A fine-grained architecture would
be able to implement the full bit width in a
single step, without the fetching, decoding,
and execution of additional instructions,
as long as enough logic cells are available.

A number of reconfigurable systems use
a granularity of logic block that we cat-
egorize as medium-grained [Xilinx 1994;
Hauser and Wawrzynek 1997; Haynes and
Cheung 1998; Lucent 1998; Marshall et al.
1999]. For example, Garp [Hauser and
Wawrzynek 1997] is designed to perform
a number of different operations on up
to four 2-bit inputs. Another medium-
grained structure was designed specifi-
cally to be embedded inside of a general-
purpose FPGA to implement multipliers
of a configurable bit width [Haynes and
Cheung 1998]. The logic block used in the
multiplier FPGA is capable of implement-
ing a 4×4 multiplication, or cascaded into
larger structures. The CHESS architec-
ture [Marshall et al. 1999] also operates
on 4-bit values, with each of its cells act-
ing as a 4-bit ALU. Medium-grained logic
blocks may be used to implement datapath
circuits of varying bit widths, similar to
the fine-grained structures. However, with
the ability to perform more complex oper-
ations of a greater number of inputs, this
type of structure can be used efficiently to
implement a wider variety of operations.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 181

Fig. 7 . One cell in the RaPiD-I reconfigurable architecture [Ebeling et al.
1996]. The registers, RAM, ALUs, and multiplier all operate on 16-bit values.
The multiplier outputs a 32-bit result, split into the high 16 bits and the low
16 bits. All routing lines shown are 16-bit wide busses. The short parallel
lines on the busses represent configurable bus connectors.

Very coarse-grained architectures are
primarily intended for the implementa-
tion of word-width datapath circuits. Be-
cause the logic blocks used are optimized
for large computations, they will perform
these operations much more quickly (and
consume less chip area) than a set of
smaller cells connected to form the same
type of structure. However, because their
composition is static, they are unable
to leverage optimizations in the size of
operands. For example, the RaPiD archi-
tecture [Ebeling et al. 1996], shown in
Figure 7, as well as the Chameleon ar-
chitecture [Chameleon 2000], are exam-
ples of this very coarse-grained type of
design. Each of these architectures is com-
posed of word-sized adders, multipliers,
and registers. If only three 1-bit values
are required, then the use of these archi-
tectures suffers an unnecessary area and
speed overhead, as all of the bits in the full
word size are computed. However, these
coarse-grained architectures can be much
more efficient than fine-grained architec-
tures for implementing functions closer to
their basic word size.

An alternate form of a coarse-grained
system is one in which the logic blocks
are actually very small processors, poten-
tially each with its own instruction mem-
ory and/or data values. The REMARC ar-
chitecture [Miyamori and Olukotun 1998]

is composed of an 8 × 8 array of 16-bit
processors. Each of these processors uses
its own instruction memory in conjunction
with a global program counter. This style
of architecture closely resembles a single-
chip multiprocessor, although with much
simpler component processors because the
system is intended to be coupled with a
host processor. The RAW project [Moritz
et al. 1998] is a further example of a re-
configurable architecture based on a mul-
tiprocessor design.

The granularity of the FPGA also has
a potential effect on the reconfiguration
time of the device. This is an important
issue for run-time reconfiguration, which
is discussed in further depth in a later sec-
tion. A fine-grained array has many config-
uration points to perform very small com-
putations, and thus requires more data
bits during configuration.

3.4. Heterogeneous Arrays

In order to provide greater performance
or flexibility in computation, some recon-
figurable systems provide a heterogeneous
structure, where the capabilities of the
logic cells are not the same throughout
the system. One use of heterogeneity in
reconfigurable systems is to provide mul-
tiplier function blocks embedded within
the reconfigurable hardware [Haynes and

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

182 K. Compton and S. Hauck

Cheung 1998; Chameleon 2000; Xilinx
2001]. Because multiplication is one of the
more difficult computations to implement
efficiently in a traditional FPGA struc-
ture, the custom multiplication hardware
embedded within a reconfigurable array
allows a system to perform even that func-
tion well.

Another use of heterogeneous struc-
tures is to provide embedded memory
blocks scattered throughout the reconfig-
urable hardware. This allows storage of
frequently used data and variables, and
allows for quick access to these values
due to the proximity of the memory to
the logic blocks that access it. Memory
structures embedded into the reconfig-
urable fabric come in two forms. The first
is simply the use of available LUTs as
RAM structures, as can be done in the
Xilinx 4000 series [Xilinx 1994] and Virtex
[Xilinx 1999] FPGAs. Although making
these very small blocks into a larger
RAM structure introduces overhead to the
memory system, it does provide local, vari-
able width memory structures.

Some architectures include dedicated
memory blocks within their array, such
as the Xilinx Virtex series [Xilinx 1999,
2001] and Altera [Altera 1998] FPGAs, as
well as the CS2000 RCP (reconfigurable
communications processor) device from
Chameleon Systems, Inc. [Chameleon
2000]. These memory blocks have greater
performance in large sizes than similar-
sized structures built from many small
LUTs. While these structures are some-
what less flexible than the LUT-based
memories, they can also provide some cus-
tomization. For example, the Altera FLEX
10K FPGA [Altera 1998] provides embed-
ded memories that have a limited total
number of wires, but allow a trade-off be-
tween the number of address lines and the
data bit width.

When embedded memories are not used
for data storage by a particular config-
uration, the area that they occupy does
not necessarily have to be wasted. By us-
ing the address lines of the memory as
function inputs and the values stored in
the memory as function outputs, logical
expressions of a large number of inputs

can be emulated [Altera 1998; Cong and
Xu 1998; Wilton 1998; Heile and Leaver
1999]. In fact, because there may be more
than one value output from the memory
on a read operation, the memory struc-
ture may be able to perform multiple dif-
ferent computations (one for each bit of
data output), provided that all necessary
inputs appear on the address lines. In this
manner, the embedded RAM behaves the
same as a very large LUT. Therefore, em-
bedded memory allows a programmer or
a synthesis tool to perform a trade-off be-
tween logic and memory usage in order to
achieve higher area efficiency.

Furthermore, a few of the commercial
FPGA companies have announced plans to
include entire microprocessors as embed-
ded structures within their FPGAs. Altera
has demonstrated a preliminary ARM9-
based Excalibur device, which combines
reconfigurable hardware with an embed-
ded ARM9 processor core [Altera 2001].
Meanwhile, Xilinx is working with IBM to
include a PowerPC processor core within
the Virtex-II FPGA [Xilinx 2000]. By con-
trast, Adaptive Silicon’s focus is to provide
reconfigurable logic cores to customers for
embedding in their own system-on-a-chip
(SoC) devices [Adaptive 2001].

3.5. Routing Resources

Interconnect resources are provided in a
reconfigurable architecture to connect to-
gether the device’s programmable logic el-
ements. These resources are usually con-
figurable, where the path of a signal is
determined at compile or run-time rather
than fabrication time. This flexible inter-
connect between logic blocks or computa-
tional elements allows for a wide variety
of circuit structures, each with their own
interconnect requirements, to be mapped
to the reconfigurable hardware. For ex-
ample, the routing for FPGAs is gener-
ally island-style, with logic surrounded
by routing channels, which contain sev-
eral wires, potentially of varying lengths.
Within this type of routing architecture,
however, there are still variations. Some of
these differences include the ratio of wires
to logic in the system, how long each of the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 183

Fig. 8 . Segmented (left) and hierarchical (right) routing structures. The white
boxes are logic blocks, while the dark boxes are connection switches.

wires should be, and whether they should
be connected in a segmented or hierarchi-
cal manner.

A step in the design of efficient rout-
ing structures for FPGAs and reconfig-
urable systems therefore involves exam-
ining the logic vs. routing area trade-off
within reconfigurable architectures. One
group has argued that the interconnect
should constitute a much higher propor-
tion of area in order to allow for successful
routing under high-logic utilization condi-
tions [Takahara et al. 1998]. However, for
FPGAs, high-LUT utilization may not nec-
essarily be the most desirable situation,
but rather efficient routing usage may be
of more importance [DeHon 1999]. This
is because the routing resources occupy a
much larger part of the area of an FPGA
than the logic resources, and therefore the
most area efficient designs will be those
that optimize their use of the routing re-
sources rather than the logic resources.
The amount of required routing does not
grow linearly with the amount of logic
present; therefore, larger devices require
even greater amounts of routing per logic
block than small ones [Trimberger et al.
1997b].

There are two primary methods to pro-
vide both local and global routing re-
sources, as shown in Figure 8. The first
is the use of segmented routing [Betz and
Rose 1999; Chow et al. 1999a]. In seg-
mented routing, short wires accommodate

local communications traffic. These short
wires can be connected together using
switchboxes to emulate longer wires. Fre-
quently, segmented routing structures
also contain longer wires to allow sig-
nals to travel efficiently over long dis-
tances without passing through a great
number of switches. Hierarchical routing
[Aggarwal and Lewis 1994; Lai and Wang
1997; Tsu et al. 1999] is the second method
to provide both local and global commu-
nication. Routing within a group (or clus-
ter) of logic blocks is at the local level,
only connecting within that cluster. At
the boundaries of these clusters, however,
longer wires connect the different clusters
together. This is potentially repeated at a
number of levels. The idea behind the use
of hierarchical structures is that, provided
a good placement has been made onto the
hardware, most communication should be
local and only a limited amount of com-
munication will traverse long distances.
Therefore, the wiring is designed to fit this
model, with a greater number of local rout-
ing wires in a cluster than distance routing
wires between clusters.

Because routing can occupy a large part
of the area of a reconfigurable device, the
type of routing used must be carefully con-
sidered. If the wires available are much
longer than what is required to route a sig-
nal, the excess wire length is wasted. On
the other hand, if the wires available are
much shorter than necessary, the signal

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

184 K. Compton and S. Hauck

Fig. 9 . A traditional two-dimensional island-style routing structure (left) and a one-
dimensional routing structure (right). The white boxes represent logic elements.

must pass through switchboxes that con-
nect the short wires together into a longer
wire, or through levels of the routing hier-
archy. This induces additional delay and
slows the overall operation of the circuit.
Furthermore, the switchbox circuitry oc-
cupies area that might be better used for
additional logic or wires.

There are a few alternatives to the
island-style of routing resources. Systems
such as RaPiD [Ebeling et al. 1996] use
segmented bus-based routing, where sig-
nals are full word-sized in width. This is
most common in the one-dimensional type
of architecture, as discussed in the next
section.

3.6. One-Dimensional Structures

Most current FPGAs are of the two-
dimensional variety, as shown in Figure 9.
This allows for a great deal of flexibility,
as any signal can be routed on a nearly
arbitrary path. However, providing this
level of routing flexibility requires a great
deal of routing area. It also complicates
the placement and routing software, as the
software must consider a very large num-
ber of possibilities.

One solution is to use a more one-
dimensional style of architecture, also de-
picted in Figure 9. Here, placement is
restricted along one axis. With a more
limited set of choices, the placement can
be performed much more quickly. Routing
is also simplified, because it is generally
along a single dimension as well, with the
other dimension generally only used for
calculations requiring a shift operation.
One drawback of the one-dimensional

routing is that if there are not enough
routing resources in a particular area of
a mapped circuit, routing that circuit be-
comes actually more difficult than on a
two-dimensional array that provides more
alternatives. A number of different re-
configurable systems have been designed
in this manner. Both Garp [Hauser and
Wawrzynek 1997] and Chimaera [Hauck
et al. 1997] are structures that provide
cells that compute a small number of bit
positions, and a row of these cells to-
gether computes the full data word. A
row can only be used by a single config-
uration, making these designs one dimen-
sional. In this manner, each configuration
occupies some number of complete rows.
Although multiple narrow-width compu-
tations can fit within a single row, these
structures are optimized for word-based
computations that occupy the entire row.
The NAPA architecture [Rupp et al. 1998]
is similar, with a full column of cells act-
ing as the atomic unit for a configura-
tion, as is PipeRench [Cadambi et al. 1998;
Goldstein et al. 2000].

In some systems, the computation
blocks in a one-dimensional structure op-
erate on word-width values instead of
single bits. Therefore, busses are routed
instead of individual values. This also
decreases the time required for routing,
as the bits of a bus can be considered
together rather than as separate routes.
As shown previously in Figure 7, RaPiD
[Ebeling et al. 1996] is basically a one-
dimensional design that only includes
word-width processing elements. The dif-
ferent computation units are organized in
a single dimension along the horizontal

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 185

Fig. 10 . Mesh (left) and partial crossbar (right) interconnect topologies for multi-FPGA
systems.

axis. The general flow of information fol-
lows this layout, with the major routing
busses also laid out in a horizontal man-
ner. Additionally, all routing is of word-
sized values, and therefore all routing is
of busses, not individual wires. A few ver-
tical resources are included in the archi-
tecture to allow signals to transfer be-
tween busses, or to travel from a bus to
a computation node. However, the major-
ity of the routing in this architecture is
one-dimensional.

3.7. Multi-FPGA Systems

Reconfigurable systems that are composed
of multiple FPGA chips interconnected
on a single processing board have addi-
tional hardware concerns over single-chip
systems. In particular, there is a need for
an efficient connection scheme between
the chips, as well as to external memory
and the system bus. This is to provide for
circuits that are too large to fit within a
single FPGA, but may be partitioned over
the multiple FPGAs available. A number
of different interconnection schemes have
been explored [Butts and Batcheller 1991;
Hauck et al. 1998a; Hauck 1998; Khalid
1999] including meshes and crossbars, as
shown in Figure 10. A mesh connects the
nearest-neighbors in the array of FPGA
chips. This allows for efficient communi-
cation between the neighbors, but may
require that some signals pass through
an FPGA simply to create a connection
between non-neighbors. Although this can
be done, and is quite possible, it uses valu-
able I/O resources on the FPGA that forms
the routing bridge. One system that uses
a mesh topology with additional board-

level column and row busses is the P1
system developed within the PAM project
[Vuillemin et al. 1996]. This architecture
uses a central array of 16 commercial
FPGAs with connections to nearest-
neighbors. However, four 16-bit row busses
and four 16-bit column busses run the
length of the array and facilitate commu-
nication between non-neighbor FPGAs.

A crossbar attempts to remove this prob-
lem by using special routing-only chips
to connect each FPGA potentially to any
other FPGA. The inter-chip delays are
more uniform, given that a signal trav-
els the exact same “distance” to get from
one FPGA to another, regardless of where
those FPGAs are located. However, a
crossbar interconnect does not scale eas-
ily with an increase in the number of
FPGAs. The crossbar pattern of the chips
is fixed at fabrication of the multi-FPGA
board. Variants on these two basic topolo-
gies attempt to remove some of the prob-
lems encountered in mesh and crossbar
topologies [Arnold et al. 1992; Varghese
et al. 1993; Buell et al. 1996; Vuillemin
et al. 1996; Lewis et al. 1997; Khalid and
Rose 1998]. One of these variants can be
found in the Splash 2 system [Arnold et al.
1992; Buell et al. 1996]. The predecessor,
Splash 1, used a linear systolic commu-
nication method. This type of connection
was found to work quite well for a vari-
ety of applications. However, this highly
constrained communication model made
some types of computations difficult or
even impossible. Therefore, Splash 2 was
designed to include not only the linear con-
nections of Splash 1 that were found to
be useful for many applications, but also
a crossbar network to allow any FPGA

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

186 K. Compton and S. Hauck

to communicate with any other FPGA on
the same board. For multi-FPGA systems,
because of the need for efficient commu-
nication between the FPGAs, determin-
ing the inter-chip routing topology is a
very important step in the design process.
More details on multi-FPGA system archi-
tectures can be found elsewhere [Hauck
1998b; Khalid 1999].

3.8. Hardware Summary

The design of reconfigurable hardware
varies wildly from system to system. The
reconfigurable logic may be used as a
configurable functional unit, or may be
a multi-FPGA stand-alone unit. Within
the reconfigurable logic itself, the com-
plexity of the core computational units,
or logic blocks, vary from very simple to
extremely complex, some implementing
a 4-bit ALU or even a 16 × 16 multi-
plication. These blocks are not required
to be uniform throughout the array, as
the use of different types of blocks can
add high-performance functionality in the
case of specialized computation circuitry,
or expanded storage in the case of em-
bedded memory blocks. Routing resources
also offer a variety of choices, primarily in
amount, length, and organization of the
wires. Systems have been developed that
fit into many different points within this
design space, and no true “best” system
has yet been agreed upon.

4. SOFTWARE

Although reconfigurable hardware has
been shown to have significant perfor-
mance benefits for some applications, it
may be ignored by application program-
mers unless they are able to easily in-
corporate its use into their systems. This
requires a software design environment
that aids in the creation of configurations
for the reconfigurable hardware. This soft-
ware can range from a software assist
in manual circuit creation to a complete
automated circuit design system. Manual
circuit description is a powerful method
for the creation of high-quality circuit de-
signs. However, it requires a great deal of
background knowledge of the particular

Fig. 11 . Three possible design flows for algorithm
implementation on a reconfigurable system. Grey
stages indicate manual effort on the part of the de-
signer, while white stages are done automatically.
The dotted lines represent paths to improve the re-
sulting circuit. It should be noted that the middle
design cycle is only one of the possible compromises
between automatic and manual design.

reconfigurable system employed, as well
as a significant amount of design time. On
the other end of the spectrum, an auto-
matic compilation system provides a quick
and easy way to program for reconfig-
urable systems. It therefore makes the use
of reconfigurable hardware more accessi-
ble to general application programmers,
but quality may suffer.

Both for manual and automatic cir-
cuit creation, the design process proceeds
through a number of distinct phases, as
indicated in Figure 11. Circuit specifica-
tion is the process of describing the func-
tions that are to be placed on the recon-
figurable hardware. This can be done as
simply as by writing a program in C that
represents the functionality of the algo-
rithm to be implemented in hardware. On
the other hand, this can also be as complex
as specifying the inputs, outputs, and op-
eration of each basic building block in the
reconfigurable system. Between these two
methods is the specification of the circuit
using generic complex components, such
as adders and multipliers, which will be
mapped to the actual hardware later in
the design process. For descriptions in a
high-level language (HLL), such as C/C++
or Java, or ones using complex building
blocks, this code must be compiled into
a netlist of gate-level components. For
the HLL implementations, this involves

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 187

Fig. 12 . A wide function implemented with multiple
LUTs.

generating computational components to
perform the arithmetic and logic opera-
tions within the program, and separate
structures to handle the program control,
such as loop iterations and branching op-
erations. Given a structural description,
either generated from a HLL or specified
by the user, each complex structure is re-
placed with a network of the basic gates
that perform that function.

Once a detailed gate- or element-level
description of the circuit has been created,
these structures must be translated to the
actual logic elements of the reconfigurable
hardware. This stage is known as tech-
nology mapping, and is dependent upon
the exact target architecture. For a LUT-
based architecture, this stage partitions
the circuit into a number of small subfunc-
tions, each of which can be mapped to a
single LUT [Brown et al. 1992a; Abouzeid
et al. 1993; Sangiovanni-Vincentelli et al.
1993; Hwang et al. 1994; Chang et al.
1996; Hauck and Agarwal 1996; Yi and
Jhon 1996; Chowdhary and Hayes 1997;
Lin et al. 1997; Cong and Wu 1998; Pan
and Lin 1998; Togawa et al. 1998; Cong
et al. 1999]. Some architectures, such as
the Xilinx 4000 series [Xilinx 1994], con-
tain multiple LUTs per logic cell. These
LUTs can be used either separately to gen-
erate small functions, or together to gen-
erate some wider-input functions [Inuani
and Saul 1997; Cong and Hwang 1998].
By taking advantage of multiple LUTs and
the internal routing within a single logic
cell, functions with more inputs than can
be implemented using a single LUT can
efficiently be mapped into the FPGA ar-
chitecture. Figure 12 shows one example
of a wide function mapped to a multi-LUT
FPGA logic cell.

For reconfigurable structures that in-
clude embedded memory blocks, the map-

ping stage may also consider using these
memories as logic units when they are not
being used for data storage. The memories
act as very large LUTs, where the number
of inputs is equal to the number of address
lines. In order to use these memories as
logic, the mapping software must analyze
how much of the memory blocks are actu-
ally used as storage in a given mapping. It
must then determine which are available
in order to implement logic, and what part
or parts of the circuit are best mapped to
the memory [Cong and Xu 1998; Wilton
1998].

After the circuit has been mapped, the
resulting blocks must be placed onto the
reconfigurable hardware. Each of these
blocks is assigned to a specific location
within the hardware, hopefully close to
the other logic blocks with which it com-
municates. As FPGA capacities increase,
the placement phase of circuit mapping
becomes more and more time consuming.
Floorplanning is a technique that can
be used to alleviate some of this cost.
A floorplanning algorithm first partitions
the logic cells into clusters, where cells
with a large amount of communication
are grouped together. These clusters are
then placed as units onto regions of the
reconfigurable hardware. Once this global
placement is complete, the actual place-
ment algorithm performs detailed place-
ment of the individual logic blocks within
the boundaries assigned to the cluster
[Sankar and Rose 1999].

The use of a floorplanning tool is par-
ticularly helpful for situations where the
circuit structure being mapped is of a dat-
apath type. Large computational compo-
nents or macros that are found in datapath
circuits are frequently composed of highly
regular logic. These structures are placed
as entire units, and their component cells
are restricted to the floorplanned location
[Shi and Bhatia 1997; Emmert and Bhatia
1999]. This encourages the placer to find a
very regular placement of these logic cells,
resulting in a higher performance layout
of the circuit. Another technique for the
mapping and placement of datapath ele-
ments is to perform both of these steps
simultaneously [Callahan et al. 1998].

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

188 K. Compton and S. Hauck

This method also exploits the regular-
ity of the datapath elements to gener-
ate mappings and placements quickly and
efficiently.

Floorplanning is also important when
dealing with hierarchically structured re-
configurable designs. In these architec-
tures, the available resources have been
grouped by the logic or routing hierarchy
of the hardware. Because performance is
best when routing lengths are minimized,
the cells to be placed should be grouped
such that cells that require a great deal
of communication or which are on a criti-
cal path are placed together within a logic
cluster on the hardware [Krupnova et al.
1997; Senouci et al. 1998].

After floorplanning, the individual logic
blocks are placed into specific logic cells.
One algorithm that is commonly used
is the simulated annealing technique
[Shahookar and Mazumder 1991; Betz
and Rose 1997; Sankar and Rose 1999].
This method takes an initial placement
of the system, which can be generated
(pseudo-) randomly, and performs a series
of “moves” on that layout. A move is sim-
ply the changing of the location of a sin-
gle logic cell, or the exchanging of loca-
tions of two logic cells. These moves are
attempted one at a time using random
target locations. If a move improves the
layout, then the layout is changed to re-
flect that move. If a move is considered to
be undesirable, then it is only accepted a
small percentage of the time. Accepting a
few “bad” moves helps to avoid any local
minima in the placement space. Other al-
gorithms exist that are not so based on
random movements [Gehring and Ludwig
1996], although this searches a smaller
area of the placement space for a solution,
and therefore may be unable to find a so-
lution which meets performance require-
ments if a design uses a high percentage
of the reconfigurable resources.

Finally, the different reconfigurable
components comprising the application
circuit are connected during the routing
stage. Particular signals are assigned to
specific portions of the routing resources
of the reconfigurable hardware. This can
become difficult if the placement causes

many connected components to be placed
far from one another, as the signals that
travel long distances use more routing
resources than those that travel shorter
ones. A good placement is therefore es-
sential to the routing process. One of
the challenges in routing for FPGAs and
reconfigurable systems is that the avail-
able routing resources are limited. In gen-
eral hardware design, the goal is to min-
imize the number of routing tracks used
in a channel between rows of computation
units, but the channels can be made as
wide as necessary. In reconfigurable sys-
tems, however, the number of available
routing tracks is determined at fabrication
time, and therefore the routing software
must perform within these boundaries.
Thus, FPGA routing concentrates on min-
imizing congestion within the available
tracks [Brown et al. 1992b; McMurchie
and Ebeling 1995; Alexander and Robins
1996; Chan and Schlag 1997; Lee and Wu
1997; Thakur et al. 1997; Wu and Marek-
Sadowska 1997; Swartz et al. 1998; Nam
et al. 1999]. Because routing is one of
the more time-intensive portions of the
design cycle, it can be helpful to deter-
mine if a placed circuit can be routed
before actually performing the routing
step. This quickly informs the designer
if changes need to be made to the layout
or a larger reconfigurable structure is re-
quired [Wood and Rutenbar 1997; Swartz
et al. 1998].

Each of the design phases mentioned
above may be implemented either manu-
ally or automatically using compiler tools.
The operation of some of these individual
steps are described in greater depth in the
following sections.

4.1. Hardware-Software Partitioning

For systems that include both reconfig-
urable hardware and a traditional micro-
processor, the program must first be par-
titioned into sections to be executed on
the reconfigurable hardware and sections
to be executed in software on the micro-
processor. In general, complex control se-
quences such as variable-length loops are
more efficiently implemented in software,

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 189

while fixed datapath operations may be
more efficiently executed in hardware.

Most compilers presented for reconfig-
urable systems generate only the hard-
ware configuration for the system, rather
than both hardware and software. In some
cases, this is because the reconfigurable
hardware may not be coupled with a host
processor, so only a hardware configura-
tion is necessary. For cases where recon-
figurable hardware does operate alongside
a host microprocessor, some systems cur-
rently require that the hardware compila-
tion be performed separately from the soft-
ware compilation, and special functions
are called from within the software in
order to configure and control the reconfig-
urable hardware. However, this requires
effort on the part of the designer to iden-
tify the sections that should be mapped
to hardware, and to translate these into
special hardware functions. In order to
make the use of the reconfigurable hard-
ware transparent to the designer, the par-
titioning and programming of the hard-
ware should occur simultaneously in a
single programming environment.

For compilers that manage both the
hardware and software aspects of applica-
tion design, the hardware/software parti-
tioning can be performed either manually,
or automatically by the compiler itself.
When the partitioning is performed by
the programmer, compiler directives are
used to mark sections of program code for
hardware compilation. The NAPA C lan-
guage [Gokhale and Stone 1998] provides
pragma statements to allow a program-
mer to specify whether a section of code is
to be executed in software on the Fixed In-
struction Processor (FIP), or in hardware
on the Adaptive Logic Processor (ALP).
Cardoso and Neto [1999] present another
compiler that requires the user to specify
(using information gained through the use
of profiling tools) which areas of code to
map to the reconfigurable hardware.

Alternately, the hardware/software par-
titioning can be done automatically
[Chichkov and Almeida 1997; Kress et al.
1997; Callahan et al. 2000; Li et al. 2000a].
In this case, the compiler will use cost
functions based upon the amount of ac-

celeration gained through the execution
of a code fragment in hardware to de-
termine whether the cost of configuration
is overcome by the benefits of hardware
execution.

4.2. Circuit Specification

In order to use the reconfigurable hard-
ware, designers must somehow be able to
specify the operation of their custom cir-
cuits. Before high-level compilation tools
are developed for a specific reconfigurable
system, this is done through hand map-
ping of the circuit, where the designer
specifies the operation of the components
in the configurable system directly. Here,
the designers utilize the basic building
blocks of the reconfigurable system to cre-
ate the desired circuit. This style of cir-
cuit specification is primarily useful only
when a software front-end for circuit de-
sign is unavailable, or for the design of
small circuits or circuits with very high
performance requirements. This is due
to the great amount of time involved in
manual circuit creation. However, for cir-
cuits that can be reasonably hand mapped,
this provides potentially the smallest and
fastest implementation.

Because not all designers can be inti-
mately familiar with every reconfigurable
architecture, some design tools abstract
the specifics of the target architecture.
Creating a circuit using a structural de-
sign language involves describing a cir-
cuit using building blocks such as gates,
flip-flops and latches [Bellows and Hutch-
ings 1998; Gehring and Ludwig 1998;
Hutchings et al. 1999]. The compiler then
maps these modules to one or more ba-
sic components of the architecture of the
reconfigurable system. Structural VHDL
is one example of this type of program-
ming, and commercial tools are avail-
able for compiling from this language
into vendor-specific FPGAs [Synplicity
1999].

However, these two methods require
that the designer possess either an in-
timate knowledge of the targeted recon-
figurable hardware, or at least a work-
ing knowledge of the concepts involved

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

190 K. Compton and S. Hauck

in hardware design. In order to allow
a greater number of software developers
to take advantage of reconfigurable com-
puting, tools that allow for behavioral
circuit descriptions are being developed.
These systems trade some area and per-
formance quality for greater flexibility and
ease of use.

Behavioral circuit design is similar to
software design because the designer in-
dicates the steps a hardware subsys-
tem must go through in order to per-
form the desired computation rather than
the actual composition of the circuit.
These behavioral descriptions can be ei-
ther in a generic hardware description
language such as VHDL or Verilog, or a
general-purpose high-level language such
as C/C++ or Java. The eventual goal of
this type of compilation is to allow users
to write programs in commonly used lan-
guages that compile equally well, with-
out modification, to both a traditional
software executable and to an executable
which leverages reconfigurable hardware.

Working towards this direction,
Transmogrifier C [Galloway 1995] al-
lows a subset of the C language to be
used to describe hardware circuits. While
multiplication, division, pointers, arrays,
and a few other C language specifics are
not supported, this system provides a
behavioral method of circuit description
using a primitive form of the C language.
Similarly, the C++ programming environ-
ment used for the P1 system [Vuillemin
et al. 1996] provides a hybrid method of
description, using a combination of be-
havioral and structural design. Synopsys’
CoCentric compiler [Synopsys 2000],
which can be targeted to the Xilinx Virtex
series of FPGA, uses SystemC to provide
for behavioral compilation of C/C++
with the assistance of a set of additional
hardware-defining classes. Other compil-
ers, such as Nimble [Li et al. 2000a] and
the Garp compiler [Callahan et al. 2000],
are fully behavioral C compilers, handling
the full set of the ANSI C language.

Although behavioral description, and
HLL description in particular, provides
a convenient method for the program-
ming of reconfigurable systems, it does

suffer from the drawback that it tends to
produce larger and slower designs than
those generated by a structural descrip-
tion or hand-mapping. Behavioral descrip-
tions can leave many aspects of the cir-
cuit unspecified. For example, a compiler
that encounters a while loop must gener-
ate complicated control structures in or-
der to allow for an unspecified number
of iterations. Also, in many HLL imple-
mentations, optimizations based upon the
bit width of operands cannot be performed.
The compiler is generally unaware of
any application-specific limitations on the
operand size; it only sees the program-
mer’s choice of data format in the program.
Problems such as these might be solved
through additional programmer effort to
replace while loops whenever possible
with for loops, and to use compiler direc-
tives to indicate exact sizes of operands
[Galloway 1995; Gokhale and Stone 1998].
This method of hardware design falls be-
tween structural description and behav-
ioral description in complexity, because
although the programmers do not need
to know a great deal about hardware de-
sign, they are required to follow addi-
tional guidelines that are not required for
software-only implementations.

4.3. Circuit Libraries

The use of circuit or macro libraries
can greatly simplify and speed the de-
sign process. By predesigning commonly
used structures such as adders, mul-
tipliers, and counters, circuit creation
for configurable systems becomes largely
the assembly of high-level components,
and only application-specific structures
require detailed design. The actual ar-
chitecture of the reconfigurable device
can be abstracted, provided only library
components are used, as these low-level
details will already have been encapsu-
lated within the library structures. Al-
though the users of the circuit library
may not know the intricacies of the des-
tination architecture, they are still able
to make use of architecture-specific op-
timizations, such as specialized carry

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 191

chains. This is because designers very
familiar with the details of the target ar-
chitecture create the components within a
circuit library. They can take advantage
of architecture specifics when creating the
modules to make these components faster
and smaller than a designer unfamiliar
with the architecture likely would. An
added benefit of the architecture abstrac-
tion is that the use of library components
can also facilitate design migration from
one architecture to another, because de-
signers are not required to learn a new
architecture, but only to indicate the new
target for the library components. How-
ever, this does require that a circuit li-
brary contain implementations for more
than one architecture.

One method for using library com-
ponents is to simply instantiate them
within an HDL design [Xilinx 1997; Altera
1999]. However, circuit libraries can also
be used in general language compil-
ers by comparing the dataflow graph of
the application to the dataflow graphs
of the library macros [Cadambi and
Goldstein 1999]. If a dataflow represen-
tation of a macro matches a portion of
the application graph, the correspond-
ing macro is used for that part of the
configuration.

Another benefit of circuit design with
library macros is that of fast compila-
tion. Because the library structures may
have been premapped, preplaced, and pre-
routed (at least within the macro bound-
aries), the actual compile time is reduced
to the time required to place the library
components and route between them. For
example, fast configuration was one of
the main motivations for the creation of
libraries for circuit design in the DISC
reconfigurable image processing system
[Hutchings 1997].

4.4. Circuit Generators

Circuit generators fulfill a role similar to
circuit libraries, in that they provide opti-
mized high-level structures for use within
larger applications. Again, designers are
not required to understand the low-level
details of particular architectures. How-

ever, circuit generators create semicus-
tomized high-level structures automati-
cally at compile time, as opposed to circuit
libraries that only provide static struc-
tures. For example, a circuit generator can
create an adder structure of the exact bit
width required by the designer, whereas a
circuit library is likely to contain a limited
number of adder structures, none of which
may be of the correct size. Circuit gener-
ators are therefore more flexible than cir-
cuit libraries because of the customization
allowed.

Some circuit generators, such as
MacGen [Yasar et al. 1996], are executed
at the command line using custom de-
scription files to generate physical design
layout data files. Newer circuit genera-
tors, however, are functions or methods
called from high-level language programs.
PAM-Blox [Mencer et al. 1998], for exam-
ple, is a set of circuit generators executed
in C++ that generate structures for use
with the PCI Pamette reconfigurable
processing board. The circuit generator
presented by Chu et al. [1998] contains
a number of Java classes to allow a
programmer to generate arbitrarily sized
arithmetic and logical components for a
circuit. Although the examples presented
in that paper were mapped to a Xilinx
4000 series FPGA, the generator uses
architecture specific libraries for module
generation. The target architecture can
therefore be changed through the use
of a different design library. The Carry
Look-Ahead circuit generator described
by Stohmann and Barke [1996] is also
retargetable, because it maps to an
FPGA logic cell architecture defined by
the user.

One drawback of the circuit generators
is that they depend on a regular logic
and routing structure. Hierarchical rout-
ing structures (such as those present in
the Xilinx 6200 series [Xilinx 1996]) and
specialized heterogeneous logic blocks are
frequently not accounted for. Therefore,
some optimized features of a particular ar-
chitecture may be unused. For these cases,
a circuit macro from a library may pro-
vide a more highly optimized structure
than one created with a circuit generator,

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

192 K. Compton and S. Hauck

provided that the library macro fits the
needs of the application.

4.5. Partial Evaluation

Functions that are to be implemented on
the reconfigurable array should occupy
as little area as possible, so as to maxi-
mize the number of functions that can be
mapped to the hardware. This, combined
with the minimization of the delay in-
curred by each circuit, increases the over-
all acceleration of the application. Partial
evaluation is the process of reducing hard-
ware requirements for a circuit structure
through optimization based upon known
static inputs. Specifically, if an input is
known to be constant, that value can po-
tentially be propagated through one or
more gates in the structure at compile
time, and only the portions of a circuit that
depend on time-varying inputs need to be
mapped to the reconfigurable structure.

One example of the usefulness of this
operation is that of constant coefficient
multipliers. If one input to a multiplier
is constant, a multiplier object can be re-
duced from a general-purpose multiplier
to a set of additions with static-length
shifts between them corresponding to the
locations of 1s in the binary constant.
This type of reduction leads to a lower
area requirement for the circuit, and po-
tentially higher performance due to fewer
gate delays encountered on the critical
path. Partial evaluation can also be per-
formed in conjunction with circuit gener-
ation, where the constants passed to the
generator function are used to simplify
the created hardware circuit [Wang and
Lewis 1997; Chu et al. 1998]. Other exam-
ples of this type of optimization for specific
algorithms include the partial evaluation
of DES encryption circuits [Leonard and
Mangione-Smith 1997], and the partial
evaluation of constant multipliers and
fixed polynomial division circuits [Payne
1997].

4.6. Memory Allocation

As with traditional software programs, it
may be necessary in reconfigurable com-

puting to allocate memories to hold vari-
ables and other data. Off-chip memories
may be added to the reconfigurable sys-
tem. Alternately, if a reconfigurable sys-
tem includes memory blocks embedded
into the reconfigurable logic, these may be
used, provided that the storage require-
ments do not surpass the available embed-
ded memory. If multiple off-chip memories
are available to a reconfigurable system,
variables used in parallel should be placed
into different memory structures, such
that they can be accessed simultaneously
[Gokhale and Stone 1999]. When smaller
embedded memory units are used, larger
memories can be created from the smaller
ones. However, in this case, it is desir-
able to ensure that each smaller mem-
ory is close to the computation that most
requires its contents [Babb et al. 1999].
As mentioned earlier, the small embed-
ded memories that are not allocated for
data storage may be used to perform logic
functions.

4.7. Parallelization

One of the benefits of reconfigurable com-
puting is the ability to execute multi-
ple operations in parallel. In cases where
circuits are specified using a structural
hardware description language, the user
specifies all structures and timing, and
therefore either implicitly or explicitly
specifies any parallel operation. However,
for behavioral and HLL descriptions, there
are two methods to incorporate paral-
lelism: manual parallelization through
special instructions or compiler direc-
tives, and automatic parallelization by the
compiler.

To manually incorporate parallelism
within an application, the programmer
can specifically mark sections of code
that should run as parallel threads, and
use similar operations to those used in
traditional parallel compilers [Cronquist
et al. 1998; Gokhale and Stone 1998].
For example, a signal/wait technique can
be used to perform synchronization of
the different threads of the computation.
The RaPiD-B language [Cronquist et al.
1998] is one that uses this methodology.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 193

Although the NAPA C compiler [Gokhale
and Stone 1998] requires programmers
to mark the areas of code for executing
the host processor and the reconfigurable
hardware in parallel, it also detects and
exploits fine-grained parallelism within
computations destined for the reconfig-
urable hardware.

Automatic parallelization of inner loops
is another common technique in recon-
figurable hardware compilers to attempt
to maximize the use of the reconfig-
urable hardware. The compiler will se-
lect the innermost loop level to be com-
pletely unrolled for parallel execution in
hardware, potentially creating a heav-
ily pipelined structure [Cronquist et al.
1998; Weinhardt and Luk 1999]. For these
cases, outer loops may not have multi-
ple iterations executing simultaneously.
Any loop reordering to improve the par-
allelism of the circuit must be done by the
programmer. However, some compiler sys-
tems have taken this procedure a step fur-
ther and focus on the parallelization of all
loops within the program, not just the in-
ner loops [Wang and Lewis 1997; Budiu
and Goldstein 1999]. This type of compiler
generates a control flow graph based upon
the entire program source code. Loop un-
rolling is used in order to increase the
available parallelism, and the graph is
then used to schedule parallel operations
in the hardware.

4.8. Multi-FPGA System Software

When reconfigurable systems use more
than one FPGA to form the complete
reconfigurable hardware, there are ad-
ditional compilation issues to deal with
[Hauck and Agarwal 1996]. The design
must first be partitioned into the differ-
ent FPGA chips [Hauck 1995; Acock and
Dimond 1997; Vahid 1997; Brasen and
Saucier 1998; Khalid 1999]. This is gen-
erally done by placing each highly con-
nected portions of a circuit into a single
chip. Multi-FPGA systems have a limited
number of I/O pins that connect the chips
together, and therefore their use must be
minimized in the overall circuit mapping.
Also, by minimizing the amount of routing

required between the FPGAs, the num-
ber of paths with a high (inter-chip) de-
lay is reduced, and the circuit may have
an overall higher performance. Similarly,
those sections of the circuit that require a
short delay time must be placed upon the
same chip. Global placement then deter-
mines which of the actual FPGAs in the
multi-FPGA system will contain each of
the partitions.

After the circuit has been partitioned
into the different FPGA chips, the con-
nections between the chips must be
routed [Mak and Wong 1997; Ejnioui and
Ranganathan 1999]. A global routing al-
gorithm determines at a high level the
connections between the FPGA chips. It
first selects a region of output pins on the
source FPGA for a given signal, and de-
termines which (if any) routing switches
or additional FPGAs the signal must
pass through to get to the destination
FPGA. Detailed routing and pin assign-
ment [Slimane-Kade et al. 1994; Hauck
and Borriello 1997; Mak and Wong 1997;
Ejnioui and Ranganathan 1999] are then
used to assign signals to traces on an exist-
ing multi-FPGA board, or to create traces
for a multi-FPGA board that is to be cre-
ated specifically to implement the given
circuit.

Because multi-FPGA systems use inter-
chip connections to allow the circuit parti-
tions to communicate, they frequently re-
quire a higher proportion of I/O resources
vs. logic in each chip than is normally re-
quired in single-FPGA use. For this rea-
son, some research has focused on meth-
ods to allow pins of the FPGAs to be reused
for multiple signals. This procedure is re-
ferred to as Virtual Wires [Babb et al.
1993; Agarwal 1995; Selvidge et al. 1995],
and allows for a flexible trade-off between
logic and I/O within a given multi-FPGA
system. Signals are multiplexed onto a
single wire by using multiple virtual clock
cycles, one per multiplexed signal, within
a user clock cycle, thus pipelining the com-
munication. In this manner, the I/O re-
quirements of a circuit can be reduced,
while the logic requirements (because of
the added circuitry used for the multiplex-
ing) are increased.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

194 K. Compton and S. Hauck

4.9. Design Testing

After compilation, an application needs
to be tested for correct operation be-
fore deployment. For hardware configu-
rations that have been generated from
behavioral descriptions, this is similar
to the debugging of a software applica-
tion. However, structurally and manu-
ally created circuits must be simulated
and debugged with techniques based upon
those from the design of general hard-
ware circuits. For these structures, simu-
lation and debugging are critical not only
to ensure proper circuit operation, but
also to prevent possible incorrect connec-
tions from causing a short within the cir-
cuit, which can damage the reconfigurable
hardware.

There are several different methods of
observing the behavior of a configuration
during simulation. The contents of mem-
ory structures within the design can be
viewed, modified, or saved. This allows on-
the-fly customization of the simulated ex-
ecution environment of the reconfigurable
hardware, as well as a method for exam-
ining the computation results. The input
and output values of circuit structures and
substructures can also be viewed either on
a generated schematic drawing or with a
traditional waveform output. By examin-
ing these values, the operation of the cir-
cuit can be verified for correctness, and
conflicts on individual wires can be seen.
A number of simulation and debugging
software systems have been developed
that use some or all of these techniques
[Arnold et al. 1992; Buell et al. 1996;
Gehring and Ludwig 1996; Lysaght and
Stockwood 1996; Bellows and Hutchings
1998; Hutchings et al. 1999; McKay and
Singh 1999; Vasilko and Cabanis 1999].

4.10. Software Summary

Reconfigurable hardware systems require
software compilation tools to allow pro-
grammers to harness the benefits of
reconfigurable computing. On one end
of the spectrum, circuits for reconfig-
urable systems can be designed manu-
ally, leveraging all application-specific and

architecture-specific optimizations avail-
able to generate a high-performance ap-
plication. However, this requires a great
deal of time and effort on the part of the de-
signer. At the opposite end of the spectrum
is fully automatic compilation of a high-
level language. Using the automatic tools,
a software programmer can transparently
utilize the reconfigurable hardware with-
out the need for direct intervention. The
circuits created using this method, while
quickly and easily created, are generally
larger and slower than manually created
versions. The actual tools available for
compilation onto reconfigurable systems
fall at various points within this range,
where many are partially automated but
require some amount of manual aid. Cir-
cuit designers for reconfigurable systems
therefore face a trade-off between the ease
of design and the quality of the final
layout.

5. RUN-TIME RECONFIGURATION

Frequently, the areas of a program that
can be accelerated through the use of
reconfigurable hardware are too numer-
ous or complex to be loaded simultane-
ously onto the available hardware. For
these cases, it is beneficial to be able
to swap different configurations in and
out of the reconfigurable hardware as
they are needed during program execution
(Figure 13). This concept is known as run-
time reconfiguration (RTR).

Run-time reconfiguration is based upon
the concept of virtual hardware, which is
similar to virtual memory. Here, the phys-
ical hardware is much smaller than the
sum of the resources required by each
of the configurations. Therefore, instead
of reducing the number of configurations
that are mapped, we instead swap them
in and out of the actual hardware as they
are needed. Because run-time reconfigu-
ration allows more sections of an appli-
cation to be mapped into hardware than
can be fit in a non-run-time reconfig-
urable system, a greater portion of the
program can be accelerated. This provides
potential for an overall improvement in
performance.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 195

Fig. 13 . Applications which are too large to entirely fit on the reconfigurable
hardware can be partitioned into two or more smaller configurations that
can occupy the hardware at different times.

During a single program’s execution,
configurations are swapped in and out
of the reconfigurable hardware. Some of
these configurations will likely require ac-
cess to the results of other configurations.
Configurations that are active at differ-
ent periods in time therefore must be pro-
vided with a method to communicate with
one another. Primarily, this can be done
through the use of registers [Ebeling et al.
1996; Cadambi et al. 1998; Rupp et al.
1998; Scalera and Vazquez 1998], the con-
tents of which can remain intact between
reconfigurations. This allows one configu-
ration to store a value, and a later config-
uration to read back that value for use in
further computations. An alternative for
reconfigurable systems that do not include
state-holding devices is to write the result
back to registers or memory external to the
reconfigurable array, which is then read
back by successive configurations [Hauck
et al. 1997].

There are a few different configuration
memory styles that can be used with re-
configurable systems. A single context de-
vice is a serially programmed chip that
requires a complete reconfiguration in or-
der to change any of the programming bits.
A multicontext device has multiple layers
of programming bits, each of which can
be active at a different point in time. De-
vices that can be selectively programmed
without a complete reconfiguration are
called partially reconfigurable. These dif-
ferent types of configuration memory are
described in more detail later. An advan-
tage of the multicontext FPGA over a

single context architecture is that it al-
lows for an extremely fast context switch
(on the order of nanoseconds), whereas the
single context may take milliseconds or
more to reprogram. The partially reconfig-
urable architecture is also more suited to
run-time reconfiguration than the single
context, because small areas of the array
can be modified without requiring that the
entire logic array be reprogrammed.

For all of these run-time reconfigurable
architectures, there are also a number of
compilation issues that are not encoun-
tered in systems that only configure at
the beginning of an application. For ex-
ample, run-time reconfigurable systems
are able to optimize based on values that
are known only at run-time. Furthermore,
compilers must consider the run-time re-
configurability when generating the dif-
ferent circuit mappings, not only to be
aware of the increase in time-multiplexed
capacity, but also to schedule reconfigura-
tions so as to minimize the overhead that
they incur. These software issues, as well
as an overview of methods to perform fast
configuration, will be explored in the sec-
tions that follow.

5.1. Reconfigurable Models

Traditional FPGA structures have been
single context, only allowing one full-chip
configuration to be loaded at a time. How-
ever, designers of reconfigurable systems
have found this style of configuration
to be too limiting or slow to efficiently
implement run-time reconfiguration. The

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

196 K. Compton and S. Hauck

Fig. 14 . The different basic models of reconfigurable computing: single context, multicon-
text, and partially reconfigurable. Each of these designs is shown performing a reconfigu-
ration.

following discussion defines the single con-
text device, and further considers newer
FPGA designs (multicontext and partially
reconfigurable), along with their impact
on run-time reconfiguration.

5.1.1. Single Context. Current single
context FPGAs are programmed using
a serial stream of configuration infor-
mation. Because only sequential access
is supported, any change to a configu-
ration on this type of FPGA requires a
complete reprogramming of the entire
chip. Although this does simplify the
reconfiguration hardware, it does incur
a high overhead when only a small part
of the configuration memory needs to be
changed. Many commercial FPGAs are of
this style, including the Xilinx 4000 se-
ries [Xilinx 1994], the Altera Flex10K
series [Altera 1998], and Lucent’s Orca
series [Lucent 1998]. This type of FPGA
is therefore more suited for applications
that can benefit from reconfigurable com-
puting without run-time reconfiguration.
A single context FPGA is depicted in
Figure 14.

In order to implement run-time recon-
figuration onto a single context FPGA, the
configurations must be grouped into con-
texts, and each full context is swapped in
and out of the FPGA as needed. Because
each of these swap operations involve re-
configuring the entire FPGA, a good parti-
tioning of the configurations between con-
texts is essential in order to minimize the

total reconfiguration delay. If all the con-
figurations used within a certain time pe-
riod are present in the same context, no
reconfiguration will be necessary. How-
ever, if a number of successive configura-
tions are each partitioned into different
contexts, several reconfigurations will be
needed, slowing the operation of the run-
time reconfigurable system.

5.1.2. Multicontext. A multicontext FPGA
includes multiple memory bits for each
programming bit location [DeHon 1996;
Trimberger et al. 1997a; Scalera and
Vazquez 1998; Chameleon 2000]. These
memory bits can be thought of as mul-
tiple planes of configuration information,
as shown in Figure 14. One plane of con-
figuration information can be active at a
given moment, but the device can quickly
switch between different planes, or con-
texts, of already-programmed configura-
tions. In this manner, the multicontext de-
vice can be considered a multiplexed set of
single context devices, which requires that
a context be fully reprogrammed to per-
form any modification. This system does
allow for the background loading of a con-
text, where one plane is active and in ex-
ecution while an inactive place is in the
process of being programmed. Figure 15
shows a multicontext memory bit, as used
in [Trimberger et al. 1997a]. A commer-
cial product that uses this technique is the
CS2000 RCP series from Chameleon, Inc
[Chameleon 2000]. This device provides

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 197

Fig. 15 . A four-bit multicontexted programming bit
[Trimberger et al. 1997a]. P0-P3 are the stored
programming bits, while C0-C3 are the chip-wide
control lines that select the context to program or
activate.

two separate planes of programming in-
formation. At any given time, one of these
planes is controlling current execution on
the reconfigurable fabric, and the other
plane is available for background loading
of the next needed configuration.

Fast switching between contexts makes
the grouping of the configurations into
contexts slightly less critical, because if
a configuration is on a different context
than the one that is currently active, it can
be activated within an order of nanosec-
onds, as opposed to milliseconds or longer.
However, it is likely that the number of
contexts within a given program is larger
than the number of contexts available in
the hardware. In this case, the partition-
ing again becomes important to ensure
that configurations occurring in close tem-
poral proximity are in a set of contexts
that are loaded into the multicontext de-
vice at the same time. More aspects involv-
ing temporal partitioning for single- and
multicontext devices will be discussed in
the section on compilers for run-time re-
configurable systems.

5.1.3. Partially Reconfigurable. In some
cases, configurations do not occupy the full
reconfigurable hardware, or only a part of
a configuration requires modification. In
both of these situations, a partial recon-
figuration of the array is required, rather
than the full reconfiguration required by
a single- or multicontext device. In a par-
tially reconfigurable FPGA, the underly-
ing programming bit layer operates like
a RAM device. Using addresses to spec-
ify the target location of the configuration
data allows for selective reconfiguration
of the array. Frequently, the undisturbed

portions of the array may continue execu-
tion, allowing the overlap of computation
with reconfiguration. This has the benefit
of potentially hiding some of the reconfig-
uration latency.

When configurations do not require the
entire area available within the array, a
number of different configurations may
be loaded into unused areas of the hard-
ware at different times. Since only part
of the array is reconfigured at a given
point in time, the entire array does not re-
quire reprogramming. Additionally, some
applications require the updating of only
a portion of a mapped circuit, while the
rest should remain intact, as shown in
Figure 14. For example, in a filtering op-
eration in signal processing, a set of con-
stant values that change slowly over time
may be reinitialized to a new value, yet the
overall computation in the circuit remains
static. Using this selective reconfiguration
can greatly reduce the amount of configu-
ration data that must be transferred to the
FPGA. Several run-time reconfigurable
systems are based upon a partially re-
configurable design, including Chimaera
[Hauck et al. 1997], PipeRench [Cadambi
et al. 1998; Goldstein et al. 2000], NAPA
[Rupp et al. 1998], and the Xilinx 6200 and
Virtex FPGAs [Xilinx 1996, 1999].

Unfortunately, since address informa-
tion must be supplied with configura-
tion data, the total amount of information
transferred to the reconfigurable hard-
ware may be greater than what is required
with a single context design. This makes
a full reconfiguration of the entire array
slower than the single context version.
However, a partially reconfigurable design
is intended for applications in which the
size of the configurations is small enough
that more than one can fit on the available
hardware simultaneously. Plus, as we dis-
cuss in subsequent sections, a number of
fast configuration methods have been ex-
plored for partially reconfigurable systems
in order to help reduce the configuration
data traffic requirements.

5.1.4. Pipeline Reconfigurable. A modifi-
cation of the partially reconfigurable
FPGA design is one in which the partial

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

198 K. Compton and S. Hauck

Fig. 16 . A timeline of the configuration and reconfiguration of pipeline stages on a pipeline
reconfigurable FPGA. This example shows three physical pipeline stages implementing five
virtual pipeline stages [Cadambi et al. 1998].

reconfiguration occurs in increments of
pipeline stages. This style of reconfig-
urable hardware is called pipeline recon-
figurable, or sometimes a striped FPGA
[Luk et al. 1997b; Cadambi et al. 1998;
Deshpande and Somani 1999; Goldstein
et al. 2000]. Each stage is configured as a
whole. This is primarily used in datapath-
style computations, where more pipeline
stages are used than can fit simultane-
ously on available hardware. Figure 16
shows an example of a pipeline reconfig-
urable array implementing more pipeline
stages than can fit on the available hard-
ware. In a pipeline-reconfigurable FPGA,
there are two primary execution possi-
bilities. Either the number of hardware
pipeline stages available is greater than
or equal to the number of pipeline stages
of the designed circuit (virtual pipeline
stages), or the number of virtual pipeline
stages will exceed the number of hardware
pipeline stages. The first case is straight-
forward: the circuit is simply mapped to
the array, and some hardware stages may
go unused. The second case is more com-
plex and is the one that requires run-
time reconfiguration. The pipeline stages
are configured one by one, from the start
of the pipeline, through the end of the
available hardware stages (steps 1, 2,
and 3 in Figure 16). After each stage is
programmed, it begins computation. In
this manner, the configuration of a stage
is exactly one step ahead of the flow of
data. Once the hardware pipeline has
been completely filled, reuse of the hard-
ware pipeline stages begins. Configura-
tion of the next virtual stage begins at

the first pipeline location in the hard-
ware (step 4), overwriting the first virtual
pipeline stage. The reconfiguration of the
hardware pipeline stages continues until
the last virtual pipeline stage has been
programmed (step 7), at which point the
first stage of the virtual pipeline is again
configured onto the hardware for the next
data set. These structures also allow for
the overlap of configuration and execution,
as one pipeline stage is configured while
the others are executing. Therefore, N-1
data values are processed each time the
virtual pipeline is fully traversed on an
N-stage hardware system.

5.2. Run-Time Partial Evaluation

One of the advantages that a run-time re-
configurable device has over a system that
is only programmed at the beginning of
an application is the ability to perform
hardware optimizations based upon val-
ues determined at run-time. Partial evalu-
ation was already discussed in this article
in reference to compilation optimizations
for general reconfigurable systems. Run-
time partial evaluation allows for the fur-
ther exploitation of “constants” because
the configurations can be modified based
not only on completely static values, but
also those that change slowly over time
[Burns et al. 1997; Luk et al. 1997a; Payne
1997; Wirthlin and Hutchings 1997; Chu
et al. 1998; McKay and Singh 1999]. This
gives reconfigurable circuits the potential
to achieve an even higher performance
than an ASIC, which must retain gener-
ality in these situations. The circuit in the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 199

reconfigurable system can be customized
to the application at a given time, rather
than to the application as a category. For
example, where an ASIC may have to
include a generic multiplier, a reconfig-
urable system could instantiate a constant
coefficient multiplier that changes over
time. Additionally, partial evaluation can
be used in encryption systems [Leonard
and Mangione-Smith 1997]. A key-specific
reconfigurable encrypter or decrypter is
optimized for the particular key being
used, but retains the ability to use more
than one key over the lifetime of the hard-
ware (unlike a key-specialized ASIC) or
during actual run-time.

Although partial evaluation can be used
to reduce the overall area requirements
of a circuit by removing potentially ex-
traneous hardware within the implemen-
tation, occasionally it is preferable to re-
serve sufficient area for the largest case,
and have all mappings occupy that area.
This allows the partially evaluated por-
tion of a given configuration to be reconfig-
ured, while leaving the remainder of the
circuit intact. For example, if a constant
coefficient multiplier within a larger con-
figuration requires that the constant be
changed, only the area occupied by the
multiplier requires reconfiguration. This
is true even if the new constant coefficient
multiplier is a larger structure than the
previous one, because the reserved area
for it is based upon the largest possibility
[McKay and Singh 1999]. Although par-
tial evaluation does not minimize the area
occupied by the circuit in this case, the
speed of configuration is improved by mak-
ing the multiplier a modular replaceable
component. Additionally, this method re-
tains the speed benefits of partial recon-
figuration because it still minimizes the
logic and routing actually used to imple-
ment the structure.

5.3. Compilation and Configuration
Scheduling

For some reconfigurable systems, a con-
figuration requires programming the re-
configurable hardware only at the start
of its execution. On the other hand, in a

run-time reconfigurable system, the cir-
cuits loaded on the hardware change over
time. If the user must specify by hand
the loading and execution of the circuits
in the reconfigurable hardware, then the
compilers must include methods to indi-
cate these operations. JHDL [Bellows and
Hutchings 1998; Hutchings et al. 1999] is
one such compiler. It provides for the in-
stantiation of configurations through the
use of Java constructors, and the removal
of the circuits from the hardware by using
a destructor on the circuit objects. This al-
lows the programmer to indicate exactly
the loading pattern of the configurations.

Alternately, the compiler can automate
the use of the run-time reconfigurable
hardware. For a single context or multi-
context device, configurations must be
temporally partitioned into a number of
different full contexts of configuration
information. This involves determining
which configurations are likely to be used
near in time to one another, and which
configurations are able to fit together onto
the reconfigurable hardware. Ideally, the
number of reconfigurations that are to be
performed is minimized. By reducing the
number of reconfigurations, the propor-
tion of time spent in reconfiguration (com-
pared to the time spent in useful compu-
tation) is reduced.

The problem of forming and schedul-
ing single- and multiconfiguration con-
texts for use in single context or multicon-
text FPGA designs has been discussed by
a number of groups [Chang and Marek-
Sadowska 1998; Trimberger 1998; Liu and
Wong 1999; Purna and Bhatia 1999; Li
et al. 2000a]. In particular, a single cir-
cuit that is too large to fit within the re-
configurable hardware may be partitioned
over time to form a sequential set of con-
figurations. This involves examining the
control flow graph of the circuit and divid-
ing the circuit into distinct computation
nodes. The nodes can then be grouped to-
gether within contexts, based upon their
proximity to one another within the flow
control graph. If possible, those config-
urations that are used in quick succes-
sion will be placed within the same group.
These groups are finally mapped into full

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

200 K. Compton and S. Hauck

contexts, to be loaded into the reconfig-
urable hardware at run-time. Nimble [Li
et al. 2000a] is one of the compilers that
perform this type of operation. This com-
piler focuses on mapping core loops within
C code to reconfigurable hardware. Hard-
ware models for the candidate loops that
will fit within the reconfigurable hardware
are first extracted from the C application.
Then these loops are grouped into indi-
vidual configurations using a partitioning
method in order to encourage the hard-
ware loops that are used in close temporal
proximity to be mapped to the same config-
uration, reducing configuration overhead.

For partially reconfigurable designs, the
compiler must determine a good place-
ment in order to prevent configurations
that are used together in close temporal
proximity from occupying the same re-
sources. Again, through minimizing the
number of reconfigurations, the overall
performance of the system is increased, as
configuration is a slow process [Li et al.
2000b]. An alternative approach, which
allows the final placement of a configura-
tion to be determined at run-time, is also
discussed within the Fast Configuration
section of this article.

5.4. Fast Configuration

Because run-time reconfigurable systems
involve reconfiguration during program
execution, the reconfiguration must be
done as efficiently and as quickly as pos-
sible. This is in order to ensure that the
overhead of the reconfiguration does not
eclipse the benefit gained by hardware ac-
celeration. Stalling execution of either the
host processor or the reconfigurable hard-
ware because of configuration is clearly
undesirable. In the DISC II system, from
25% [Wirthlin and Hutchings 1996] to 71%
[Wirthlin and Hutchings 1995] of execu-
tion time is spent in reconfiguration, while
in the UCLA ATR work this figure can rise
to over 98.5% [Mangione-Smith 1999]. If
the delays caused by reconfiguration are
reduced, performance can be greatly in-
creased. Therefore, fast configuration is an
important area of research for run-time re-
configurable systems.

There are a number of different tactics
for reducing the configuration overhead.
First, loading of the configurations can be
timed such that the configuration over-
laps as much as possible with the execu-
tion of instructions by the host processor.
Second, compression techniques can be in-
troduced to decrease the amount of config-
uration data that must be transferred to
the system. Third, specialized hardware
can be used to adjust the physical loca-
tion of configurations at run-time based on
where the free area on the hardware is lo-
cated at any given time. Finally, the actual
process of transferring the data from the
host processor to the reconfigurable hard-
ware can be modified to include a configu-
ration cache, which would provide a faster
reconfiguration.

5.4.1. Configuration Prefetching. Perfor-
mance is improved when the actual con-
figuration of the hardware is overlapped
with computations performed by the
host processor, because programming the
reconfigurable hardware requires from
milliseconds to seconds to accomplish.
Overlapping configuration and execution
prevents the host processor from stalling
while it is waiting for the configuration to
finish, and hides the configuration time
from the program execution. Configura-
tion prefetching [Hauck 1998a] attempts
to leverage this overlap by determining
when to initiate reconfiguration of the
hardware in order to maximize overlap
with useful computation on the host
processor. It also seeks to minimize the
chance that a configuration will be pre-
fetched falsely, overwriting the configura-
tion that is actually used next.

5.4.2. Configuration Compression. Unfor-
tunately, there will always be cases in
which the configuration overheads cannot
be successfully hidden using a prefetch-
ing technique. This can occur when a con-
ditional branch occurs immediately be-
fore the use of a configuration, potentially
making a 100% correct prefetch predic-
tion impossible, or when multiple config-
urations or contexts must be loaded in
quick succession. In these cases, the delay
incurred is minimized when the amount

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 201

of data transferred from the host proces-
sor to the reconfigurable array is mini-
mized. Configuration compression can be
used to compact this configuration infor-
mation [Hauck et al. 1998b; Hauck and
Wilson 1999; Li and Hauck 1999; Dandalis
and Prasanna 2001].

One form of configuration compression
has already been implemented in a com-
mercial system. The Xilinx 6200 series of
FPGA [Xilinx 1996] contains wildcarding
hardware, which provides a method to pro-
gram multiple logic cells with a single ad-
dress and data value. This is accomplished
by setting a special register to indicate
which of the address bits should behave
as “don’t-care” values, resolving to multi-
ple addresses for configuration. For exam-
ple, suppose two configuration addresses,
00010 and 00110, are both to be pro-
grammed with the same value. By setting
the wildcard register to 00100, the address
value sent is interpreted as 00X10 and
both these locations are programmed us-
ing either of the two addresses above in a
single operation. Hauck et al. [1998b] dis-
cuss the benefits of this hardware, while
Li and Hauck [1999] cover a potential ex-
tension to the concept, where “don’t care”
values in the configuration stream can be
used to allow areas with similar but not
identical configuration data values to also
be programmed simultaneously.

Within partially reconfigurable sys-
tems, there is an added potential to com-
press effectively the amount of data sent
to the reconfigurable hardware. A con-
figuration can possibly reuse configura-
tion information already present on the
array, such that only the areas differing
in configuration values must be repro-
grammed. Therefore, configuration time
can be reduced through the identification
of these common components and the cal-
culation of the incremental configurations
that must be loaded [Luk et al. 1997a;
Shirazi et al. 1998].

Alternately, similar operations can be
grouped together to form a single con-
figuration that contains extra control cir-
cuitry in order to implement the various
functions within the group [Kastrup et al.
1999]. By creating larger configurations

out of groups of smaller configurations,
the configuration overhead of partial re-
configuration is reduced because more op-
erations can be present on chip simul-
taneously. However, there are some area
and execution penalties imposed by this
method, creating a trade-off between re-
duced reconfiguration overhead and faster
execution with a smaller area.

5.4.3. Relocation and Defragmentation in
Partially Reconfigurable Systems. Partially
reconfigurable systems have the advan-
tage over single context systems in that
they allow a new configuration to be writ-
ten to the programmable logic while the
configurations not occupying that same
area remain intact and available for future
use. Because these configurations will not
have to be reconfigured onto the array,
and because the programming of a sin-
gle configuration can require the transfer
of far less configuration data than the pro-
gramming of an entire context, a partially
reconfigurable system can incur less con-
figuration overhead than a single context
FPGA.

However, inefficiencies can arise if two
partial configurations are supposed to
be located at overlapping physical loca-
tions on the FPGA. If these configura-
tions are repeatedly used one after an-
other, they must be swapped in and out of
the array each time. This type of conflict
could negate much of the benefit achieved
by partially reconfigurable systems. A
better solution to this problem is to allow
the final placement of the configurations
to occur at run-time, allowing for run-
time relocation of those configurations
[Li et al. 2000b; Compton et al. 2002].
Using relocation, a new configuration
may be placed onto the reconfigurable
array where it will cause minimum con-
flict with other needed configurations al-
ready present on the hardware. A num-
ber of different systems support run-time
relocation, including Chimaera [Hauck
et al. 1997], Garp [Hauser and Wawrzynek
1997], and PipeRench [Cadambi et al.
1998; Goldstein et al. 2000].

Even with relocation, partially reconfig-
urable hardware can still suffer from some

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

202 K. Compton and S. Hauck

placement conflicts that could be avoided
by using an additional hardware optimiza-
tion. Over time, as a partially reconfig-
urable device loads and unloads config-
urations, the location of the unoccupied
area on the array is likely to become frag-
mented, similar to what occurs in mem-
ory systems when RAM is allocated and
deallocated. There may be enough empty
area on the device to hold an incoming
configuration, but it may be distributed
throughout the array. A configuration nor-
mally requires a contiguous region of the
chip, so it would have to overwrite a por-
tion of a valid configuration in order to
be placed onto the reconfigurable hard-
ware. A system that incorporates the abil-
ity to perform defragmentation of the re-
configurable array, however, would be able
to consolidate the unused area by mov-
ing valid configurations to new locations
[Diessel and El Gindy 1997; Compton et al.
2002]. This area can then be used by in-
coming configurations, potentially with-
out overwriting any of the moved config-
urations.

5.4.4. Configuration Caching. Because a
great deal of the delay caused by config-
uration is due to the distance between
the host processor and the reconfigurable
hardware, as well the reading of the
configuration data from a file or main
memory, a configuration cache can poten-
tially reduce the costs of reconfiguration
[Deshpande et al. 1999; Li et al. 2000b].
By storing the configurations in fast mem-
ory near to the reconfigurable array, the
data transfer during reconfiguration is ac-
celerated, and the overall time required
is reduced. Additionally, a special config-
uration cache can allow for specialized di-
rect output to the reconfigurable hardware
[Compton et al. 2000]. This output can
leverage the close proximity of the cache
by providing high-bandwidth communica-
tions that would facilitate wide parallel
loading of the configuration data, further
reducing configuration times.

5.5. Potential Problems with RTR

Partial reconfiguration involves selec-
tively programming portions of the recon-

figurable array. However, in many archi-
tectures, there are some routing resources
that traverse long distances, and may tra-
verse areas allocated to different config-
urations. Care must be taken such that
different configurations do not attempt to
drive to these wires simultaneously, as
multiple drivers to a wire can potentially
damage the hardware. Therefore, systems
such as the Xilinx 6200 [Xilinx 1996] and
Chimaera [Hauck et al. 1997] have spe-
cially designed routing resources that pre-
vent multiple drivers. LEGO [Chow et al.
1999b] includes an additional control sig-
nal preventing conflicts during the span of
time between startup and actual program-
ming of the hardware.

An additional difficulty in using run-
time reconfigurable systems occurs when
the host processor runs multiple threads
or processes. These threads or processes
may each have their own sets of config-
urations that are to be mapped to the
reconfigurable hardware. Issues such as
the correct use of memory protection and
virtual memory must be considered dur-
ing memory accesses by the reconfigurable
hardware [Chien and Byun 1999; Jacob
and Chow 1999; Jean et al. 1999]. An-
other problem can occur when one thread
or process configures the hardware, which
is then reconfigured by a different thread
or process. Threads and processes must be
prevented from incorrectly calling hard-
ware functions that no longer appear
on the reconfigurable hardware. This re-
quires that the state of the reconfigurable
hardware be set to “dirty” on a main pro-
cessor context switch, or re-loaded with
the correct configuration context.

Partially reconfigurable systems must
also protect against inter-process or inter-
thread conflicts within the array. Even
if each application has ensured that
their own configurations can safely co-
exist, a combination of configurations from
different applications re-introduces the
possibility of inadvertently causing an
electrical short within the reconfigurable
hardware. This particular issue can be
solved through the use of an architecture
that does not have “bad” configurations,
such as the 6200 series [Xilinx 1996] and

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 203

Chimaera [Hauck et al. 1997]. The po-
tential for this type of conflict also intro-
duces the possibility of extremely destruc-
tive configurations that can destroy the
system’s underlying hardware.

5.6. Run-Time Reconfiguration Summary

We have discussed the benefits of using
run-time reconfiguration to increase the
benefits gained through reconfigurable
computing. Different configurations may
be used at different phases of a program’s
execution, customizing the hardware not
only for the application, but also for the
different stages of the application. Run-
time reconfiguration also allows configu-
rations larger than the available recon-
figurable hardware to be implemented,
as these circuits can be split into sev-
eral smaller ones that are used in succes-
sion. Because of the delays associated with
configuration, this style of computing re-
quires that reconfiguration be performed
in a very efficient manner. Multicontext
and partially reconfigurable FPGAs are
both designed to improve the time re-
quired for reconfiguration. Hardware opti-
mizations, such as wildcarding, run-time
relocation, and defragmentation, fur-
ther decrease configuration overhead in
a partially reconfigurable design. Soft-
ware techniques to enable fast configura-
tion, including prefetching and incremen-
tal configuration calculation, were also
discussed.

6. CONCLUSION

Reconfigurable computing is becoming an
important part of research in computer
architectures and software systems. By
placing the computationally intense por-
tions of an application onto the reconfig-
urable hardware, that application can be
greatly accelerated. This is because recon-
figurable computing combines many of the
benefits of both software and ASIC im-
plementations. Like software, the mapped
circuit is flexible, and can be changed over
the lifetime of the system or even the
lifetime of the application. Similar to an

ASIC, reconfigurable systems provide a
method to map circuits into hardware. Re-
configurable systems therefore have the
potential to achieve far greater perfor-
mance than software as a result of bypass-
ing the fetch-decode-execute cycle of tradi-
tional microprocessors as well as possibly
exploiting a greater degree of parallelism.

Reconfigurable hardware systems come
in many forms, from a configurable func-
tional unit integrated directly into a CPU,
to a reconfigurable coprocessor coupled
with a host microprocessor, to a multi-
FPGA stand-alone unit. The level of cou-
pling, granularity of computation struc-
tures, and form of routing resources are all
key points in the design of reconfigurable
systems. The use of heterogeneous struc-
tures can also greatly add to the overall
performance of the final design.

Compilation tools for reconfigurable
systems range from simple tools that aid
in the manual design and placement of
circuits, to fully automatic design suites
that use program code written in a high-
level language to generate circuits and the
controlling software. The variety of tools
available allows designers to choose be-
tween manual and automatic circuit cre-
ation for any or all of the design steps.
Although automatic tools greatly simplify
the design process, manual creation is still
important for performance-driven appli-
cations. Circuit libraries and circuit gen-
erators are additional software tools that
enable designers to quickly create efficient
designs. These tools attempt to aid the
designer in gaining the benefits of man-
ual design without entirely sacrificing the
ease of automatic circuit creation.

Finally, run-time reconfiguration pro-
vides a method to accelerate a greater por-
tion of a given application by allowing the
configuration of the hardware to change
over time. Apart from the benefits of added
capacity through the use of virtual hard-
ware, run-time reconfiguration also allows
for circuits to be optimized based on run-
time conditions. In this manner, perfor-
mance of a reconfigurable system can ap-
proach or even surpass that of an ASIC.

Reconfigurable computing systems have
shown the ability to accelerate program

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

204 K. Compton and S. Hauck

execution greatly, providing a high-
performance alternative to software-only
implementations. However, no one hard-
ware design has emerged as the clear pin-
nacle of reconfigurable design. Although
general-purpose FPGA structures have
standardized into LUT-based architec-
tures, groups designing hardware for re-
configurable computing are currently also
exploring the use of heterogeneous struc-
tures and word-width computational ele-
ments. Those designing compiler systems
face the task of improving automatic de-
sign tools to the point where they may
achieve mappings comparable to manual
design for even high-performance applica-
tions. Within both of these research cat-
egories lies the additional topic of run-
time reconfiguration. While some work
has been done in this field as well, re-
search must continue in order to be able
to perform faster and more efficient re-
configuration. Further study into each of
these topics is necessary in order to har-
ness the full potential of reconfigurable
computing.

REFERENCES

ABOUZEID, P., BABBA, P., DE PAULET, M. C., AND SAUCIER,
G. 1993. Input-driven partitioning methods
and application to synthesis on table-lookup-
based FPGA’s. IEEE Trans. Comput. Aid. Des.
Integ. Circ. Syst. 12, 7, 913–925.

ACOCK, S. J. B. AND DIMOND, K. R. 1997. Automatic
mapping of algorithms onto multiple FPGA-
SRAM Modules. Field-Programmable Logic and
Applications, W. Luk, P. Y. K. Cheung, and
M. Glesner, Eds. Lecture Notes in Computer
Science, vol. 1304, Springer-Verlag, Berlin,
Germany, 255–264.

ADAPTIVE SILICON, INC. 2001. MSA 2500 Pro-
grammable Logic Cores. Adaptive Silicon, Inc.,
Los Gatos, CA.

AGARWAL, A. 1995. VirtualWires: A Technology
for Massive Multi-FPGA Systems. Available
online at http://www.ikos.com/products/virtual-
wires.ps.

AGGARWAL, A. AND LEWIS, D. 1994. Routing archi-
tectures for hierarchical field programmable
gate arrays. In Proceedings of the IEEE Interna-
tional Conference on Computer Design, 475–478.

ALEXANDER, M. J. AND ROBINS, G. 1996. New
performance-driven FPGA routing algorithms.
IEEE Trans. CAD Integ. Circ. Syst. 15, 12, 1505–
1517.

ALTERA CORPORATION. 1998. Data Book. Altera
Corporation, San Jose, CA.

ALTERA CORPORATION. 1999. Altera MegaCore
Functions. Available online at http://www.altera.
com/html/tools/megacore.html. Altera Corpora-
tion, San Jose, CA.

ALTERA CORPORATION. 2001. Press Release: Al-
tera Unveils First Complete System-on-a-
Programmable-Chip Solution at Embedded
Systems Conference. Altera Corporation, San
Jose, CA.

ANNAPOLIS MICROSYSTEMS, INC. 1998. Wildfire Ref-
erence Manual. Annapolis Microsystems, Inc,
Annapolis, MD.

ARNOLD, J. M., BUELL, D. A., AND DAVIS, E. G. 1992.
Splash 2. In Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, 316–
324.

BABB, J., RINARD, M., MORITZ, C. A., LEE, W., FRANK,
M., BARUA, R., AND AMARASINGHE, S. 1999. Par-
allelizing applications into silicon. IEEE Sympo-
sium on Field-Programmable Custom Comput-
ing Machines, 70–80.

BABB, J., TESSIER, R., AND AGARWAL, A. 1993. Vir-
tual wires: Overcoming pin limitations in FPGA-
based logic emulators. In IEEE Workshop
on FPGAs for Custom Computing Machines,
142–151.

BELLOWS, P. AND HUTCHINGS, B. 1998. JHDL—An
HDL for reconfigurable systems. IEEE Sympo-
sium on Field-Programmable Custom Comput-
ing Machines, 175–184.

BETZ, V. AND ROSE, J. 1997. VPR: A new packing,
placement and routing tool for FPGA research.
Lecture Notes in Computer Science 1304—Field-
Programmable Logic and Applications. W. Luk,
P. Y. K. Cheung, and M. Glesner, Eds. Springer-
Verlag, Berlin, Germany, 213–222.

BETZ, V. AND ROSE, J. 1999. FPGA routing archi-
tecture: Segmentation and buffering to optimize
speed and density. ACM/SIGDA International
Symposium on FPGAs, 59–68.

BRASEN, D. R., AND SAUCIER, G. 1998. Using cone
structures for circuit partitioning into FPGA
packages. IEEE Trans. CAD Integ. Circ. Syst. 17,
7, 592–600.

BROWN, S. D., FRANCIS, R. J., ROSE, J., AND VRANESIC,
Z. G. 1992a. Field-Programmable Gate Ar-
rays, Kluwer Academic Publishers, Boston, MA.

BROWN, S., ROSE, J., AND VRANESIC, Z. G. 1992b. A
detailed router for field-programmable gate ar-
rays. IEEE Trans. Comput. Aid. Desi. 11, 5, 620–
628.

BUDIU, M. AND GOLDSTEIN, S. C. 1999. Fast com-
pilation for pipelined reconfigurable fabrics.
ACM/SIGDA International Symposium on
FPGAs, 195–205.

BUELL, D., ARNOLD, S. M., AND KLEINFELDER, W. J.
1996. SPLASH 2: FPGAs in a Custom Comput-
ing Machine, IEEE Computer Society Press, Los
Alamitos, CA.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 205

BURNS, J., DONLIN, A., HOGG, J., SINGH, S., AND

DE WIT, M. 1997. A dynamic reconfigu-
ration run-time system. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 66–75.

BUTTS, M. AND BATCHELLER, J. 1991. Method of us-
ing electronically reconfigurable logic circuits.
US Patent 5,036,473.

CADAMBI, S. AND GOLDSTEIN, S. C. 1999. CPR: A
configuration profiling tool. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 104–113.

CADAMBI, S., WEENER, J., GOLDSTEIN, S. C., SCHMIT, H.,
AND THOMAS, D. E. 1998. Managing pipeline-
reconfigurable FPGAs. ACM/SIGDA Interna-
tional Symposium on FPGAs, 55–64.

CALLAHAN, T. J., CHONG, P., DEHON, A., AND WAWRZYNEK,
J. 1998. Fast Module Mapping and Placement
for Datapaths in FPGAs. ACM/SIGDA Interna-
tional Symposium on FPGAs, 123–132.

CALLAHAN, T. J., HAUSER, J. R., AND WAWRZYNEK, J.
2000. The Garp architecture and C compiler.
IEEE Comput. 3, 4, 62–69.

CARDOSO, J. M. P. AND NETO, H. C. 1999. Macro-
based hardware compilation of JavaTM byte-
codes into a dynamic reconfigurable computing
system. IEEE Symposium on Field-Programm-
able Custom Computing Machines, 2–11.

CHAMELEON SYSTEMS, INC. 2000. CS2000 Advance
Product Specification. Chameleon Systems, Inc.,
San Jose, CA.

CHAN, P. K. AND SCHLAG, M. D. F. 1997. Accel-
eration of an FPGA router. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 175–181.

CHANG, D. AND MAREK-SADOWSKA, M. 1998. Parti-
tioning sequential circuits on dynamically recon-
figurable FPGAs. ACM/SIGDA International
Symposium on FPGAs, 161–167.

CHANG, S. C., MAREK-SADOWSKA, M., AND HWANG, T. T.
1996. Technology mapping for TLU FPGA’s
based on decomposition of binary decision
diagrams. IEEE Trans. CAD Integ. Circ. Syst. 15,
10, 1226–1248.

CHICHKOV, A. V. AND ALMEIDA, C. B. 1997. An hard-
ware/software partitioning algorithm for cus-
tom computing machines. Lecture Notes in Com-
puter Science 1304—Field-Programmable Logic
and Applications. W. Luk, P. Y. K. Cheung,
and M. Glesner, Eds. Springer-Verlag, Berlin,
Germany, 274–283.

CHIEN, A. A. AND BYUN, J. H. 1999. Safe and pro-
tected execution for the morph/AMRM recon-
figurable processor. IEEE Symposium on Field-
Programmable Custom Computing Machines,
209–221.

CHOW, P., SEO, S. O., ROSE, J., CHUNG, K., PÁEZ-MONZÓN,
G., AND RAHARDJA, I. 1999a. The design of an
SRAM-based field-programmable Gate Array—
Part I: Architecture. IEEE Trans. VLSI Syst. 7,
2, 191–197.

CHOW, P., SEO, S. O., ROSE, J., CHUNG, K., PÁEZ-MONZÓN,
G., AND RAHARDJA, I. 1999b. The design of an
SRAM-based field-programmable Gate Array—
Part II: Circuit Design and Layout. IEEE Trans.
VLSI Syst. 7, 3, 321–330.

CHOWDHARY, A. AND HAYES, J. P. 1997. General
modeling and technology-mapping technique for
LUT-based FPGAs. ACM/SIGDA International
Symposium on FPGAs, 43–49.

CHU, M., WEAVER, N., SULIMMA, K., DEHON, A., AND

WAWRZYNEK, J. 1998. Object oriented circuit-
generators in Java. IEEE Symposium on Field-
Programmable Custom Computing Machines,
158–166.

COMPTON, K., COOLEY, J., KNOL, S., AND HAUCK,
S. 2000. Configuration relocation and defrag-
mentation for FPGAs, Northwestern Univer-
sity Technical Report, Available online at http://
www.ece.nwu.edu/∼kati/publications.html.

COMPTON, K., LI, Z., COOLEY, J., KNOL, S., AND HAUCK,
S. 2002. Configuration relocation and defrag-
mentation for run-time reconfigurable comput-
ing. IEEE Trans. VLSI Syst., to appear.

CONG, J. AND HWANG, Y. Y. 1998. Boolean match-
ing for complex PLBs in LUT-based FPGAs with
application to architecture evaluation. ACM/
SIGDA International Symposium on FPGAs,
27–34.

CONG, J. AND WU, C. 1998. An efficient algorithm
for performance-optimal FPGA technology map-
ping with retiming. IEEE Trans. CAD Integr.
Circ. Syst. 17, 9, 738–748.

CONG, J., WU, C., AND DING, Y. 1999. Cut ranking
and pruning enabling a general and efficient
FPGA mapping solution. ACM/SIGDA Interna-
tional Symposium on FPGAs, 29–35.

CONG, J. AND XU, S. 1998. Technology mapping
for FPGAs with embedded memory blocks.
ACM/SIGDA International Symposium on
FPGAs, 179–188.

CRONQUIST, D. C., FRANKLIN, P., BERG, S. G.,
AND EBELING, C. 1998. Specifying and com-
piling applications for RaPiD. IEEE Sympo-
sium on Field-Programmable Custom Comput-
ing Machines, 116–125.

DANDALIS, A. AND PRASANNA, V. K. 2001. Configura-
tion compression for FPGA-based embedded sys-
tems. ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 173–182.

DEHON, A. 1996. DPGA Utilization and Applica-
tion. ACM/SIGDA International Symposium on
FPGAs, 115–121.

DEHON, A. 1999. Balancing interconnect and com-
putation in a reconfigurable computing array (or,
why you don’t really want 100% LUT utiliza-
tion). ACM/SIGDA International Symposium
on FPGAs, 69–78.

DESHPANDE, D., SOMANI, A. K., AND TYAGI, A.
1999. Configuration caching vs data caching
for striped FPGAs. ACM/SIGDA International
Symposium on FPGAs, 206–214.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

206 K. Compton and S. Hauck

DIESSEL, O. AND EL GINDY, H. 1997. Run-time com-
paction of FPGA designs. Lecture Notes in
Computer Science 1304—Field-Programmable
Logic and Applications. W. Luk, P. Y. K.
Cheung, M. Glesner, Eds. Springer-Verlag,
Berlin, Germany, 131–140.

DOLLAS, A., SOTIRIADES, E., AND EMMANOUELIDES, A.
1998. Architecture and design of GE1, A FCCM
for golomb ruler derivation. IEEE Sympo-
sium on Field-Programmable Custom Comput-
ing Machines, 48–56.

EBELING, C., CRONQUIST, D. C., AND FRANKLIN, P.
1996. RaPiD—Reconfigurable pipelined dat-
apath. Lecture Notes in Computer Science
1142—Field-Programmable Logic: Smart Appli-
cations, New Paradigms and Compilers. R. W.
Hartenstein, M. Glesner, Eds. Springer-Verlag,
Berlin, Germany, 126–135.

EJNIOUI, A. AND RANGANATHAN, N. 1999. Multi-
terminal net routing for partial crossbar-based
multi-FPGA systems. ACM/SIGDA Interna-
tional Symposium on FPGAs, 176–184.

ELBIRT, A. J. AND PAAR, C. 2000. An FPGA im-
plementation and performance evaluation of
the serpent block cipher. ACM/SIGDA Interna-
tional Symposium on FPGAs, 33–40.

EMMERT, J. M. AND BHATIA, D. 1999. A methodology
for fast FPGA floorplanning. ACM/SIGDA In-
ternational Symposium on FPGAs, 47–56.

ESTRIN, G., BUSSEL, B., TURN, R., AND BIBB, J. 1963.
Parallel processing in a restructurable com-
puter system. IEEE Trans. Elect. Comput. 747–
755.

GALLOWAY, D. 1995. The transmogrifier C hard-
ware description language and compiler for
FPGAs. IEEE Symposium on FPGAs for Custom
Computing Machines, 136–144.

GEHRING, S. AND LUDWIG, S. 1996. The trianus sys-
tem and its application to custom computing.
Lecture Notes in Computer Science 1142—Field-
Programmable Logic: Smart Applications, New
Paradigms and Compilers. R. W. Hartenstein
and M. Glesner, Eds. Springer-Verlag, Berlin,
Germany, 176–184.

GEHRING, S. W. AND LUDWIG, S. H. M. 1998. Fast
integrated tools for circuit design with FPGAs.
ACM/SIGDA International Symposium on
FPGAs, 133–139.

GOKHALE, M. B. AND STONE, J. M. 1998. NAPA C:
Compiling for a hybrid RISC/FPGA architec-
ture. IEEE Symposium on Field-Programmable
Custom Computing Machines, 126–135.

GOKHALE, M. B. AND STONE, J. M. 1999. Automatic
allocation of arrays to memories in FPGA proces-
sors with multiple memory banks. IEEE Sympo-
sium on Field-Programmable Custom Comput-
ing Machines, 63–69.

GOLDSTEIN, S. C., SCHMIT, H., BUDIU, M., CADAMBI,
S., MOE, M., AND TAYLOR, R. 2000. PipeRench:
A Reconfigurable Architecture and Compiler,
IEEE Computer, vol. 33, No. 4.

GRAHAM, P. AND NELSON, B. 1996. Genetic algo-
rithms in software and in hardware—A per-
formance analysis of workstations and custom
computing machine implementations. IEEE
Symposium on FPGAs for Custom Computing
Machines, 216–225.

HAUCK, S. 1995. Multi-FPGA systems. Ph.D. dis-
sertation, Univ. Washington, Dept. of C.S.&E.

HAUCK, S. 1998a. Configuration prefetch for sin-
gle context reconfigurable coprocessors. ACM/
SIGDA International Symposium on FPGAs,
65–74.

HAUCK, S. 1998b. The roles of FPGAs in repro-
grammable systems. Proc. IEEE 86, 4, 615–638.

HAUCK, S. AND AGARWAL A. 1996. Software tech-
nologies for reconfigurable systems. Dept. of
ECE Technical Report, Northwestern Univ.
Available online at http://www.ee.washington.
edu/faculty/hauck/publications.html.

HAUCK, S. AND BORRIELLO, G. 1997. Pin assignment
for multi-FPGA systems. IEEE Trans. Comput.
Aid. Desi. Integ. Circ. Syst. 16, 9, 956–964.

HAUCK, S., BORRIELLO, G., AND EBELING, C. 1998a.
Mesh routing topologies for multi-FPGA sys-
tems. IEEE Trans. VLSI Syst. 6, 3, 400–408.

HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAO, J. P.
1997. The Chimaera reconfigurable functional
unit. IEEE Symposium on Field-Programmable
Custom Computing Machines, 87–96.

HAUCK, S., LI, Z., AND SCHWABE, E. 1998b. Configu-
ration compression for the Xilinx XC6200 FPGA.
IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 138–146.

HAUCK, S. AND WILSON, W. D. 1999. Runlength
compression techniques for FPGA configura-
tions. Dept. of ECE Technical Report, North-
western Univ. Available online at http://www.
ee.washington.edu/ faculty /hauck /publications.
html.

HAUSER, J. R. AND WAWRZYNEK, J. 1997. Garp: A
MIPS processor with a reconfigurable coproces-
sor. IEEE Symposium on Field-Programmable
Custom Computing Machines, 12–21.

HAYNES, S. D. AND CHEUNG, P. Y. K. 1998. A re-
configurable multiplier array for video image
processing tasks, suitable for embedding in an
FPGA structure. IEEE Symposium on Field-
Programmable Custom Computing Machines,
226–234.

HEILE, F. AND LEAVER, A. 1999. Hybrid product
term and LUT based architectures using embed-
ded memory blocks. ACM/SIGDA International
Symposium on FPGAs, 13–16.

HUANG, W. J., SAXENA, N., AND MCCLUSKEY, E. J.
2000. A reliable LZ data compressor on
reconfigurable coprocessors. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 249–258.

HUELSBERGEN, L. 2000. A representation for dy-
namic graphs in reconfigurable hardware
and its application to fundamental graph

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 207

algorithms. ACM/SIGDA International Sympo-
sium on FPGAs, 105–115.

HUTCHINGS, B. L. 1997. Exploiting reconfig-
urability through domain-specific systems.
Lecture Notes in Computer Science 1304—
Field-Programmable Logic and Applications.
W. Luk, P. Y. K. Cheung, and M. Glesner,
Eds. Springer-Verlag, Berlin, Germany, 193–
202.

HUTCHINGS, B., BELLOWS, P., HAWKINS, J., HEMMERT,
S., NELSON, B., AND RYTTING, M. 1999. A CAD
suite for high-performance FPGA design. IEEE
Symposium on Field-Programmable Custom
Computing Machines, 12–24.

HWANG, T. T., OWENS, R. M., IRWIN, M. J., AND

WANG, K. H. 1994. Logic synthesis for field-
programmable gate arrays. IEEE Trans. Com-
put. Aid. Des. Integ. Circ. Syst. 13, 10, 1280–
1287.

INUANI, M. K. AND SAUL, J. 1997. Technology map-
ping of heterogeneous LUT-based FPGAs. Lec-
ture Notes in Computer Science 1304—Field-
Programmable Logic and Applications. W. Luk,
P. Y. K. Cheung, and M. Glesner, Eds. Springer-
Verlag, Berlin, Germany, 223–234.

JACOB, J. A. AND CHOW, P. 1999. Memory interfacing
and instruction specification for reconfigurable
processors. ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 145–
154.

JEAN, J. S. N., TOMKO, K., YAVAGAL, V., SHAH, J.,
AND COOK R. 1999. Dynamic reconfiguration
to support concurrent applications. IEEE Trans.
Comput. 48, 6, 591–602.

KASTRUP, B., BINK, A., AND HOOGERBRUGGE, J. 1999.
ConCISe: A compiler-driven CPLD-based in-
struction set accelerator. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 92–101.

KHALID, M. A. S. 1999. Routing architecture and
layout synthesis for multi-FPGA systems. Ph.D.
dissertation, Dept. of ECE, Univ. Toronto.

KHALID, M. A. S. AND ROSE, J. 1998. A hybrid
complete-graph partial-crossbar routing archi-
tecture for multi-FPGA systems. ACM/SIGDA
International Symposium on FPGAs, 45–54.

KIM, H. J. AND MANGIONE-SMITH, W. H. 2000. Fac-
toring large numbers with programmable hard-
ware. ACM/SIGDA International Symposium
on FPGAs, 41–48.

KIM, H. S., SOMANI, A. K., AND TYAGI, A. 2000. A
reconfigurable multi-function computing cache
architecture. ACM/SIGDA International Sym-
posium on FPGAs, 85–94.

KRESS, R., HARTENSTEIN, R. W., AND NAGELDINGER, U.
1997. An operating system for custom comput-
ing machines based on the Xputer paradigm.
Lecture Notes in Computer Science 1304—Field-
Programmable Logic and Applications. W. Luk,
P. Y. K. Cheung, and M. Glesner, Eds. Springer-
Verlag, Berlin, Germany, 304–313.

KRUPNOVA, H., RABEDAORO, C., AND SAUCIER, G. 1997.
Synthesis and floorplanning for large hierarchi-
cal FPGAs. ACM/SIGDA International Sympo-
sium on FPGAs, 105–111.

LAI, Y. T. AND WANG, P. T. 1997. Hierarchical in-
terconnection structures for field programmable
gate arrays. IEEE Trans. VLSI Syst. 5, 2, 186–
196.

LAUFER, R., TAYLOR, R. R., AND SCHMIT, H. 1999.
PCI-PipeRench and the SwordAPI: A system for
stream-based reconfigurable computing. IEEE
Symposium on Field-Programmable Custom
Computing Machines, 200–208.

LEE, Y. S. AND WU, A. C. H. 1997. A performance
and routability-driven router for FPGA’s consid-
ering path delays. IEEE Trans. CAD Integ. Circ.
Syst. 16, 2, 179–185.

LEONARD, J. AND MANGIONE-SMITH, W. H. 1997. A
case study of partially evaluated hardware cir-
cuits: Key-specific DES. Lecture Notes in Com-
puter Science 1304—Field-Programmable Logic
and Applications. W. Luk, P. Y. K. Cheung,
and M. Glesner, Eds. Springer-Verlag, Berlin,
Germany, 151–160.

LEUNG, K. H., MA, K. W., WONG, W. K., AND LEONG,
P. H. W. 2000. FPGA Implementation of a mi-
crocoded elliptic curve cryptographic processor.
IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 68–76.

LEWIS, D. M., GALLOWAY, D. R., VAN IERSSEL, M., ROSE,
J., AND CHOW, P. 1997. The Transmogrifier-2:
A 1 million gate rapid prototyping system.
ACM/SIGDA International Symposium on
FPGAs, 53–61.

LI, Y., CALLAHAN, T., DARNELL, E., HARR, R., KURKURE,
U., AND STOCKWOOD, J. 2000a. Hardware-
software co-design of embedded reconfigurable
architectures. Design Automation Conference,
507–512.

LI, Z., COMPTON, K., AND HAUCK, S. 2000b. Config-
uration caching for FPGAs. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 22–36.

LI, Z. AND HAUCK, S. 1999. Don’t care discovery for
FPGA configuration compression. ACM/SIGDA
International Symposium on FPGAs, 91–98.

LIN, X., DAGLESS, E., AND LU, A. 1997. Technol-
ogy mapping of LUT based FPGAs for delay
optimisation. Lecture Notes in Computer Sci-
ence 1304—Field-Programmable Logic and Ap-
plications. W. Luk, P. Y. K. Cheung, and M.
Glesner, Eds. Springer-Verlag, Berlin, Germany,
245–254.

LIU, H. AND WONG, D. F. 1999. Circuit partitioning
for dynamically reconfigurable FPGAs. ACM/
SIGDA International Symposium on FPGAs,
187–194.

LUCENT TECHNOLOGIES, INC. 1998. FPGA Data
Book. Lucent Technologies, Inc., Allentown, PA.

LUK, W., SHIRAZI, N., AND CHEUNG, P. Y. K. 1997a.
Compilation tools for run-time reconfigurable

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

208 K. Compton and S. Hauck

designs. IEEE Symposium on Field-Programm-
able Custom Computing Machines, 56–65.

LUK, W., SHIRAZI, N., GUO, S. R., AND CHEUNG, P.
Y. K. 1997b. Pipeline morphing and virtual
pipelines. Lecture Notes in Computer Science
1304—Field-Programmable Logic and Applica-
tions. W. Luk, P. Y. K. Cheung, and M. Glesner,
Eds. Springer-Verlag, Berlin, Germany, 111–
120.

LYSAGHT, P. AND STOCKWOOD, J. 1996. A simulation
tool for dynamically reconfigurable field pro-
grammable gate arrays. IEEE Trans. VLSI Syst.
4, 3, 381–390.

MAK, W. K. AND WONG, D. F. 1997. Board-
level multi net routing for FPGA-based logic
emulation. ACM Trans. Des. Automat. Elect.
Syst. 2, 2, 151–167.

MANGIONE-SMITH, W. H. 1999. ATR from UCLA.
Personal Commun.

MANGIONE-SMITH, W. H., HUTCHINGS, B., ANDREWS, D.,
DEHON, A., EBELING, C., HARTENSTEIN, R., MENCER,
O., MORRIS, J., PALEM, K., PRASANNA, V. K., AND

SPAANENBURG, H. A. E. 1997. Seeking solu-
tions in configurable computing. IEEE Comput.
30, 12, 38–43.

MARSHALL, A., STANSFIELD, T., KOSTARNOV, I., VUILLEMIN,
J., AND HUTCHINGS, B. 1999. A reconfigurable
arithmetic array for multimedia applications.
ACM/SIGDA International Symposium on
FPGAs, 135–143.

MCKAY, N. AND SINGH, S. 1999. Debugging tech-
niques for dynamically reconfigurable hard-
ware. IEEE Symposium on Field-Programmable
Custom Computing Machines, 114–122.

MCMURCHIE, L. AND EBELING, C. 1995. Pathfinder:
A negotiation-based performance-driven router
for FPGAs. ACM/SIGDA International Sympo-
sium on FPGAs, 111–117.

MENCER, O., MORF, M., AND FLYNN, M. J. 1998. PAM-
blox: High performance FPGA design for adap-
tive computing. IEEE Symposium on Field-
Programmable Custom Computing Machines,
167–174.

MIYAMORI, T. AND OLUKOTUN, K. 1998. A quanti-
tative analysis of reconfigurable coprocessors
for multimedia applications. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 2–11.

MORITZ, C. A., YEUNG, D., AND AGARWAL, A. 1998.
Exploring optimal cost performance designs
for Raw microprocessors. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 12–27.

NAM, G. J., SAKALLAH, K. A., AND RUTENBAR,
R. A. 1999. Satisfiability-based layout re-
visited: detailed routing of complex FPGAs
via search-based boolean SAT. ACM/SIDGA
International Symposium on FPGAs, 167–
175.

PAN, P. AND LIN, C. C. 1998. A new retiming-based
technology mapping algorithm for LUT-based

FPGAs. ACM/SIGDA International Symposium
on FPGAs, 35–42.

PAYNE, R. 1997. Run-time parameterised circuits
for the Xilinx XC6200. Lecture Notes in Com-
puter Science 1304—Field-Programmable Logic
and Applications. W. Luk, P. Y. K. Cheung,
and M. Glesner, Eds. Springer-Verlag, Berlin,
Germany, 161–172.

PURNA, K. M. G. AND BHATIA, D. 1999. Temporal
partitioning and scheduling data flow graphs for
reconfigurable computers. IEEE Trans. Comput.
48, 6, 579–590.

QUICKTURN, A CADENCE COMPANY. 1999a. System
RealizerTM. Available online at http://www.
quickturn . com / products / systemrealizer . htm.
Quickturn, A Cadence Company, San Jose, CA.

QUICKTURN, A CADENCE COMPANY. 1999b.
MercuryTM Design Verification System Technol-
ogy Backgrounder. Available online at http://
www.quickturn.com/products/mercury backgro-
under.htm. Quickturn, A Cadence Company,
San Jose, CA, 1999.

RAZDAN, R. AND SMITH, M. D. 1994. A high-
performance microarchitecture with hardware-
programmable functional units. International
Symposium on Microarchitecture, 172–180.

RENCHER, M. AND HUTCHINGS, B. L. 1997. Auto-
mated target recognition on SPLASH2. IEEE
Symposium on Field-Programmable Custom
Computing Machines, 192–200.

ROSE, J., EL GAMAL, A., AND SANGIOVANNI-VINCENTELLI,
A. 1993. Architecture of field-programmable
gate arrays. Proc. IEEE 81, 7, 1013–1029.

RUPP, C. R., LANDGUTH, M., GARVERICK, T., GOMERSALL,
E., HOLT, H., ARNOLD, J. M., AND GOKHALE, M.
1998. The NAPA adaptive processing architec-
ture. IEEE Symposium on Field-Programmable
Custom Computing Machines, 28–37.

SANGIOVANNI-VINCENTELLI, A., EL GAMAL, A., AND ROSE,
J. 1993. Synthesis methods for field pro-
grammable gate arrays. Proc. IEEE 81, 7, 1057–
1083.

SANKAR, Y. AND ROSE, J. 1999. Trading quality
for compile time: Ultra-fast placement for
FPGAs. ACM/SIGDA International Symposium
on FPGAs, 157–166.

SCALERA, S. M. AND VAZQUEZ, J. R. 1998. The
design and implementation of a context
switching FPGA. IEEE Symposium on Field-
Programmable Custom Computing Machines,
78–85.

SELVIDGE, C., AGARWAL, A., DAHL, M., AND BABB J.
1995. TIERS: Topology IndependEnt Pipelined
Routing and Scheduling for VirtualWireTM

Compilation. ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays,
25–31.

SENOUCI, S. A., AMOURA, A., KRUPNOVA, H., AND SAUCIER,
G. 1998. Timing driven floorplanning on pro-
grammable hierarchical targets. ACM/SIGDA
International Symposium on FPGAs, 85–92.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Reconfigurable Computing 209

SHAHOOKAR, K. AND MAZUMDER, P. 1991. VLSI cell
placement techniques. ACM Comput. Surv. 23,
2, 145–220.

SHI, J. AND BHATIA, D. 1997. Performance driven
floorplanning for FPGA based designs.
ACM/SIGDA International Symposium on
FPGAs, 112–118.

SHIRAZI, N., LUK, W., AND CHEUNG, P. Y. K. 1998.
Automating production of run-time reconfig-
urable designs. IEEE Symposium on Field-
Programmable Custom Computing Machines,
147–156.

SLIMANE-KADI, M., BRASEN, D., AND SAUCIER, G. 1994.
A fast-FPGA prototyping system that uses
inexpensive high-performance FPIC. ACM/
SIGDA Workshop on Field-Programmable Gate
Arrays.

SOTIRIADES, E., DOLLAS, A., AND ATHANAS, P. 2000.
Hardware-software codesign and parallel imple-
mentation of a Golomb ruler derivation engine.
IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 227–235.

STOHMANN, J. AND BARKE, E. 1996. An universal
CLA adder generator for SRAM-based FPGAs.
Lecture Notes in Computer Science 1142—Field-
Programmable Logic: Smart Applications, New
Paradigms and Compilers. R. W. Hartenstein
and M. Glesner, Eds. Springer-Verlag, Berlin,
Germany, 44–54.

SWARTZ, J. S., BETZ, V., AND ROSE, J. 1998. A
fast routability-driven router for FPGAs. ACM/
SIGDA International Symposium on FPGAs,
140–149.

SYNOPSYS, INC. 2000. CoCentric System C Com-
piler. Synopsys, Inc., Mountain View, CA.

SYNPLICITY, INC. 1999. Synplify User Guide Release
5.1. Synplicity, Inc., Sunnyvale, CA.

TAKAHARA, A., MIYAZAKI, T., MUROOKA, T., KATAYAMA, M.,
HAYASHI, K., TSUTSUI, A., ICHIMORI, T., AND FUKAMI,
K. 1998. More wires and fewer LUTs: A
design methodology for FPGAs. ACM/SIGDA
International Symposium on FPGAs, 12–19.

THAKUR, S., CHANG, Y. W., WONG, D. F., AND

MUTHUKRISHNAN, S. 1997. Algorithms for an
FPGA switch module routing problem with ap-
plication to global routing. IEEE Trans. CAD
Integ. Circ. Syst. 16, 1, 32–46.

TOGAWA, N., YANAGISAWA, M., AND OHTSUKI, T. 1998.
Maple-OPT: A performance-oriented simultane-
ous technology mapping, placement, and global
gouting algorithm for FPGA’s. IEEE Trans. CAD
Integ. Circ. Syst. 17, 9, 803–818.

TRIMBERGER, S. 1998. Scheduling designs into a
time-multiplexed FPGA. ACM/SIGDA Interna-
tional Symposium on FPGAs, 153–160.

TRIMBERGER, S., CARBERRY, D., JOHNSON, A., AND

WONG, J. 1997a. A time-multiplexed FPGA.
IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 22–28.

TRIMBERGER, S., DUONG, K., AND CONN, B. 1997b.
Architecture issues and solutions for a high-

capacity FPGA. ACM/SIGDA International
Symposium on FPGAs, 3–9.

TSU, W., MACY, K., JOSHI, A., HUANG, R., WALKER, N.,
TUNG, T., ROWHANI, O., GEORGE, V., WAWRZYNEK,
J., AND DEHON, A. 1999. HSRA: High-speed,
hierarchical synchronous reconfigurable ar-
ray. ACM/SIGDA International Symposium on
FPGAs, 125–134.

VAHID, F. 1997. I/O and performance tradeoffs
with the FunctionBus during multi-FPGA parti-
tioning. ACM/SIGDA International Symposium
on FPGAs, 27–34.

VARGHESE, J., BUTTS, M., AND BATCHELLER, J. 1993.
An efficient logic emulation system. IEEE Trans.
VLSI Syst. 1, 2, 171–174.

VASILKO, M. AND CABANIS, D. 1999. Improving sim-
ulation accuracy in design methodologies for dy-
namically reconfigurable logic systems. IEEE
Sympos. Field-Prog. Cust. Comput. Mach. 123–
133.

VUILLEMIN, J., BERTIN, P., RONCIN, D., SHAND, M.,
TOUATI, H., AND BOUCARD, P. 1996. Pro-
grammable active memories: Reconfigurable
systems come of age. IEEE Trans. VLSI Syst. 4,
1, 56–69.

WANG, Q. AND LEWIS, D. M. 1997. Automated field-
programmable compute accelerator design using
partial evaluation. IEEE Symposium on Field-
Programmable Custom Computing Machines,
145–154.

WEINHARDT, M. AND LUK, W. 1999. Pipeline vector-
ization for reconfigurable systems. IEEE Sympo-
sium on Field-Programmable Custom Comput-
ing Machines, 52–62.

WILTON, S. J. E. 1998. SMAP: Heterogeneous tech-
nology mapping for area reduction in FPGAs
with embedded memory arrays. ACM/SIGDA
International Symposium on FPGAs, 171–178.

WIRTHLIN, M. J. AND HUTCHINGS, B. L. 1995. A dy-
namic instruction set computer. IEEE Sym-
posium on FPGAs for Custom Computing
Machines, 99–107.

WIRTHLIN, M. J. AND HUTCHINGS, B. L. 1996. Se-
quencing run-time reconfigured hardware with
software. ACM/SIGDA International Sympo-
sium on FPGAs, 122–128.

WIRTHLIN, M. J. AND HUTCHINGS, B. L. 1997. Improv-
ing functional density through run-time con-
stant propagation. ACM/SIGDA International
Symposium on FPGAs, 86–92.

WITTIG, R. D. AND CHOW, P. 1996. OneChip: An
FPGA processor with reconfigurable logic. IEEE
Symposium on FPGAs for Custom Computing
Machines, 126–135.

WOOD, R. G. AND RUTENBAR, R. A. 1997. FPGA
routing and routability estimation via Boolean
satisfiability. ACM/SIGDA International Sym-
posium on FPGAs, 119–125.

WU, Y. L. AND MAREK-SADOWSKA, M. 1997. Routing
for array-type FPGA’s. IEEE Trans. CAD Integ.
Circ. Syst. 16, 5, 506–518.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

210 K. Compton and S. Hauck

XILINX, INC. 1994. The Programmable Logic Data
Book. Xilinx, Inc., San Jose, CA.

XILINX, INC. 1996. XC6200: Advance Product Spec-
ification. Xilinx, Inc., San Jose, CA.

XILINX, INC. 1997. LogiBLOX: Product Specifica-
tion. Xilinx, Inc., San Jose, CA.

XILINX, INC. 1999. VirtexTM 2.5 V Field Pro-
grammable Gate Arrays: Advance Product Spec-
ification. Xilinx, Inc., San Jose, CA.

XILINX, INC. 2000. Press Release: IBM and Xilinx
Team to Create New Generation of Integrated
Circuits. Xilinx, Inc., San Jose, CA.

XILINX, INC. 2001. Virtex-II 1.5V Field Pro-
grammable Gate Arrays: Advance Product
Specification. Xilinx, Inc., San Jose, CA.

YASAR, G., DEVINS, J., TSYRKINA, Y., STADTLANDER,
G., AND MILLHAM, E. 1996. Growable FPGA

macro generator. Lecture Notes in Computer Sci-
ence 1142—Field-Programmable Logic: Smart
Applications, New Paradigms and Compil-
ers. R. W. Hartenstein and M. Glesner,
Eds. Springer-Verlag, Berlin, Germany, 307–
326.

YI, K. AND JHON, C. S. 1996. A new FPGA tech-
nology mapping approach by cluster merging.
Lecture Notes in Computer Science 1142—Field-
Programmable Logic: Smart Applications, New
Paradigms and Compilers. R. W. Hartenstein
and M. Glesner, Eds. Springer-Verlag, Berlin,
Germany, 366-370.

ZHONG, P., MARTINOSI, M., ASHAR, P., AND MALIK, S.
1998. Accelerating Boolean satisfiability with
configurable hardware. IEEE Symposium
on Field-Programmable Custom Computing
Machines, 186–195.

Received May 2000; revised October 2001 and January 2002; accepted February 2002

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

