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Chapter 1

Circuit design in Ruby

G. Jones! and M. Sheeran?

1.1 Introduction

The business of making integrated circuits is a peculiarly difficult engineer-
ing task largely because it spans such a wide range of levels of abstraction.
Figure 1.1 suggests the sorts of names that might be used to describe these
layers. A good design process must necessarily insulate each step of the design
— as far as is possible — from the concerns that are most readily understood
and tackled at other levels. As used here, the word designing simply means
making progress down the spectrum from specification to implementation.

On the whole, we are not going to be concerned with details of implemen-
tation like gates and transistors. So to us the word circuit means no more
than the sort of algorithm that might well be implemented by something like
an integrated circuit or a collection of them. Designing circuits is the busi-
ness of filling in the gap in the figure between specification capture and circuit
fabrication.

That means, for example, that we will be interested in highly parallel
algorithms with a more or less static structure; also that we are going to be
concerned to minimize expensive sorts of communication, like broadcasting,
and in emphasizing locality. We will not, however, be at all concerned with
the details of any fabrication technology; nor in such concerns as how many
transistors can be fabricated on a single chip.

1 Oxford University Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, England
?Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland
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Figure 1.1: the design process

It is quite common for the design process to be realized by a number of
steps passing from one level to a lower level, where the designer ‘invents’ the
implementation at the next level and then proves — after the fact — that this
new design does indeed implement the specification at the preceding level.
These proof steps would be upwards in the figure.

On the other hand, some steps of the design process consist of a purely
mechanical transformation of specification into implementation: for example,
the turning of a set of masks into a pattern on silicon. These can be thought
of as compilation steps, and require no ingenuity or invention. Indeed, they
are usually tedious and are best left to be done by a machine.

We tend to use of the word calculation to mean stages in the design process
which proceed forwards, without large inventive leaps and subsequent proofs
of correctness, but yet without necessarily being purely mechanical. Ruby is
a framework in which to do these calculations.

1.1.1 The shape of this chapter

This chapter introduces Ruby, and a calculational style in which to explore the
design of digital signal processing circuits and similar devices and algorithms.

The fundamental idea introduced by §1.2 is that circuits are built from
parts by a process of composition, and that this composition has simple math-
ematical properties like those of the composition of functions and the com-
position of relations. That gives us a way of describing circuits which are
composed ‘sequentially’ by being connected to each other, and in contrast
§1.3 describes a ‘parallel’ composition of parts which operate independently
on structured inputs: lists and tuples of signals.

The reality is that most circuit structures lie somewhere between these two
extremes, being only partly interconnected and partly independently parallel.
There are particular patterns of interconnection that arise often, and which
make sense under the constraints on the feasibility of layout. In the subsequent
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sections such patterns of interconnection are discussed in Ruby, and we explore
the mathematical properties of circuits which are composed in these ways.
The idea is to become familiar with these properties so that they can be used
to explore design choices in developing a circuit.

One of the important characteristics of Ruby is that it is no more difficult
to deal with sequential circuits — ones with internal state — than it is to deal
with combinational circuits. The design is done by the same sort of calculation
in both cases, in the same sort of algebra. In §1.6 the interpretation of Ruby
expressions as sequential circuits is introduced. We then go on to discuss
manipulations like pipelining and data-skewing which are specific to sequential
circuits.

By this point you should have enough Ruby to be able to tackle a size-
able example, and §1.7 does just that. It outlines a path through the design
of a systolic correlator, from initial decisions about how to represent the in-
terface to the consequences this has for the final circuit, and ultimately to
optimizations of timing performance.

All of the circuit forms discussed up to that point are essentially iterative,
but §1.8 shows that the same sorts of ideas are applicable to circuits like
the ‘butterfly’ network that are naturally described in a recursive fashion.
Butterfly networks are common in many sorts of circuits, but are perhaps
most familiar from implementations of the ‘fast Fourier transform’. Finally
§1.9 shows that the butterfly implementation of the FFT can be discovered
by calculation from the specification in just the same way as we did with the
correlator.

1.1.2 The role of pictures

Throughout this chapter there are pictures that are intended to motivate
the discussion that goes with them. At least for some people, the pictures
help with an intuitive understanding of what an equation means, or of why a
calculation proceeds in a certain way.

These ‘abstract floorplans’ share many of the important properties of the
circuits with which a designer would be concerned. Principal amongst these
is locality: whether or not components are connected to components that are
near to them. Because the costs which dominate in circuit construction are
those of communication, locality is very important. Similarly, the extent to
which connections cross over each other shows up, and this is another cost in
circuit construction.

Beware, however, of reasoning about the pictures. In particular, notice
that quite often the pictures are just particular instances of the equations and
calculation which they portray. There is a danger in trying to reason from
the example in the picture that you might generalize a result which happens
only to be true for the particular instance.
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Figure 1.2: the composition R ; S

—RHSHT

Figure 1.3: composition is associative: (R;S); T =R;S;T=R;(S;T)

1.2 Composition and inverse

The central idea in Ruby is that of putting two circuits together to co-operate
with each other. The composition of two circuits R and S will be written R;S
and you should have in mind the idea of a circuit in which connections are
made from one side of R to the other side of S, rather as shown in figure 1.2.
The ‘left-hand’ edge of a circuit will be called its domain and the ‘right-hand’
edge its range. The domain of R ; S is that of R, its range is that of S, and
the range of R is connected to the domain of S. The fact that the domain
appears on the left of the picture and the range on the right is of course just
a convention, but will be one to which we adhere much of the time.

You should think of a circuit as being a relation which holds between the
signals on its connections with the outside world. This is the relation which it
enforces by arranging that the values of its outputs are consistent with those
of its inputs. Beware the temptation to think of the domain signals as inputs
and the range signals as outputs. The division between domain and range is a
purely geographical one, and there may be inputs and outputs on either side
of one of our circuits.

Composition of relations is defined by # (R;S)z <= Jy.a Ry &y S z.
This is an associative operation, which is to say that the order in which
the components of figure 1.3 are assembled cannot affect the meaning of the
circuit. Associativity gives us an excuse for leaving out the parentheses in,
for example, R ;S ;T.

Later when we come to deal with sequential circuits it will prove necessary
to change our idea of what a signal is, and indeed of what a circuit is; but the
things that stay the same are the laws about circuit forms. So, for example,
composition will stay associative. It will pay to start as we mean to go on.
You should try to avoid reasoning about the data — z, y, z in this example
— and as far as possible, you should try to avoid reasoning about the specific
component circuits — R, .S, T here — concentrating instead on the combining
forms, like composition, and the laws which they obey. The associative law —
that (R;S);T = R;(S;T) for any R, S and T — is not about the data on
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which the circuit operates, nor is it about any particular circuit components
R, S and T rather it is a general statement about ;.

1.2.1 Repeated composition

Where it makes sense to plug two components of the same kind together, we
can talk about the n-times repeated composition of R, written R”, and which
is defined by R! = R, and R**! = R; R".

Since we know that composition is associative, we already know many
things about repeated composition, for example R*"t! = R”; R, and R™1" =
R™ ; R*, and so on. The proofs can be done by induction on n, and notice
that the proof depends only on the associativity of composition, so there is
no need to appeal to the meaning of R at all.

Suppose we assume for some R and S that R;S = 5 ; R, then a simple
induction shows that R;S® = S” ; R. A similar induction shows that on the
same assumption (R;S)" = R™; S™.

Now, notice that although R;S® = S ; R and (R;S)" = R"; S™ are
only proved in case R and S commute (in case R; S = S; R), and so are
statements about R and S; nevertheless the theorems ‘If R ;S = S ; R then
R;S"=5" ;R and ‘If R;S =S ; R then (R;S)" = R";S" are — just like
the associative law — statements about composition.

These statements about composition can be added to the collection of
laws that we are accumulating, and which will eventually constitute a body
of knowledge about the forms of all circuits.

1.2.2 Inverse

The inverse of a circuit is its left-to-right reflection: the connections on the
left of R appear on the right of R™! and vice versa. Since reflecting twice gets
us back the original circuit, we require that for any circuit R the inverse of
its inverse should be the same circuit: (R™!)~! = R. Inverse is often called
converse, and is defined by z R~'y < y Rz.

Consider the relation which represents negation of Booleans: T not F and
F not T. Its inverse not~! is of course the same relation. That means that
not~! = not, so you should be aware that ‘reflecting the picture’ of not leaves
it unchanged. In particular, there is no idea that the inputs and outputs of
a gate have been exchanged: the sense in which not™! = not abstracts from
such concerns as which signals are inputs and which are outputs.

The next question to ask is how inverse interacts with composition. As
shown in figure 1.4 you can reflect the picture of a composition by swapping
the components and reflecting each of them, so keeping corresponding edges
connected. Stated as a Ruby law, we have that (R;S)™! = (S™1);(R™!) for
any R and S.
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Figure 1.4: the inverse of a composition: (R; S)~! = (S71);(R™1)

It follows that (R™)~! = (R~1)", so as a notational convenience we define
R™™ = (R™Y)™. Be careful not to let this representational recklessness lead
you astray — the induction that proves R™T" = R™ ; R" does so for positive
n. Notice that since we know nothing in general about R ; R™!, it is not
necessarily the case that R™~" = R™ ; R™". In this respect at least it can be
argued that it was a mistake to christen the reflection of a circuit its ‘inverse’
with all the connotations that has.

1.2.3 Identity and types

Having defined R™ for positive and negative n, it is natural to seek an in-
terpretation for R which fits neatly into the remaining gap. The time has
come to be honest about types. (Perhaps, since we are talking about ‘circuits’
and not relations, it might have been better to talk of ‘interfaces’ rather than
types.)

As far as will concern us, a type is just a collection of values. In the
world of relations, the things that look like types are equivalence relations:
an equivalence relation determines a set of equivalence classes, and the set of
equivalence classes determines the equivalence relation. To describe what it is
to be a type, we have to encode in Ruby the properties that make a relation
be an equivalence relation.

An equivalence relation is one which is reflexive, symmetric and transitive:
symmetry is just that R = R™!; transitivity of a reflexive relation is just that
R = R? (you can show that any transitive relation contains its square, but
you need reflexivity to show containment of the relation in the square). So
any R for which R = R™! = R? (and so R = R" for all non-zero n) is an
equivalence on all the relevant values; such an R we call a type. It will clearly
do no harm to our intuition to define R° = R so long as R is a type.

A type D is a type of the domain (not, notice, the type of the domain)
of a circuit C'if C' = D ; C, and similarly a type R is a type of its range if
C = C; R. Sometimes this will be written as C' : D — R, and we speak of
D— R as a type for C. When speaking of a circuit C'; we ought really to quote
a particular D and R, and speak of the circuit C' : D— R. Composition makes
much more sense if you only ever compose circuits with matching types, say
P:A— B and @ : B — C,in which case (P;Q): A— C, as you can check
from the definition.

In that case, it makes sense to talk of repeated composition only when you
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Figure 1.5: the conjugation R\ S of R by S

have in mind a homogeneous component R : T'— T in which case R? : T'— T
for all positive and negative n. For that reason it is intuitively safe to define
R° to be T, because then certainly R*"*t° = R* = R* ;T = R" ; R° and
similarly for R%*" and for negative powers. Be careful with this definition:
strictly speaking it does not make sense to talk about R° without making
explicit which particular type you have in mind for R — remember that the
type is not unique — and a pedant would insist on saying that it is (R : T'—1T')°
that is defined to be T

Of course the reason for being sloppy is the usual one: that it does not
often matter all that much exactly what choice you make, and when it does
the right choice is obvious. You should beware, however, of any intuition that
leads you to expect R® necessarily to be the identity of composition. That
would be an ¢ for which ¢ ;@ = Q = @ ;¢ for all ).

1.2.4 Conjugation

A circuit and its inverse often appear together bracketing another component,
as in figure 1.5. The conjugation of R by S is defined by R\ S =S1; R;S.

A conjugation like R\ S behaves rather like the inside R part, and you
can think of S as a ‘translation’ (in almost any of the many different senses
of that word) applied to the language in which you communicate with R. For
example, (R\ S)~! = R\ S, so the inverse of a conjugation of R is the same
conjugation of the inverse of R.

Conjugations can be composed in the obvious way, because (R\ S)\ T =
R\ (S;T). It is almost the case that the composition of two conjugations is
the conjugation of the compositions. If R ; R~ is a type of the range of S
and the domain of 7', then

(S\R);(T\R) =

R™Y S5 (RyRTY)TSR
R™H(S5T)5 R
= (5;T)\R

Such an R is called a representation of the type R ; R™!, and R™! is an
abstraction to that type.

The idea behind these names is that we start from some operation defined
on some abstract objects, say negation of Booleans: T not F and F not T.
Suppose that we choose to represent Booleans by bits: each bit value is given
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R
(rep ;rep™t) - « (rep ; rep1)
7”6])_1 |7”€P
R\ rep

Figure 1.6: R\ rep implements R : (rep ; rep=!) — (rep ; rep™?)

a meaning by the representation: say F rep 0 and T rep 1. You can calculate
that rep ; rep~! is the identity relation on the Booleans. Then not \ rep is
an implementation of the abstract negation operation, which if it is given a
representation of a bit relates it to a representation of its negation. You can
calculate that 0 (not \ rep) 1 and 1 (not \ rep) 0.

The condition that rep;rep~! be a type is just the requirement that if you
take any abstract object of that type, then rep will give at least one concrete
representative of that object, and that any representative given by rep will
be a representative of that same abstract object. That is to say, rep gives a
faithful representation of the type.

1.3 Lists and tuples

In order to talk about operations on collections of data, we need some struc-
tured types like lists and tuples. We are going to blur the distinction that
people usually make between lists and tuples: there will be no difference be-
tween a triple of things that happen to have a common type, and a list of
things that have that type and which happens to be three elements long. This
makes some things easier, and some things — like mechanical type deduction
— tremendously difficult.

1.3.1 Parallel composition

The fundamental operation that builds circuits that operate on lists is parallel
composition. The parallel composition [R,S] of R and S is a circuit whose
domain and range are pairs of signals — as shown in figure 1.7 — which has an R
component operating on the first elements of the pairs, and an S component
independent of it operating on the second elements. That is to say (z, )[R, S]
(u, v) exactly when both # Ru and y S v. Notice the following convention, to
which the pictures in this chapter adhere: that the first component of a list
of signals is on the left if you stand in the range of a circuit, looking towards
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Figure 1.7: the parallel composition [R, S]

the domain. Since the range is on the right of figure 1.7, and the domain on
the left, the first component is at the bottom and the last at the top.

The independence of the components of a parallel composition is reflected
in the way that composition and inverse distribute over it, as [R, S]; [T, U] =
[R;T,S;U] and [R,S]™! = [R™!,S57!]. Beware the apparently misleading
punctuation in [R; T, S ; U], which can only mean [(R;T),(S;U)].

1.3.2 Pairs and projections

The parallel composition of a circuit with an identity arises so often that we
abbreviate the forms fst R = [R,:], read ‘first R’, and snd R = [¢, R] read
‘second R’. As you can calculate from the definition, a first and a second
commute with each other, fst R;snd S = snd S';fst R, and each distributes over
composition and inverse, for fst(R ; S) = fst R ; fstS and (fst R)~™! = fst R™!,
and similarly for second.

We will also often need to extract just one component of a pair, which we
do with projections: m; projects a pair onto its first component, (z,y) m @,
and 7y onto its second, (z,y) m2 y. The inverse of a projection, of course,
injects its domain into a pair (with an arbitrary other component) so that
w1~ ;m = ¢ is the universal type, as is 73~ ; m3. The projections give us
a way of talking about things that behave like pairs, and so of talking about
operations on more than one argument. They satisfy [R, S];71 =snd S;71; R
and [R,S];7ms =fstR;my; S.

Beware that although fst R ; w1 = w1 ; R, in general [R, S];m # m1 ; R for
every S. If S is the empty relation then so is [R, S], and so is any composition
in which it appears, but m; ; R need not be empty. So it is the case that
(fst R)\ m1 = R, but [R,S]\ m1 # R.

1.3.3 Types for lists

Without going into any further formality, the notion of the parallel compo-
sition of two circuits extends naturally to the composition of any number of
components. In particular, there is the parallel composition of one component
alone, written [R]. The domain signal of this circuit is a singleton list, as is
its range signal. Writing 1 for the type [¢] of singletons, [R] : 1 — 1.
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Figure 1.8: instances of apl, app, and apr—!

In a picture it is hard to imagine there being any difference between an
element of some type and a list of signals that consists of just one signal of
that given type. The formalization of this similarity is that a list of one thing
can be used to represent that thing, and any thing can be used to represent
a list consisting of that thing alone. The abstraction that relates signals to
singleton signals is here written [-]:¢— 1, which you can read as ‘singleton’
(or ‘gift-wrap’). It is a representation for any type, which is to say that
[-1;[-17" = ¢, and it is an abstraction to singletons, which is to say that
175 =1

In order to talk about longer lists, more constants (‘plumbing circuits’)
are needed. The thing that corresponds to appending lists is the app circuit
for which

[Ro, Ry, . Ry, Rig1, Rigoa, .. .,Rn]
= [[Ro, Ry,..., Ri], [Rig1, Riga, .., Ru]] \ app

for any n and 7 < n. In terms of relations on signals, app relates a pair of
lists to the list obtained by concatenating them; but note that all the names
in this equation are names of circuits, rather than signals.

You may be more familiar with the idea of building up lists one component
at a time: apl = fst[-]; app, read ‘append left’ or by some people ‘cons’; is
a circuit which adds one signal to the left of a list; and apr = snd[-]; app,
read ‘append right’ or ‘snoc’, adds a signal to the right-hand end of a list. For
example, [R,[S,T]]; apl = apl; [R,S,T] and [[R, S],T]; apr = apr ;[R,S,T]
so [R,[S,T]]; apl ; apr=! = apl; apr=1;[[R,S], T]. Notice that [R,[S,T]] and
[[R,S],T] are different circuits, each relating pairs, and each is different from
[R, S, T] which relates triples.

Structures with one component have type 1 = [¢]. Those with n + 1
components have one more component than those of length n, and can be
written as any one of n+1 = snd n\ apl = [1,n]\app = [n, 1]\ app = fstn\ apr.
Neither apl; apl™! nor apl™!; apl is the identity, but each is a type: apl™!; apl
is the type of lists of at least one element, and apl ; apl~! that of pairs with a
list in the second element; similarly for apr. In order to complete the picture,
the natural definition for 0 = [], the parallel composition of no component
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_R_

Figure 1.9: an instance of map R

circuits, makes it behave like the identity relation on zero length lists.

1.3.4 Map

The parallel compositions that can be written with the notation above are all
circuits of a given, fixed width. So, for example, [R, R] takes pairs of signals
in the domain and in the range. The ‘map’ construction generalizes this, so
that map R is the parallel composition of any number of R circuits. That
means that 1 ;mapR = [R] = mapR ;1 and 2;mapR = [R,R] = mapR ; 2,
and so on. Figure 1.9 shows an instance of map R; this is an example of a
picture from which it would be dangerous to generalize, because it has many
properties not shared by, for example, (map R) \ 137, or (map R) \ 1.

By induction on the width you can show that map distributes over sequen-
tial composition and inverse in the same way that parallel composition does,
so map(R ; S) = (mapR) ; (map S) and map(R™!) = (map R)~!. It follows
that if 7" is a type, then so is map 7', in fact it is the type of all lists of signals
of type T and in particular map ¢ is the type of lists.

There are a great number of things that you might want to be told about
map to be sure that we were all thinking of the same circuit structure, amongst
them perhaps

1;mapR = [R]

n;mapR = mapl;n
[-]smapR = R;[-]
app ;mapll = mapmap R ; app

[map R, map R] ; app
[R, map R] ; apl
apr ;mapR = [mapR, R]; apr

apl ;map R

but it is clear that some of these are consequences of the others. In fact, you
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Figure 1.10: [P, Q], [R, S]]\ rev and the equivalent [[R, S], [P, Q]]

ought to be convinced by being told only that

[-];mapR = R;[-]
[m,n]; app ;mapR = [map R, mapR];[m,n]; app
(mapR)™" = map(R™})

and perhaps some equations involving 0. These equations for all m and n are
more than enough to define map.

1.3.5 Reverse

There is clearly a connection between left- and right-handed views of lists.
Since any finite list could have been built up in either way, every time you say
something about apl you are saying something about apr, and every time you
say something about both there is a danger of saying something inconsistent
about them.

To make it easier to talk about the mirror-similarity of apl and apr, we
use a piece of plumbing rev : map: — mape, read ‘reverse’, which flips a
list over. In particular, swap = rev \ 2 exchanges two signals, so rev satisfies
rev;[R,S] = [S, R];rev. For other lengths of list it can be defined by 0;rev = 0
and [-]; rev = [-] and app ; rev = [rev, rev] ; rev ; app.

Immediately from these definitions, you can calculate that apl ; rev =
rev ;fstrev ; apr and apr; rev = rev ;snd rev ; apl. By induction on the length
of the list, rev = rev™! and rev ;map R = map R ; rev and so on.

Because rev reverses a list of signals, and because the convention about
drawing circuits puts the beginning of a list at the bottom of the picture, the
end of the list at the top, you might expect that a picture of R\ rev would be
the same as that of R but flipped over about a horizontal axis. This is almost
right, but be careful: suppose R were a circuit operating on lists of lists, then
the outermost list would be reversed but the elements in that list remain in
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Figure 1.11: an instance of tri R, and an instance of irt R

the same order, so for example [[P, @], [R, S]] = [[R, S], [P, Q]]\ rev as can be
seen in figure 1.10.

Reverse is the first example in Ruby of something that you might need to
describe, but which it would be unpleasant to have to implement in a finished
circuit. Any non-trivial instance of reverse drawn as a planar picture has to
contain crossing wires: rev \ 2 contains exactly one crossing, rev \ n contains
n(n — 1)/2. In the course of designing a circuit it will usually be an aim to
eliminate instances of rev, and if that can not be done at least to reduce their

width.

1.3.6 Triangle

A useful construction that is closely related to map, but which seems to be
almost peculiar to the sorts of programs that arise in describing circuits, is the
triangle. Instances of this are illustrated in figure 1.11. For any homogeneous
R :T — T, the triangle tri R : mapT — map 1 relates lists of signals, just as
map would, but it relates the i-th components according to R’. For example, if
(x2) is the circuit which doubles a number, tri( x2) relates a list of zeroes and
ones to a list of those bits weighted by the powers of two which they would
represent in a binary number with its least significant bit first. Similarly,
(tri(x2)) \ rev would give them the weights appropriate to having the most
significant bit first. The form (tri R)\ rev appears so often that we really need
a name for it; in this chapter we adopt Robin Sharp’s notation for it, which
isirt R.

It should suffice to tell you that apl;tri R = [R° map R ; tri R ; apl, that
(tri R)™! = tri(R™'), and that 0;tri R = 0;map R, but of course there is a rich
collection of laws that can be derived from these and the properties of other
operators by induction over lists. Among the more useful ones are those that
relate triangles and maps of the same components such as (tri R)” = tri(R")
and tri R ; map R = map R ; tri R and those about commuting circuits, for
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domain |

— R }—

| range

Figure 1.12: a different picture of R :2 — 2

if R;S = S; R you can show that triR;triS = tri(R ; S) and for types
tri( R%) = map(R°) and so tri R : map R® — map R°.

Decomposing a triangle with apr instead of apl, or decomposing a reversed
triangle with apl, you can show by induction on n that fstn ; apr ;triR =
[n;tri R, R™] ; apr and it turns out that this configuration appears often: an
R" will arise somewhere where by writing (tri R)\ apr=' or (irt R)\ apl™" you
can avoid mentioning n altogether.

1.4 Rows and columns

There are fundamental reasons for being interested in circuits which can be
laid out in a little more than two dimensions. Any very large system with
many connections has to be more or less flat. This means that there are
good reasons to be interested in two-dimensional meshes. This section is
almost entirely about circuits R : 2 — 2 with a pair of signals in the domain
and a pair of signals in the range. To make pictures of networks of these
circuits lie naturally on the page, they are drawn by following a new convention
illustrated in figure 1.12. The first component of the domain lies to the left,
the second component above the circuit; the first component of the range
lies below the circuit, and the second component to its right. This keeps the
order of the signals on the paper consistent with the convention given earlier
for drawing circuits that operate on pairs.

1.4.1 Beside and below

There are two ways of connecting these square tiles that seem natural: as
shown in figure 1.13. In each case the wires are grouped so that both R« S,
read ‘R beside S’, and R S, read ‘R below S’ are also of type 2 — 2; indeed
R~ S:snd2—fst2and R| S :fst2 —snd?2.

It is clear that circuits made by beside and below are not new ones, in
the sense that we already know enough wiring to be able to duplicate their
function without any new primitives. Reading off the picture in figure 1.14,
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Figure 1.13: R beside S making R < S, and R below S making R | S

R

aplapr='fst R aprapl™ snd S aplapr=1

Figure 1.14: another circuit layout which implements R — S

the definitions of beside and below would appear to be straightforward
RS = apl;((fstR)\ apr);((sndS)\ apl);apr~*
R]S = (RP'es™hHt
apr; ((snd S) \ apl) ; ((fst R) \ apr) ; apl™*

Unfortunately, these definitions would not be very useful: this is an example
of recklessly generalizing from a picture and getting more than one bargains
for.

One of the properties we expect of beside and below is that (A« B) [ (C <
D) = (A] C)« (B] D). Richard Bird [Bird88] describes this property by
saying that ‘beside abides with below’, a contraction of above-and-besides. It
turns out that the operators defined above do not abide: the abides property
of beside and below depends on the component circuits being of type 2 — 2.
Better definitions would therefore be given by

R—S apl; ((fst(R\ 2)) \ apr) ; ((snd(S\ 2)) \ apl) ; apr~!
RIS = apr;((snd(S\2)\ apl); ((fst(R\ 2))\ apr) ; apl™*

which is indeed an abiding pair of operators.

Particularly useful in discussing pair-to-pair circuits will be the above and
beside of two identity components. Let rsh = ¢ < ¢, for ‘right shift’, and
Ish = ¢ ] ¢, for ‘left shift’; clearly rsh = Ish=! and Ish = rsh™'. Since ¢ <1 =
apl;3; apr~! you can see that [a, [b, ¢]] ; rsh = rsh;|[[a,b], c], whence the name;
and dually Ish = apr ;3 ; apl™" and [[a, b], ¢]; Ish = Ish ;[a, [b, c]].
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Figure 1.15: (A~ B) [ (C—=D)=(A]C)—(B] D)
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Figure 1.16: ([t,C,¢]\ mid™") ; [A, D]; ([, B, ¢]\ mid™')

The definitions of beside and below can be recast in terms of left and
right shifts, for R« S = rsh ;fst R ;Ish ;snd S ; rsh and by duality R | S =
Ish;snd S ; rsh ;fst R ; Ish.

The easiest proof that beside abides with below goes by showing that each
of (A<~ B)[(C~ D) and (A]C)«(B] D) is equal to the same symmetrical

form; for
(A=B)[(C=D) = ([t,C,i]\ mid™");[A,D];([t, B,e]\ mid™")

where mid is the unique mid : [2,2] — [¢,2,¢] for which [[a,b],[e,d]] ; mid =
mid ;[a, [b,c],d]. A circuit layout suggestive of this symmetrical form is shown
in figure 1.16. You can then show by taking inverses throughout that

(A1C)=(BID) = (,C,d\ mid™");[A,D; ([, B, o]\ mid™")

which shows that beside abides with below.

The other things that one may want to know about beside and below also
say that it does not matter how you choose to bracket a picture, such as those
in figure 1.17. First it is the case that (R;sndX) < S = R— (fstX ; 5)
and similarly by inverting both sides R ] (S ;fstX) = (snd X ;R) ] S. In
particular, if P;Q = Y ;Z and R = R;sndY and fstZ ;S = S then
(R;snd P) = (fst@Q;S) =R~ S.

Secondly it is the case that [A,[B,C]]; (R < S);[[D,E], F] = ([A, B];
R;fst D)« (snd C'; S ; [E, F]) and dually [[4, B],C];(R | S);[D,|E, F]] =
(fst A; R;[D,E]) | ([B,C]; S ;sndC). Most of the things that one needs to
prove about these circuits are consequences of these last observations, setting
various of the variables to the identity.
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Figure 1.17: (R;sndX) < S = R < (fstX ; S) and [A,[B
[[D, E], F]1=([A, B]; R;fst D) < (snd C'; S ; [, I])

Cl; (R = 9);

1.4.2 Reflections

Throughout the discussion of ‘beside’ and ‘below’ we made use of the duality
of the two operators. Taking the inverse of a 2 — 2 circuit corresponds to
flipping the picture about the diagonal line between the domain and range
— the line shown in figure 1.12. Since this turns vertical domain connections
into horizontal range connections and vice versa, it turns below into beside
and vice versa. That is the duality expressed by (R« S)~t = (R71) [ (S71).

Often, we find ourselves wanting to swap two of the wires of one of these
four-sided tiles. Define (a,b) swp R (¢, d) = (d, b} R {c, a), so that a picture of
swp R is the same as one of R except that the connections on the right and
left are exchanged. The connections at the top and bottom are exactly the
same. Amongst the useful things to know about swp are that

swpswpR = R\2
(swp R) < (swpS) = sndswap ;swp(S < R);fstswap
(swpR) | (swpS) = swp(R]S)

Of course there is a dual operation: the circuit (swp R~=1)~! is the one that
you get by reflecting R about a horizontal line, with the top and bottom
connections exchanged and the horizontal ones unchanged. This operator
has similar properties, as you can check by taking inverses throughout the
equations describing swp.

1.4.3 Other orthogonally connected circuits

There are a number of other ways that circuits might be connected with
the wires lying orthogonally to each other, and that might be interesting: for
example it will be common to connect circuits with two inputs and one output
in rows when doing things that are like adding up a row of numbers. There
seem to be a vast number of possibilities corresponding to the combinations
of connections that might be missing from the picture of beside and below.
Three of these configurations are illustrated in figure 1.18.
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~RHS— —RHSEH —RHSHF
| |

Figure 1.18: representation of (R;S)\2 and snd w5~ 1;((m1; R) <= (S;m2~1));fst m
and ((R;m~ 1)« (S;m™1) ;7

| | | |
—RHRHRHRE-
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Figure 1.19: two instances of row R

Fortunately, however, these are all just instances of beside, for example
(R;S)\2=sndm~t;((R;m™1) < (71;9));fstma. This means that the
existing results about beside carry over immediately to any new operator of
this form that we might want. For example, suppose that R@® S = snd 7571 ;
(w1 ; R) < (S ; w27 1)) ; fstwy, which is the first configuration shown in the
figure, then immediately from the properties of beside it follows that [A4, B];
(R®S);[C,D]=(A;R;fstC)® (snd B ;S ;D). It is the existence of the
inverses of the projections that make this unification possible, and this is one
of the excuses for not confining ourselves to functions, nor indeed to total
functions.

1.4.4 Rows

Having put two circuits next to each other with beside, the next step is of
course to put another next to them and so on, as shown in figure 1.19. This
is the same generalization that takes you from parallel composition to map,
and the following requirements on row should look very like those for map

snd[-];row R = R ;fst[-]
row R;fst[-]7" = snd[-]7";R
snd([m, n] ; app) ;row R = ((row R ;fstm) < (row R ;fstn)) ; fst app
row R ; fst(app™' ;[m,n]) = sndapp™';((sndm ;row R) < (sndn ;row R))

Notice that these four conditions cannot be abbreviated in the same way as
those for map, by using inverse, because (row R)~! # row R71.
The interface rule for row, by analogy with that for beside, would seem to

be that if D; A=Y ;Z where R:fstZ —sndY, then
[A, map B] ;row R ; [map C, D] = row([4, B] ; R ; [C, D))
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Figure 1.20: an instance of rdl R
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Figure 1.21: an instance of col R, one of rdr S, and one of (rdl(771))~!

By induction from the rule about a component lying between two circuits
beside each other, it follows that fst X ; row(R;snd X) = row(fst X ; R);snd X.
Similarly by induction from the rule relating swp and beside, we get a rule
about reflecting a row, that swp row R = snd rev ; rowswp R ; fst rev.

There is a row-like repeated form that deserves a special mention, namely
rdl R read ‘reduce (from the) left’. This is illustrated in figure 1.20 and defined
by rdl R = row(R;ms~1);m2. Its properties are immediate from the correspond-
ing properties of row. It should be suggesting operations like summation to
you: for example, if (z, y) add (z+y) then (a, (p, ¢, 7)) (rdl add)(((a+p)+¢)+7).
The order of the bracketing — from the left — is important for non-associative
operators, for example rdl apr or rdl(swap ; apl), and explains the name.

1.4.5 Columns

Of course since beside has below as its dual there is going to be a corresponding
dual for row which is column, defined by col R = (row R=*)~!. An instance
of this is illustrated in figure 1.21, and its properties are the duals of the
properties of row.

fst[-];c0l R = R;snd[-]

ol R;snd[-]7" = fst[-]7':R
fst([m, n]; app) ;col R = ((col R;sndm) | (col R;sndn));snd app
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Figure 1.22: an instance of row col R = col row I

col R;snd(app™";[m,n]) = fstapp™";((fstm;col R) ] (fstn ; col R))

and so on.

The column-shaped thing that corresponds to reduce from the left is re-
duce from the right, defined by rdr R = col(R ; m171) ; m;. It might seem
that it would have been more logical to christen this something like ‘reduce
downwards’, but again its name derives from the bracketing in the formula
which describes the reduction of a function; for example, if (z, y) add (z + y)
then ((p,q,7),a) (rdr add) (p+ (¢ + (r + a))).

Beware that reduce right is not the inverse-dual of reduce left! The easiest
way to see the difference is to compare the examples of rdr R and (rdl(R™1))~!
that are shown in figure 1.21. Of course (rdr(R~1))~! is yet a fourth different
reduce-shaped circuit.

Since for any R : 2—2 both row R : 2—2 and col R : 2—2, it is possible to
make row col R and colrow R. Both of these will look like the example shown
in figure 1.22, and in fact you can show by induction from the abides property
of below and beside that row col R = col row R.

1.4.6 Horner’s rule

Horner’s rule is the name usually given to a method of evaluating polynomials
without needing to raise powers or do unnecessary multiplications; it is en-
capsulated in the equality of ag +za1 + - -+ 2" 2a,_o+ 2" ta,_1 + 2"a, =
agtz(a1+- - +z(an_2+z(an_1+za,)) - ). Naive evaluation of the left-hand
side would appear to require a quadratic number of multiplications, that of
the right-hand side only a linear number. The equality is a consequence of a
property that is usually expressed as the distribution of multiplication over
addition. Specifically it follows from 2 x a + & x b = 2 x (a + b).

The rule applies to any structure with two operations that distribute in
this way, and in particular it has a counterpart in circuits:

[R,R];S=S;R = ((tiR)\ apr™');rdrS =rdr(triR;5)
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Figure 1.23: the hypothesis for Horner’s rule, that [R, R]; S = S; R
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Figure 1.24: an instance of the consequence of Horner’s rule, that tri R;apr—1;

rdr S = apr=! ;rdr(tri R ; S)
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The hypothesis is illustrated in figure 1.23 and an example of the consequence
for a particular size appears in figure 1.24.

The most familiar instance of Horner’s rule will convert a list of bits into
the number that they represent in binary notation. Suppose R is the circuit
(x2) that doubles a number, then recall that tri(x2) relates a list of zeroes
and ones to a list of those bits weighted by the powers of two which they would
represent in a binary number with its least significant bit first. Suppose that
S is the circuit add that relates a pair of numbers to their sum, then apr—!;
rdr add relates a list of numbers to their sum; so bin = tri(x2); apr=1;rdr add
relates a list of bits to the number that they represent as a binary number,
least significant bit first. (It also relates other lists of numbers to the same
value, but that does not matter for the moment.)

The hypothesis of Horner’s rule is satisfied by these two circuits, because
the circuit on one side is [(x2), (x2)]; add which relates a pair of numbers to
the sum of twice each of them, and that on the other is fst(x2)%; add ;(x2) =
add ; (x2) which relates a pair of numbers to twice their sum. These are the
same circuit because 2z +2y = 2(z +y), so [(x2),(x2)]; add = fst(x2)°; add ;
(x2). Our formulation of Horner’s rule therefore allows the conclusion that
bin = apr=1;rdr(tri(x2) ; add) = apr=! ; rdr step where step = snd(x2) ; add,
which is to say that a bit-vector can be converted into the number that it
represents by a right-reduction of step components, each of which doubles
one input and adds it to the other.

There is a statement of Horner’s rule for left reduction:

[R,R];S=8;R = ((itR)\ apl™");rdlS =rdI(irt R;S)

Similarly there are statements for the inverses of both reductions. There are
also a variety of similar results for row and column, and for grids. Their proofs
by induction would be tedious and lengthy, but the whole point of this work
is that such proofs once having been done, their consequences can be applied
in the course of a design without the necessity of recourse to induction.

1.5 Transposition and zips

So far we have only seen wires crossed over in rev, but there is another cliché
of circuit design which is even worse from the point of view of crossed wires.
Suppose a circuit takes its input from a pair of buses, and calculates a function
of the signals on pairs of wires drawn from corresponding positions in those
buses. Somewhere in that circuit the designer has to arrange to interleave the
buses, along the lines shown in figure 1.25, and that costs a number of wire
crossings quadratic in the widths of the buses.

To describe such circuits in Ruby we need a new piece of plumbing, zip,
defined by (z, y)zipz <= Vi.z; = (2;,y;). The law about circuit constructors
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Figure 1.25: an instance of zip

that corresponds to this is that [map R, map S];zip = zip ;map[R, S]. Another
way of saying this is that [map R, mapS] \ zip = map[R,S], but be careful
because (map[R,S]) \ zip™" # [map R,mapS]. Similarly [tri R,tri S] \ zip =
tri[R, S], but not the other equation. This is because you can only interleave
buses that are the same width, that is zip™! ; zip = map2 but zip ; zip~?! is
the type of a pair of lists that have the same length.

More generally any number of buses can be interleaved by transposing
them with trn, defined by 2 trny <= Vi, j.z;; = yj4, so trn = trn~", but
be careful because trn ; trn~! # mapmap¢. Since zip = 2 ;trn = trn ; map?2
there are laws like those about zipping but about transposition and map, such
as mapmap R ; trn = trn ; map map R and more suggestively maptri R ; trn =
trn ; trimap R and so on.

Of course because zip and transpose are ‘expensive’ it is a good idea to
avoid them in the final form of a circuit, but having them in the language
makes it much easier to do some calculations. One has to be able to say what
it is that one would not want to build, as well as what to aim for.

1.5.1 Zipping rows together

One of the common optimizations in circuit design is to interleave a number
of similar regular grid-shaped calculations, such as arise in dealing with bi-
nary representations of numbers, to shorten the wires that connect them, for
example bringing bits of the same weight in different numbers together if they
are to be added. This is the transformation that takes a number of arithmetic
circuits and interleaves them to make the data-path of a processor.

In Ruby the validity of this transformation is captured by the observation
that ([A, B]\ zip™") « ([C, D]\ zip™") = snd 2zip™* ; ([A = C, B~ D]\ zip™ ') ;

fst zip and of course the dual result for below. It generalizes by induction to

row([R, S]\ zip™') = sndzip™'; ([row R, row S] \ zip~?) ; fst zip
col([R, ST\ zip~™") = fstzip™";([col R, col S]\ zip~') ;snd zip
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— A — A C
| | |

Figure 1.26: [A, B]\ zip~* and ([A4, B]\ zip™') — ([C, D]\ zip™ ")

row((map R)\ zip™') = sndtrn™'; ((maprow R)\ zip~ ') ;fst trn
col((map R)\ zip™) = fsttrn™";((mapcol R)\ zip~!) ;snd trn

and by application of two of the above to such observations as

rowcol((map R)\ zip~') = ((maprowcol R)\ zip~ ')\ [tra, tra]

1.6 Sequential circuits

So far we have intended to give the impression that all the circuits that we are
talking about are combinational: that they behave as described in a steady
state, in which they are presented with an unchanging input and deliver an
unchanging output which depends only on that input. Of course no circuit
is ever used in this way: at the very least there was a time before it was
presented with any input; however the combinational description faithfully
models the behaviour of a circuit that was presented with its input so long
ago that it has settled down.

If an entire system is allowed to settle after each change in its input,
the whole of the system is tied up for a settling time that depends on the
longest propagation path, so it usual to place ‘latches’ — sometimes called
‘registers’ — at the outputs of the modules that make up a system. Each latch
stores the output from its module in the previous steady state of that module,
allowing that module to proceed with the next calculation while the modules
that follow it are still settling into the previous steady state. In figure 1.27,
suppose that the F' is presented with a succession z; of inputs. The output
from the latch D at any time will be the value that was previously presented
to it by F, so G can be completing the calculation of G(F(x;)) while F' is
working on the calculation of F'(z;41). When the circuit has settled the latch
is ‘clocked’ — it is told to discard its current output and to propagate F'(z;4+1)
instead — by a signal not shown in the diagram. This technique of overlapping
a succession of combinational calculations is called ‘pipelining’. Since it has
the effect of shortening the longest time to settle, it allows a greater number
of calculations to be completed by a circuit in a given time. Notice, however,
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—F@—G—

Figure 1.27: a pipeline F ;D ;G

that there is no longer a single combinational description of what the whole
circuit is doing.

It is usual to think of the latches in such a circuit as being the repository
of the state of the circuit. The calculation being implemented by the circuit at
any given time depends not only on the circuit and the inputs to it, but also
on the values being held in latches. By means of these the calculation at any
given time can be influenced by past calculations. In a pipeline like that in
figure 1.27 the calculation, and so the output, depends only on a finite number
of past inputs, in this case on only one; but in general there may be cycles in
the circuit with the input to a latch depending on some function of its output.
In that case the state held in the latch is an accumulation of information about
the whole past history of calculations performed by the circuit, and the output
can depend on an arbitrarily large number of past inputs. There is no way
of giving a convenient and convincing account of such circuits in terms of a
succession of independent combinational calculations.

The process of designing a sequential circuit appears to be significantly
harder than that of designing a combinational one: even in the simple case of
a pipeline there is an additional concern, that of making sure that the inputs
that arrive together at a component are those for the same calculation; and
more generally it is not possible to separate the concern of getting the time
right from that of getting the value right. Fortunately, there is a large range
of circuits for which it is possible to reason that a design which would work as
a combinational circuit would work more or less the same way as a sequential
circuit.

1.6.1 Time sequences

The sequential circuits with which we are concerned are those about which
it is sound to reason in exactly the same way as those in previous sections.
What that means is that the algebra is going to be the same as it was in pre-
vious sections, but the interpretation of the symbols will have to be different:
the variables like R, S and so on will represent sequential circuits; and the
combining forms will be correspondingly different.

Think of a circuit as relating not values, but time-sequences of values. A
time sequence is just a function from an index which represents the time at
which a signal is observed to the value that the signal has at that time. We
will use the integers to represent successive times at which a signal is changed:
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a signal representing a Boolean, one of type bool, is a function Z — B, and
one representing a pair of Booleans, one of type [bool, bool], is a function
Z — (B x B), that is a pair-valued function, and not a pair of functions.
So for example to say that not : bool — bool is to say that in this model it
represents a relation between a function of type Z — B and another of the
same type, and to say that zor : [bool, bool] — bool is to say that it represents
a relation between a function of type 7 — (B x B) and one of type Z — B.

Which relation should zor be in this model? It should relate a pair of
Booleans to their logical ‘exclusive or’; and it should do this at each time.
Similarly, a sequential not should, at each instant, relate a Boolean to its
negation.

Let S[R] be the relation that R represents in the sequential model, and
C[R] be the relation that it represented in the combinational model, then
provided R has no internal state, we want  S[R]]y <= Vi.z; C[R] yi, and
we say that any R for which this is true is stateless.

Note that in the sequential model a circuit has a single time sequence in
each of its domain and range. So, for example, a sequential zor relates a
sequence of pairs of Booleans to a sequence of Booleans.

1.6.2 Composition, parallel composition and so on

Having decided what the interpretation of some circuits will be in the se-
quential model, what should the interpretation of composition be? At least
for stateless circuits it is already determined, for if R and S are stateless
we certainly want R ;S to be stateless, so the only possibility is to define
S[R; S] to be S[R]; S[S] for general R and S. Similarly, the inverse of a
sequential circuit is interpreted as the relational converse of its interpretation:
S[R™1] = S[R]~*, and so also for repeated composition.

In order to talk about the interpretation of parallel composition, we need
to be able to relate a pair of sequences to the obvious sequence of pairs to
which it corresponds: we already have a suitable relation, zip defined by
(,y) zip z <= Vi.(x;,y;) = z; and we define S[[R, S]] = [S[R], S[ST]\ =ip
for general R and S. In giving an interpretation for map, we use t{rn to
convert a time-sequence of n-sequences into an n-sequence of time-sequences.
and define S[map R]] = (map S[R]) \ trn for general R. The interpretation of
the other combining forms follows from these.

1.6.3 Delay and state

So far all the sequential circuits we can talk about have been stateless because
all our combining forms preserve statelessness. In order to talk about circuits
with state it will be enough for the present to introduce one new primitive: a
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delay, written D. Its meaning in the sequential model is the relation
ﬁDy g VZIZ = Yi+1

which says that delay relates two signals if the range signal is at all times the
same as the domain signal had been exactly one time step earlier.

The inverse of a delay, an anti-delay written of course D1, is also a useful
concept. It represents the relation # P~'y <= Vi.z; = y;_; which says
that it relates two signals if the range signal is at all times the same as the
domain signal would be exactly one time step later.

If these relations are to be implemented by circuits taking inputs from
their domains and returning outputs in their ranges, then D is just a latch:
the output after each clock is the same as the input immediately preceding
it. The corresponding interpretation of P~! as a circuit is altogether less
implementable: it would have to predict before each clock what its input was
going to be after that clock.

Conversely, if the relations are to be implemented by circuits taking inputs
from their ranges and returning outputs in their domains, P~! is a latch, and it
is D that becomes unimplementable. What this means is that if an expression
including D or P~! were to be implemented by translating it into a circuit
there would be these additional constraints on the choice of direction for each
of the signal flows, that all D and D~! in the expression be implemented the
right way around.

So long as the time-sequences in the model are functions from all of the
integers, positive and negative, so that there is no first time and no last time,
you can show that D ; D~! =, = D~ ;D. There is a perfect symmetry
between D and D~ as presented here: you should not think of either of them
as being more realistic, or more implementable than the other. Indeed, one
of them is just the other one seen the other way around.

Even though D makes no sense in the combinational model, reasoning
about circuits that contain D can be done in exactly the same way as about
combinational circuits. Any calculation with a variable R in it, a calculation
that does not depend on the particular properties of R, can be instantiated
by putting D for R. For example Horner’s rule that if [R, R]; S = S ; R then
((triR) \ apr=1) ;rdr S = rdr(tri R ; S) is a property of the combining forms
like composition and reduce right, and not of R or S. Consequently it is the
case that if [D,D];S = S ;D then ((triD)\ apr=!);rdrS = rdr(triD; S) =
rdr(snd D ; S).

Of course there are things that are true about D which do depend on its
being a particular circuit, for example that triD ;triD~! = map¢, but you
should always keep in mind that it is also a perfectly normal component of
the kind that we have been reasoning about all along. It is just this simplicity
that makes the approach presented here so useful.
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One of the remarkable properties of D is quite how polymorphic it is: D
can be used to represent a unit delay applied to signals of any type, and
the tightest type-specification that can be given is that D : ¢ — . Moreover
D\n = (mapD)\n, so that for example apl;D = apl;mapD = [D, mapD]; apl.
This means that even though we may be talking about circuit components
that will be realized as latches we do not need to be concerned with exactly
what type of signals they handle, just with the delaying properties. The effect
is a clean separation of two concerns: that of making sure that the correct
values are handled, and that of ensuring that they arrive at the right times.

1.6.4 Timelessness

For any stateless circuit R you can show that R = R\ D. In these notes any
circuit R for which R = R\ D is said to be timeless. A timeless circuit
is one that implements the same relation now as it did in the past, and
similarly that it will in the future. Notice that timelessness is not the same
as statelessness: D is most definitely not stateless, indeed it the essence of
statefulness! Nevertheless since D = D~1;D;D =D\ D it is immediate from
the definition that D is timeless.

Just as a stateless circuit is one that does not behave differently at any time
according to the history of its inputs, so a timeless circuit is one that does
not behave differently on account of the absolute time. A stateless circuit
is necessarily timeless. An example of a timeful circuit would be one that
generated a signal indicating time zero. A different sort of example would be
E for which = F y if and only if Vi. 29; = ya;. This circuit is not anchored at
a single instant because £\ D? = E, but nevertheless E is not timeless since
E\D#E.

One of the reasons that timelessness is interesting is that exactly like
statelessness it is preserved by all of the circuit constructors that we have
seen so far.

1.6.5 Slowing

So far we have ways of talking only about circuits in which all of the sequen-
tial components operate at the same rate. Sometimes it proves necessary to
reason about circuits in which some components operate at different rates
from others. In particular there are various common techniques which require
some parts of a circuit to be clocked at twice the rate of other parts, or some
such small multiple.

In order to talk about such circuits, we use a new primitive relation pair
defined by z pairy <= Vi.y; = (@2, 2241). Define a 2-slow version of
R by slow R = [R, R]\ pair~'. The effect is that slow R separates the time-
sequences in its domain and range each into two interleaved sequences, and
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— D216 DD —

Figure 1.28: slow(F ;D ;G ;D) and F ;D? ;G ; D?

performs the calculation described by R on each of the pairs of corresponding
subsequences.

It is a matter of proof that if R is an expression involving only the com-
bining forms introduced so far and D and stateless components, then slow R
is the same as the circuit obtained by replacing all occurrences of D in R by
D?. For example slowD = D? and slow(F' ;D ;G ;D) = F ;D? ;G ;D?. The
proof is by structural induction on R.

This says that you can implement slow R either by following the recipe in
the definition — making two copies of R and supplying them with alternate
inputs to derive alternate outputs — or by doubling up each latch in R —
effectively sharing the rest of the hardware in R between two calculations,
with the state of each calculation being held in the extra latch while the other
calculation is being done.

1.6.6 Retiming

Retiming is a procedure for disposing latches through a circuit, with a view to
improving properties like the length of the longest unbroken propagation path.
The name and the formalisation are usually attributed to Leiserson [Leis81]
although the technique is well-known and presentations of it are to be found
throughout the literature.

The simplest form of retiming is the replacement of (timeless) R by R\ D
or by R\ P~1. We can get more complicated retiming laws by applying this
transformation independently to different but possibly overlapping parts of
a circuit. Horner’s rule yields an example of such a composite retiming law.
It says that if S = [P~1, D71 ;S ;D = (2;5)\ D, that is if S is timeless,
then ((triD) \ apr=!);rdrS = rdr(sndD ; S). A circuit like rdr(snd D ; S)
is said to be pipelined, because there is a latch between each of the stages
of the reduction. You can read this instance of Horner’s rule as follows: to
implement a rdr S that is pipelined, implement rdr(snd D ; S), and adjust the
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timing of the domain signals according to (triD)\ apr~!. If the circuit takes
input from the domain, that adjustment consists of supplying each component
of the input one time step earlier than the one to its left.

Such a specification is a data skew, and an expression like (triD) \ apr~
can either represent a skewing circuit which is implemented and performs the
required adjustment, or else represent a specification for the interface to the
circuit which is implemented.

1

1.7 A systolic correlator

This section treats a design as an example of the style which we are advocating.
Correlation is one of the most important functions in digital signal processing.

1.7.1 Specifying the correlator
The requirement is to calculate

N-—

c(t)y = d(t — i) x ri(t)

i=0

—

at each time ¢ given time sequences d and r;.

The first thing to do is to recast the specification into a more tractable
notation. We separate the time and space dimensions by introducing a new
sequence of values, d}, for which

c(t) = i: di(t) x mi(t) & di(t) =d(t — 1)

the point being that the part with the arithmetic in it looks as though it can
be implemented by a stateless circuit calculating

N-1
!
c= E d; X 7
i=0

and the other part looks like a shift-register.
Translating the stateless part of the specification, suppose we have com-
ponents mul and acc for which (x,y) mul (x x y) and z acc (3, ;), then

(d',r) (zip ; map mul ; acc) c

There is a design decision made in dividing the inputs and outputs between
domain and range. It is regrettably hard to modify this particular decision
without starting again.
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We can also divide the shift register into a stateless and a sequential part
by introducing another sequence of values, dY, for which

dity = d/(t) & dl(t— i) = di(t)

for each i. The first part is stateless, and is a many-way fork. Suppose we
call this fork F', so that d F' d’. From the definition of D, we can rewrite
the second part as d¥ D' d}, or as d" triD d’, so shift = F ; triD. The whole
correlator is implemented as a composition of these parts.

(d, r) (fst shift ; zip ; map mul ; acc) ¢

Notice that we can implement all of the components as functions from the
domain to the range, so in a sense this is a complete design of a correlator.
The rest of the development is going to be a matter of optimizing this initial
implementation. We need to choose suitable lower level implementations of
the many-way fork and the accumulator, so that we can eliminate triD and
zip, both of which are inefficient in layout area. We also need to translate the
implementation from one that operates on numbers to one that operates on
binary representations of numbers.

1.7.2 Implementing the shift register

There are many different ways of building a many-way fork from a two-way
fork. For example,

F = a7 row(m ; fork) ; m

m L col(my ; fork) ;o

Here, we have allowed for the possibility that we may want the list in the
range of F' to be of zero length. This in turn permits r to be a list of length
zero. We will choose to use the version built using row because we know that
this circuit is composed with tri D and we have a version of Horner’s rule that
matches.

shift = m ' ;row(m ; fork);m ;triD
Tl row(wy ; fork) ; ((triD) \ apr_l) T

= m ! row(my ; fork ;snd D) ; m

The decision to implement the shift register using a row will influence
design decisions such as the choice of how to build the accumulator.
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1.7.3 Eliminating the zip

The next step is to use our results about zipping rows together to eliminate
the zip from

fst shift ; zip

The components next to the zip are first cast into the form of two rows and
these are then interleaved.

fst(m, 1 row(my ; fork ;snd D) ; w1) ; zip
= {type of zip }
[717 1 row(my ; fork ;snd D) ; w1, map ] ; zip
= {implementing map: as a row }
[717 1 row(my ; fork ;snd D) s wy, mo ™t s row(my s m ) s m]; 2ip
= {rearranging terms }
[717 Y, w271 s [row(my ; fork ;snd D), row(ms ; ™)) [y, m1] 5 2ip
={[mtm ] =[m w7 ] ip}
[m ™, w15 zip
[row(m ; fork ;snd D), row(ms ; ™~ 1)];
[m1,m1] ; 2zip
= {[m,m];2p = zip™" jfstzip ;my }
[m ™, w15 zip
[row(my ; fork ;snd D), row(my ; m )] ;
zip~?t i fst zip ; my
= {interleaving }

1

[7171, 7] ;snd zip ; row R ; my

where R = [ ; fork ;snd D, mo ; 1y 1]\ zip~!
={m ! zp=mapmy '}

[m17", mapmy '] s row R my

Now for the interleaved components of which we have a row: the descrip-
tion we have for this cell is one that consists of two separate components
and enough plumbing to make it appear that they are interleaved. A more
efficient implementation can be obtained by a bit of simplification, using the
knowledge that the left-most input to the row is provided through fst7; !

and the top input through snd map 7,71,

M=t s R = [mh m T [y fork jsnd Dymy T\ zip Tt

, " ] s [y fork ssnd D wy T ] s ap !
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PTTPTT
Figure 1.29: dist = fork ;snd m; and row(dist ; snd D)
= [fork ;sndD, 7Y ; zip™?
fork ;snd(my ;D mt)

= dist ;sndD ;snd w1

where dist = fork ;snd m;

so substituting for R in a row R in its context

[71'1_1, map 7r2_1] ;row R;mp = row(dist ;snd D) ;snd w7 lm
row(dist ;snd D) ; my

and putting together what we have so far
CORR = row(dist ;snd D) ; w1 ; map mul ; acc

implements a relation for which (r,d) CORR c.

Since we know that acc can be implemented by rows or columns of com-
ponents which add a pair of numbers; it looks as though we might be able to
implement CORR as a pair of rows, one below the other. The point of doing
this is that (row S) | (rowT) = row(S | 7)) and we can hope to make further
simplifications in the component S | 7.

1.7.4 Implementing the accumulator

On the face of it, there is no choice here since we want to implement acc as
a row, it will have to be something like a left reduction of add, say acc =
apl~! ;rdl add. This would be a reasonable implementation, but since it does
not allow empty rows it would not be natural in the context of a potentially
zero-width shift register. Define instead

acc = w1 fstzero;rdl add
where z zeroy <= z=y =20

= w7t fst zero ;row(add ; w7t
and if we do indeed proceed in this direction

CORR = row(dist;sndD);m ; map mul;

my L fst zero ; row(add ; w1t 5w
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>

Y
Y
Y
Y
Y

mul mul mul mul mul mul

—add add add add add add

Figure 1.30: an instance of rdl(W ; w2 ;snd D)

= row(dist ; [mul,D]);m ;

my L fst zero ; row(add ; w7t 5w

= fstmy™!;
((fst zero ; row(add ; my™ 1)) | row(dist ; [mul, D])) ;
snd 7y ; o

= fst(my ™t ;fst zero) ;
row((add ; w5~ 1) | (dist ; [mul, D])) ;
Ty ;M
= fst(my ! fst zero) ; row(W ;sndsnd D) ;ms ; my
where W = (add ; 75~ 1) | (dist ; fst mul)
= fst(my b fstzero) ;rdl(W ;my ;snd D) ; my

This completes the rearrangement of the correlator into a very regular circuit
with few different sorts of components, and only local connections between
those components. In fact there is only one sort of component other than
latches: the cell W performs the only ‘word-level’ operation that we need.
By ‘word’ here we just mean a number: we are making a distinction with
‘bit-level’ operations which deal only with ones and noughts.

1.7.5 Making the circuit systolic

Unfortunately although the wires explicit in the structure of the row are
all short — which is what we mean by saying that the connections are all
local — there are some potentially long propagation paths in the circuit. The
one which stands out in figure 1.30 is the lower path along the row, that
through the accumulator. We would prefer to avoid these long paths; on the
assumption that they will take a long time to settle into a known state. Our
strategy is to trade latency for throughput by pipelining the long paths.

Yet another instance of Horner’s rule can be used to pipeline this path.
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T Hadd ) Hadd—— Hadd — Hadd —— Hadd —

Figure 1.31: an instance of rdl(fstD ; W ; w3 ; snd D)

Knowing that ((irtD) \ apl_l) ;rdl R = rdI(fst D ; R) tempts us to adjust the
timing of the inputs and implement not CORR but

((irt D)\ apl™"); CORR
= (irtD)\ apl™ ;fst(my ™! ;fst zero) ; rdl(W ; my;snd D) 5 my
= fst(my™t ;fstzero) ; ((irt D) \ apl™") ;rdl(W ; 73 ;snd D) 5 my
= fst(my ™t ;fstzero) ;rdl(fst D ; W ;w5 ;snd D) 5 my

an example of which is shown in figure 1.31. This circuit has no combinational
propagation paths longer than one cell. Such a design is called systolic, in this
case word-level systolic, perhaps because the clocking of the latches pumps
data around the circuit. As we use it here the word ‘systolic’ means just that
there are no combinational paths (at a given level of detail).

The problem with this implementation of the correlator is that, contrary
to appearances in our diagrams, latches tend to be much bigger and so more
expensive than the other components in a circuit. The design in figure 1.31
has in each cell three latches two of which are big enough to store a value of
d, and one of which is big enough to store a value of the accumulated sum.

Looking for an alternative strategy we might try skewing in the other
direction

(it D™\ apl™') ; CORR
= fst(my ! fst zero) s rdl(fst D™ ; W ; my 5snd D) 5 my
which introduces anti-delays into the accumulator. In order to be able to
implement these by latches we would need to reverse the data-flow in the
accumulator. This would not be too difficult to do. However, the real problem
with this implementation is that ‘unskewing’ has cancelled the effect of the
latches in the shift register, for
rdi(fst D=1 ;W ; 72 ;snd D)

= fstD!';rd(W ;me;sndD ;D7) ;D

= fstD~ ! rdl(W 5 my;fst DL snd(D ;D7) ;D

= fstD ! rdl(W ;mq;fstD 1) ;D
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[ [ I [ I

mul mul mul mul mul
| | | | |
—add {6 add H{E— add {E— add H{E— add H{E

Figure 1.32: an instance of rdl(W ; 7o ; fstD~1)

and there is now a long combinational propagation path along the top of the
circuit, as illustrated in figure 1.32.

We have run up against a common problem in regular array design. We
have chosen directions of data flow in such a way that attempting to make
the circuit systolic results either in too many latches or in long combinational
paths. The solution is to reverse the direction of one of the data paths and
then to slow the circuit before skewing. Doubling up the delays in the shift
register ensures that skewing only wipes out half of those delays, so that both
paths end up being properly pipelined.

We choose to reverse the direction of the shift-register because that looks
easier. Since swprow R = snd rev ; row swp R ; fst rev and swp(dist ;snd D) =
fst D1 : dist we can calculate that

(d,r) (row(dist ;snd D) ;m) s
< r(m ' swprow(dist ;snd D)) (s, d)
<  r(rev;m " ;row(fst D~ dist) ; fst rev) (s, d)
We know from our first design that s (map mul ; acc) ¢, so
r(rev;m ! row(fst D71 dist) ; fst(rev ; map mul ; acc)) (c, d)

and because rev ;map mul = map mul ; rev and rev ; acc = acc we can remove
the internal rev. Clearly we do not want to implement the rev on the left-hand
end in silicon, so we play the trick of changing the way in which the inputs are
presented to the circuit, and implementing rev; CORR' where r CORR’ (c, d).
rev; CORR' = w7t ;row(fst D™ dist) ; fst(map mul ; acc)
= m ! row(fst DY dist ; fst mul) ;
fst(my ™t ; fst zero ; row(add ; wa™b) 5 ms)

As before, we rearrange this into a pair of rows, one below the other.

rev; CORR' = my~ ! ;fstfstzero ;row(fstsnd D™ ;W) ; my
where W = (add ; w5~ 1) | (dist ; fst mul)
= my ! fstfst zero ;rdl(fstsnd D=1 ; W ; 1)



Circuit design in Ruby 37

m

m

m

&+ &
mul mul mul mul mul
| | | | |
THadd—) Hadd —) Hadd —— Hadd — Hadd —

Figure 1.33: an instance of rdl(fst[D, D=1 ; W ; m2)

Next, we slow the circuit

rev ;slow CORR' = slow(rev; CORR')
= w7t fstfst zero ; rdl(fstsnd D2 ; W ; m3)

and retime using Horner’s rule

irtD ; rev ;slow CORR'
= irtD;my !t fstfst zero ;rdl(fstsnd D=2 W ; 1)
= my b fstfst zero ; ((irt D)\ apl_l) srdl(fstsnd D72, W ; m0)
= my ! fstfst zero ; rdI(fst(D ;snd D™2) ; W ; 7o)
= my ! fstfst zero ; rdl(fst[D, D] ; W ; ma)

which is illustrated in figure 1.33. The left-hand side reminds us that we have
only implemented a slow correlator and that the weights r should be presented
to the circuit in reverse order and time-skewed.

That completes the development of two word-level systolic correlators, one
of which uses 3N latches, the other of which uses only 2N at the expense of
a doubled clock speed.

1.7.6 Refining to a bit level implementation

The next stage of the development is to refine the operations to ones that
combine and produce bit-vectors, and there we will stop. Earlier presenta-
tions of this circuit such as reference [Sheer88] have made this refinement step
in one leap, appealing to ‘well-known’ implementations of the arithmetic func-
tions. However since we can express representation and abstraction relations
in the same notation as the circuit, we have the opportunity to bridge the
gap between word- and bit-level. This is work still in progress at Glasgow
and Oxford, so this section does no more than outline the shape that the
refinement would have.

The strategy for refining from word- to bit-level is: to describe an ab-
straction relation that relates the bit-vectors operated on by the circuit to
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the numbers that they represent; to compose this relation with the word-level
description of the correlator; and then to simplify the resulting expression.
We will use a simple bit-parallel binary representation of numbers, most sig-
nificant bit first. We know to choose this representation because we have done
the development before using the least significant bit first representation and
regretted the choice; the resulting circuit was hard to pipeline. Choosing
the representation with the most-significant-bit first gives simpler data flow
through the bit-level implementation of the cell W.

If bit is the identity relation on bits, that is if it is the type of bits, and
bin = map bit ; rev ; tri(x2) ; ace, then since bin~! ; bin = nat is the identity
on natural numbers, bin is an abstraction from bit vectors to the natural
numbers. Moreover if bin, = n ; bin then bin, ; bin;1 = n ; map bit and
bm;1 ; biny, = nat, where nat, is the type of those numbers in the range
0 <7 < 2" representable in n bits, a sub-type of nat. So bin,, abstracts n-bit
bit-vectors to small enough numbers, and bz'n;1 represents any small enough
number as an n-bit bit-vector.

Suppose we are not going to want to give negative inputs to the correlator:
then we can show that no part of the circuit need then deal with negative
numbers, and that the output must be non-negative. The next thing to do is
to decide on some appropriate widths for the bit-vectors. Since each of the
component parts of W is going to become a column of cells, and since we
will want to interleave these columns, it will be simplest if we can arrange
for everything to have the same width. This is a great simplification, but one
that you need not make if you are determined to produce the smallest possible
implementation of the circuit.

As in the circuit in reference [McCab82], we further simplify matters by
assuming that the reference inputs r; are only a single bit wide. If the largest
d-value can be represented by a k-wide bit vector — that is, if it is in naty —
then any value manipulated by the circuit can be represented by an n-wide
bit-vector, provided n > N + k.

N ;mapnaty ;irtD ; rev ; slow CORR' ; snd naty,

= N ;mapnat; ;irtD ;rev;slow CORR' ; [nat,, naty]

= N ;mapnaty;irtD ;rev;slow CORR' ;[nat,, nat,] ;snd naty
Now our strategy is to replace each nat,, by bz’n;1 ; bin, and to push the rep-
resentation relations down into the circuit, until the circuit can be described
as a collection of components that we know how to implement. Doing this,
we find that we need to implement

[[bin,, bin,], bit] ; W ; mo ; [bing, bin,] !
= (([bing, bin,] ; add ; bin, ' ;771 |
(dist ; fst([bin,, bit] ; mul ; bin, 1)) ; 7
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We have shown elsewhere [Jon90] how expressions like [bin,,, bin,]; add ; bin*
can be implemented by arrays of simpler cells. Here, we state the necessary
theorems without proof. Firstly

[bin,, bin,] ; add ; bin;' = zip;n;m "' ;sndzero; col FA ;my

where the relation FA is just a standard full-adder, a bit-level component that
we know how to implement:

FA = [[bit, bit] ; add, bit] ; add ; add™" ; [(x2)71; bit ™", bit™1]
Similarly
[bin,, bit] ; mul ; bin,* = col M ;my;n

where M = fork ; [mo, [bit, bit] ; mul ; bit™"]

and the bit-multiplier [bit, bit] ; mul ; bit~! can be implemented by the same
electronics as you would use to implement logical ‘and’.

That implements the addition and multiplication parts of the cell as two
separate columns, as illustrated in figure 1.34. It would be a good idea to
eliminate some wire crossings, and to do this it will be necessary to interleave
the columns. We start by merging the dist at the top of the diagram with the
column of multiplier cells.

dist ; fst(col M ;my;n) = col M' ;@ ;n;2ip™?

where M’ = dist ;fst M ; Ish

Now we are in a position to interleave the column of M’ cells with the column

of FA cells.

[[bing, bin,], bit] ; W ; w5 ; [bin,, bin,] !
= (zip;n;m 'isndzero;col FA; @y ;m b)) ]
(col M' s mq sm 5 2ip™1)) 5 o
= [zip;n,m " ;snd zero] ;col B ;my ; (2ip ;n)~!

where B = ((swap | M) ;snd rsh) < (FA | swap)

We have stated without justification a theorem about the interleaving of two
columns. To approach this design properly, it would have been better to
introduce a new higher order function corresponding to the way the cell B is
built from the cells FA and M’ and to develop some of the algebra of that
higher order function.

Figure 1.35 shows the column that we have just made. The relation B
can be implemented by a full-adder, an ‘and’ gate and some wiring; so we can
stop here and plug everything back together.
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Figure 1.34: [[bing, bing], bit] ; W ; snd[bing, bing]~! implemented by an inter-
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Figure 1.35: [[bing, bina], bit] ; W ; snd[bing, bing)~! implemented by a single

column of interleaved components
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N ;map naty ;irtD ; rev ; slow CORR' ; snd naty,
= N :;mapbit™ ;7! ;fstfstmap zero ;
rdi(fst[D, D] ; [[binn, biny], bit] ; W ; ma ; [bin,, bin,]™1) ;
[bin,, bin,] ; snd naty
N :mapbit™! ;w1 ; fstfst map zero ;
rd([[D, D7) ; zip ; n, 7171 ; snd zero] ; col B mo ; (zip ;)™ 1) ;

[bin,,, bin, ; naty)

= N;mapbit™" ;71 ;[zip ; mapfst zero, map(m; =1 ; snd zero)] ;
rdl(fst map[D, D] ; col B ; m3) ;
zip™1 ; [bing, bin, ; naty]
= N ;mapbit™' ;7! ;[mapfst zero, map(m; ~* ;snd zero)] ;
row col(fst[D, D] ; B) ;
Ty 5 2ip~ " [bing, bing, ; naty)

The middle term on the right-hand side is just an N by n grid of identical cells,
and this part would certainly be implemented as part of the circuit. The terms
at either end of the expression are what remains of the representation relation.
They describe how the input must be presented to the circuit, and how to
read the output: N ;map bit~! means ‘a list of N one-bit numbers’; and zip~*;
[bin,, bin, ; naty] means ‘the interleaving of an n-bit binary representation of
one number and the n-bit representation of another number which could have
been represented in & bits’. The remaining terms describe the tying of certain
lines to a level representing the bit zero, and the discarding of the signals on

other lines.

1.7.7 Making the implementation systolic at the bit level

The circuit represented by G = row col(fst[D,D~1] ; B), illustrated in fig-
ure 1.36, has no long horizontal combinational paths because of the [D,D~!]
through which each horizontal data-path passes at each cell. Moreover since
the change of representation that we used did not involve any change in the di-
rection of the data-flow, both the delays and anti-delays in the circuit remain
implementable as latches.

There are however vertical unbroken combinational paths through each
column of cells. In figure 1.35 these are the long vertical line that carries the
reference bit, and a route through the carry-path that joins the FA compo-
nents. We must eliminate these long paths by skewing. We leave this task as
an exercise for the reader. (Hint: the appropriate skewing law for columns is
reminiscent of Horner’s rule for right reductions:

(triD\ apr~') ;col R;sndtriD™! = col(snd D ; R)
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Figure 1.36: an instance of row col(fst[D, D~1]; B)

and although we could skew each column in turn, it is simplest to exchange
the row and column structure.)

1.8 Butterfly networks

Butterfly networks and algorithms are a design cliché in digital signal pro-
cessing, just as arrays and grids are. Typical applications are sorting, fast
Fourier transform, and the interconnection of processors and memories or of
networks of processors. Both the ‘cube connected cycle’ and the ‘hypercube’
can be made by folding up a butterfly network. From the point of view of
an algorithm designer, butterfly networks are interesting because they have
many simple recursive decompositions. We need some extra Ruby notation
in order to be able to describe butterflies.

1.8.1 The perfect shuffle

We have already made a lot of use of the wiring relation zip which was defined
by (x,y) zip = <= Vi.z; = (2;,y;). Butterfly networks use a related piece
of plumbing, the perfect shuffle or riffle. Consider a deck of fifty-two cards;
it can be riffled by dividing in half, interleaving to give twenty-six pairs, and
then ‘unpairing’ by forgetting about the pairing.

This permutation on even-length lists is actually used on silicon despite the
crossovers that it introduces. We can describe it by composing three simpler
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wiring relations, halve, zip and pair~! (‘unpair’). The relation halve relates

a list of even length to a pair containing the first and second halves of the
list so 2n ; halve = app~! ; [n, n]. The relation pair defined by z pair y <=
Vi.y; = (@a;, ©2i41) divides a list of length 2n into an n-list of pairs. (We used
it earlier when defining slow.) Define

rifle = halve ; zip ; pair™*

Some of the useful properties of riffle are

2n; riffle = riffle; 2n
o riffle; riffle™ = 2n
on;riffle™ s riffle = 2n

2k . rzﬁ‘lek = 2F

1.8.2 Two and interleave

Although we could now describe butterflies using the combining forms and
wiring relations already introduced, two new combining forms simplify the
description.

Let R and S both be of type map: — map:. Define

R|S = [R,S]\ halve™!

and

two R R|R

The relation two R relates by R the first halves of the lists in its domain and
range, and similarly the second halves. You can think of it as placing two
copies of R across a bus. Similarly two™ R places 2" copies of R across a bus.

The relation ilv R on the other hand relates by R the even numbered
elements of the lists in its domain and range, and similarly the odd numbered
elements.

ivR = (twoR)\ riffle
Surprisingly enough, two and ilv can be exchanged
twoilvR = ilvtwo R

a fact that we will find very useful later. If we know that R and S relate

only lists of equal length, then both ilv and two distribute over composition:

ilv(R;S) = (ilvR); (ilvS) and two(R ; S) = (two R) ; (two S).
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Figure 1.37: a butterfly of size 3

1.8.3 Fat composition

A butterfly network of size k consists of a composition of k ranks, each of which
contains the same number of copies of the basic cell, but disposed differently
across the bus. We need a way of describing this kind of composition of
several different but similar relations. This version of composition, g (read
‘fat composition’), when applied to a list of relations composes them. This
means that we need a notation for lists: write (i : 0 < i < n : z;) for the list of
length n, the ith element of which is ;. So for example 3(: : 0 < ¢ < 4 : R;) is
the relation Rg; R1;R2; Rs. You can think of g as the quantifier corresponding
to composition, just as ) is the quantifier corresponding to addition.

1.8.4 Describing the butterfly network

Let us assume that our basic cell R is of type 27! — 27%! for some fixed
n. Usually n will be zero, for example when we build butterflies of com-
parators or of two way switches. However making n a parameter will be a
useful generalization when trying to understand the recursive structure of the
network.

A butterfly network of size k consists of k columns or ranks, each contain-
ing 25~ copies of the basic cell. Each rank distributes these copies across the
bus — which must be of width 287 — in a different but regular way.

MR = g(i:0<i<k: twoiilvk_i_lR)

A butterfly of size zero is simply the identity on lists of length 27. If we fix n
to be zero so that R : 2 — 2 then a butterfly of size 3 has 3 ranks, each with
4 copies of R. It can be variously described as

22 MR = i|v2R;two(i|vR;twoR)
iv? R ; twoilv R ; two® R
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Figure 1.38: first recursive decomposition of the butterfly

= IV R;ilvtwo R ; two® R
ilv(ilv R ; two R) ; two® R

You can think of these descriptions as different ways of decomposing the same
relation. Figure 1.37 shows one possible way of laying out the relation. There
are of course many others.

Starting from our iterative description of the butterfly, we can use the
properties of two, ilv and riffle to derive several alternative decompositions.
Unwinding the definition of the butterfly from the left gives

o+l R (i:0<i<k+1:two iy (k1) —i1 R)
iV R);s(i:1<i<k+1:two jlyE+l)—i=1 R)
IV R) ;50 0 < j <k twol HLilyEHD=UHD=L

(

(iV°R) ;s
= (iIV'R);s

( )

( )

<

;9(j 0 <j <k :twotwo ilvk_j_lR)
ik twog(j:0<j<k:two ive=i-1 R)

ivF R) ; two(2" ; 4 R)

=

=

showing that a butterfly of size k + 1 is made from 2% copies of R making up
the first rank, some wiring, and two recursive instances of a butterfly of size
k. This is perhaps a more familiar description of the butterfly. Figure 1.38
outlines an instance of a butterfly of size 2 and one of size 1 within a butterfly
of size 3.

Similarly unwinding the fat composition from the right gives us

ikl R = i:0<i<k+1: two! ily(FH1)—i-1 R)

= g(i:0<i<k:two ily(EHt)—i=t R) ;two* R
8(1:0 <i<k:ilvtwo ivFTI L RY s twof R

= ilv(g(t:0<i<k: two' ilvF =11 R)) s two® R

= ilv(2"** ;X R) ; two* R
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Figure 1.39: a second recursive decomposition

This time we can see that a butterfly consists of two smaller butterflies inter-
leaved, composed with a rank consisting just of two* R. Figure 1.39 outlines
this second recursive decomposition.

Because two and ilv can be exchanged, it must be the case that

two(2"F I R) = twos(j:0<j <k:two! ilvk_j_lR)
= g(j:0§j<k:twotwoji|vk_j_1R)
= 3(j:0<j<k:two ilvk_j_l(two R))
= 2+l ptwo R

and
iv(2"tF M R) = 2"HEFL VR

which gives us another pair of decompositions of a butterfly each containing
only a single instance of the next smaller butterfly, although with a larger
component.

nthtl R = (ilvk R); (M two R)
= (XilvR); (two® R)

The second of these decompositions is illustrated in figure 1.40: the larger
outlined box is an instance of K ilv R; and the smaller is just ilv? R which is a
degenerate instance of MXilv* R.

The butterfly has many more recursive decompositions because we need
not divide it into a single rank and a recursive call: it can be the composition
of two similar parts. The discovery of this decomposition is left as an exercise
for the reader.

Finally, let us return to the case in which the basic cell is of type 2 — 2.
In that case, we can relate two and ilv to map to get simpler descriptions of
the circuit. Suppose that R : 2 — 2, then

2+ stwot R = 28+ ((map R) \ pair™?)
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Figure 1.40: singly recursive view

In other words, each R cell operates on pairs of adjacent elements from the
lists in the domain and range. The form ((map R) \ pair™"') arises so often
that we abbreviate it to pmap R. Similarly

AN R = 25F s ((pmap R) \ riffle ™)

and we often abbreviate ((pmap R) \ mﬁie_l) as rpmap R. The recursive de-
scriptions of a butterfly of R : 2 — 2 can be rewritten as

2841 MR = rpmap R;two(2F ; X R)
= iIv(Qk ;X R); pmap R

1.9 The Fourier transform

This outlines a development of a common digital signal-processing algorithm,
having the aim of turning the specification into the Ruby description of a
butterfly circuit. There is a fuller presentation of the calculation of the im-
plementation from the specification in reference [Jon89).

1.9.1 The discrete Fourier transform

Twenty-five years ago Cooley and Tukey rediscovered an optimizing tech-
nique usually attributed to Gauss, who used it in hand calculation. They
applied the technique to the discrete Fourier transform, reducing an appar-
ently O(n?) problem to the almost instantly ubiquitous O(nlogn) ‘fast Fourier
transform’ [Cool65].

The fast Fourier transform is not of course a different transform, but a fast
implementation of the discrete transform. Its greatest virtue lies in that it can
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be executed in O(logn) time on O(n) processors in a uniform way — it lends
itself to a low-latency high-throughput pipelined hardware implementation.

The discrete Fourier transform is defined in terms of the arithmetic on
an integral domain. You can think of arithmetic on complex numbers, for a
definite example, although there are applications where finite fields or vector
spaces over integral domains are appropriate. The derivation depends only on
the algebraic properties of the arithmetic, not on the underlying arithmetic
itself, so everything said here about the algorithm will be true for finite fields
and vector spaces as well.

The discrete Fourier transform of a vector = of length n is a vector y of
the same length for which

Yy = E AL

k:0<k<n

where w is a principal n-th root of unity. (In the example of complex numbers,
you can think of w = ¢27¢/? .) The result, y, is sometimes called the ‘frequency
spectrum’ of the sample z.

Even if the powers of w are pre-calculated, it would appear that O(n?)
multiplications are required to evaluate the whole of y for any . The fast
algorithm avoids many of these by making use of the fact that w™ = 1. If n is
composite, the calculation can be divided into what amounts to a number of
smaller Fourier transforms. Suppose n = p x ¢, then by a change of variables

Ypatd = Z Z wpathaetd)y

ci0<e<p d:0<d<yg

— Z Z (wpq)aC(wp)ad(WQ)bcwbdl,qc+d

c:0<e<p d:0<d<yg

= > @) Y (@) et

d:0<d<q c:0<e<p

Since w? is a p-th root of unity, and w? is a g-th root of unity, it is not
surprising that the above calculation leads to an implementation in which
p-sized and ¢-sized transforms appear. It is harder, however, to see what that
implementation might be.

1.9.2 Casting the algorithm in the notation

The first task in a calculation dealing with an algorithm is to cast the spec-
ification in the notation that will be used to handle the development. There
are two things which we do in this stage.

One part appears to be largely a process of eliminating subscripts, since the
usual convention is to specify separately each co-ordinate of an output vector.
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The conventional understanding of a specification of the form y; = ... is that
the subscript is universally quantified, so that this one equation formally
represents a number of different equations, one for each value of i. To make
clear that an algorithm operates uniformly at all co-ordinates of its output
we write a single equation which defines the whole list of output values.

The other part of the translation is to manipulate the specification — which
is usually an expression describing the output of a calculation for a given input
— into the form of an application to that input of an expression representing
the algorithm. The manipulation of the algorithm can then proceed without
reference to the particular input.

The discrete Fourier transform was specified by

Yy; = E wJXk X Tp

k:0<k<n

by which was meant that the output y should be defined for each j in the
range 0 < j < n, so meaning that

y:(j:0§j<n:2(k:0§k<n:wj><kxzk))
<= {meaning of summation and map, meaning of exponentiation }
(G:0<j<n:(k:0<k<n:w™ <)) (mapacc)y
where ace = apl™! ;rdl add = apr=" ;rdr add
<= {meaning of arithmetic exponentiation, associativity of x }
(G:0<j<n:{k:0<k<n:((wx))z)) (mapace)y
{ meaning of tri }

(71:0<j<n:(k:0<k<n:a)) (tritri( xw) ; map acc) y

|

<= {meaning of join }
(k:0<k<n:zp)(J';n;tritri(xw) ; mapacc) y
where J = apl™* ; rdl join = apr~" ; rdr join

< z(J7t;n;tritri(xw) ; map acc) y

Since w depends on n, because w” = 1, we will be honest and write (xw)
using a new operator ® for which z ® n = z x w. This operation has the
property, which will be useful later, that (®(p x ¢))? = (®p). There are two
instances of reduction of an associative relation in this description, and we
can avoid commitment about how to implement these by introducing a new
operator red for which red R = apl™" ;rdl R = apr~" ;rdr R for any associative
R.

The term in brackets that relates z to y represents the discrete Fourier
transform algorithm, but only if z is a list of length n, so we will calculate
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map R"

tri R

Figure 1.41: illustration of tri R divided into mapn ; trimap R” ; maptri R

from the definition

n;F = n;(redjoin)"t;n;tritri(®n); mapred add

1.9.3 Dividing large problems into smaller ones

Suppose R is an algorithm or circuit for calculating some list-valued function
of a list of values. If it is possible to express R in the form S ; red app,
then S is an algorithm for constructing the same result in parts, and may be
implementable by a number of independent parts. For example

(red join)™' = (redjoin)~'; map(red join)~' ;red app

describes a divide-and-conquer strategy for fanning out a signal into some
number of copies, and then independently fanning out each of those.

Similarly red app ; R is an algorithm which constructs the same result as
R from a partition of the same input into a list of lists. If it is possible to
‘simplify’ red app ; R into a form which has a parallel implementation, that
gives a strategy for dividing the calculation of R. A particularly useful result
in the present case is that

mapn ;red app ;triR = trimap R" ;maptri R; mapn ;red app

which means that tri R can be implemented by a number of (smaller) inde-
pendent instances of tri R and a triangular array of map R™ components. This
equality depends on the restriction to a list-of-lists where every sublist has
the same length.

In factorising the discrete Fourier transform, this rule is applied twice to
an instance of an expression of the form tritri R.

map map(mapq ;red app) ; (mapp;red app) ; tritri R
= mapmap(mapq ;red app) ; trimap RF ;maptri R ; mapp;red app



52 Jones and Sheeran

= trimap(trimap RP*?; maptri R?) ;
map map(map ¢ ; red app) ; maptri R ; mapp ;red app
= trimap(trimap RP*? ; maptri R") ; maptri(trimap R? ; maptri R) ;
map map(map ¢ ; red app) ; mapp ; red app
= trimaptrimap RF*?;
tri map maptri R? ; map tritrimap R? ; maptrimaptri i ;
map map(map ¢ ; red app) ; mapp ; red app

This factorisation corresponds to the two changes of variables in the earlier
calculation with summations. The order of the terms in R does not matter
because terms in map and tri with the same relation necessarily commute with
each other.

Since the R in question is (®n), this is the point to observe that some
powers of R are going to be cancellable, specifically that

trimaptrimap(®n)" = mapmapmapmap(®1)

= mapmapmapmap(xw)’

where (xw)? is the identity on the type underlying the arithmetic. That term
can then be cancelled by absorbing it into any of the other three similar terms;
this corresponds to the cancelling of w” in the calculations with summations.

1.9.4 Dividing the discrete Fourier transform

Suppose that n = p x ¢. The factorisation of the n-point transform proceeds,
as suggested above, by simplifying a specific instance of mapgq ;red app ;n;F.
The particular instance is chosen — with hindsight, of course — so that a term
can be cancelled later.

p;mapq;redapp; F
= p;mapgq;redapp;n;F
= { definition of F }
p;mapq;red app ; (red join) ™! ; n;tritri(®n) ; mapred add
= {factorising red join }
p;mapq ;red app ; (red join)~
q;mapp;red app ;tritri(®n) ; mapred add

1 1

; (mapred join)™";
= { promoting red app over joins }
p;mapgq; (redjoin)™!; (mapred join)™' ;¢ ; mapp;
map map red app ; red app ; tritri(®@n) ; mapred add
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= {factorising tritri }
p;mapgq; (redjoin)~!; (mapred join) ™! ;
tri map map tri(@n)? ; map tri tri map(®@n)? ; map tri map tri(®n) ;
q ; mapp; mapmapred app ; red app ; mapred add
= { promoting mapred add over red app }
p;mapgq;(redjoin)™t ; (mapred join) ! ;
tri map map tri(®q) ; map tri tri map(®p) ; map tri map tri(®n) ;
q ; map p ; map map(mapred app ;red add) ; red app
= { associativity of add }
p;mapq; (red join)™' ; (mapred join) ! ;
map tri tri map(®p) ; map tri map tri(®n) ; tri map map tri(®gq) ;
map map(mapred add ; red add) ; ¢ ; mapp ;red app
This is a watershed in the calculation: the algorithm has now been teased
apart into sufficiently many sufficiently small sub-calculations that we can
begin to see how it might be re-arranged into smaller instances of the same
algorithm.

The strategy from this point is to use a number of facts about the arith-
metic to eliminate some map operators from the expression. Firstly the arith-
metic is deterministic, and R ; join™' = join~' ; [R, R] for deterministic rela-
tions R, so (red join)~1;map R = R;(red join)~1. Secondly since multiplication
distributes over addition, so does ® and map(®k) ; red add = red add ; (®k).
To do this the order of some of the operators must be changed by composing
both sides with a transposition.

trn ;p;mapq ;red app ; F

= { previous calculation }
q;mapp; (redjoin)™' ; (mapred join)~'; map map trn ;
map tri tri map(®p) ; map tri map tri(®n) ; trimap map tri(®gq) ;
map map(mapred add ; red add) ; ¢ ; mapp ;red app

= { transposing pointwise operations }
q;mapp; (redjoin)™' ; (mapredjoin)~t;
map tri map tri(®p) ; map tri tri map(®n) ; trimap tri map(®gq) ;
map map(trn ; mapred add ;red add) ;¢ ;mapp;red app

= { commutativity of add }
q;mapp; (redjoin)™' ; (mapred join)~';
map tri map tri(®p) ; map tri tri map(®n) ; trimap tri map(®gq) ;
map map(map red add ; red add) ; ¢ ; mapp ;red app
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= { distributivity of @ over add }
q;mapp; (redjoin)~'; (mapred join)™" ; map tri map tri(®p) ;
map map map red add ; map tritri(®n) ; tri map tri(®q) ;
map mapred add ; q ;mapp ; red app

= { deterministic arithmetic }
q;mapp; (redjoin)™! ; trimaptri(®p) ;
map mapred add ; tritri(®n) ; (red join) ™' ; tri map tri(®q) ;
map mapred add ; q ; mapp ; red app

= { promoting ¢q over joins }
mapp ; (red join) ™' ; p; trimap tri(®p) ; map map red add ;
tritri(®n) ;
mapq ; (red join)~' ; ¢ ; trimap tri(®q) ; map mapred add ;
red app

There are two occurrences of similar expressions in the right-hand side, dif-
fering only in the parameter p or ¢q. Each of these can be shown in the same
way to satisfy

mapp ; (red join)™! ; p ; tri map tri(®p) ; map mapred add
= mapp; map((red join)~'; p); trn ; trimaptri(®p) ; map mapred add
= map(p;(red join)~t ;p;tritri(®p) ; mapred add) ; trn
= map(p;F);trn

so showing that

q;mapp;trn ;red app ; F
= map(p;F);tra;tritri(®n); map(q; F); trn ;red app

Now trn is its own inverse, and p ; mapgq ; red app is also a bijection on the
domain of the right-hand side, so both can be carried over to the other side
of the equation.

n;F = (redapp)™";trn;map(p;F);trn;tritri(®n);
map(q ; F); trn ; red app

The remaining asymmetry in the expression is annoying, but merely superfi-
cial for of course trn ;tritri(®@n) = tritri(®n) ; trn.

So long as both p and ¢ are strictly less than n we can use this decompo-
sition as a definition of n ; F for any composite n. The decomposition can be
read — taking terms from left to right — as a divide-and-conquer algorithm for
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implementing transforms of composite width: divide the input into p chunks
of length ¢; interleave them; apply an array (of ¢) independent p-point trans-
forms; interleave the results; modify by scaling the (i, j)-th signal by (@n)**J;
apply an array (of p) independent g-point transforms; interleave the results;
and finally concatenate the ¢ resulting lists, each of which is of length p, into
a single n-list. This is the algorithm known as the ‘fast Fourier transform’.
The scaling factors in tritri(®n) can of course be pre-calculated for any given
p and ¢ and are known as ‘twiddle factors’.

1.9.5 Outline of an implementation

The usual recursive ‘butterfly’ implementation of the fast Fourier transform
applies only to transforms on vectors of length 2" for some n. This is because
it is very easy to do two-point transforms: because minus one is the principal
square root of unity, the two-point transform ® = 2 ; F relates (zq,z1) to
(2o + 21,20 — 1) and requires no multiplications.

For higher powers of two, the factorisation used is

2n;F = pair;tra;map(n;F);tra;triti(®2n) ; map® ; trn ; halve ™

The only explicit multiplications in this factorisation are in the tritri(®2n)
which can be implemented by an array of 2n multiplications only n — 1 of
which are non-trivial. The factorisation is used recursively on the n ; F term
until only two-point transforms remain.

The usual way of implementing this algorithm — that is, the usual way
of laying out the circuit — is to divide F into two homogeneous parts: let

F =8 ; F' where
2n;F' = halve ;map(n; F') ;tritri(®2n) ; ((map®) \ trn) ; halve™
and

2n;S8 = pair;trn;map(n;S); halve™?

Looking back to the discussion of butterfly circuits, you will see that the
recursion

2n; B (map(n ; B) ; (map ®) \ trn) \ halve™*

two(n ; B) ; rpmap ®

has a solution B = (X ®~1)~!. This recursion is almost the same as that
for F’, and the solution need only be adjusted to accommodate the twiddle
factors. Alternately, the twiddle factors might be calculated in a pre-pass
using another co-located butterfly of the same shape as B.
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Similarly, the solution to the recursion for & is a permutation, which is
a tree of transpositions. It is that very thorough shuffle which appears in-
scrutably in many implementations of the fast transform, and which reverses
the bits of the index of the position of a value in a vector.

The derivation of the fast algorithm did not depend on a particular arith-
metic: any integral domain would do. So you can use this derivation to lead
into the design of a circuit in which the twiddle-factor multipliers operate
on complex numbers, or on small integers with modulo arithmetic. More
importantly, the chosen arithmetic can be the pointwise operations on time-
sequences, and the derivation of the butterfly circuit can just as easily be used
to lead to a sequential circuit.
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