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Real-Time Image
Processing on a
Custom Computing

everal aspects of image processing make it computationally chal-

lenging. A single image represents a data set of considerable size—

typically 256K picture elements, or pixels, for a black-and-white
image. Many tasks require that several operations be performed on each
pixel in the image. Furthermore, when real-time operations are needed,
they must be performed at live video rates, typically 30 images per sec-
ond. To keep up with these capacious data rates and demanding com-
putations in real time, the processing engine must provide specialized
data paths, application-specific operators, creative data management,
and careful sequencing and pipelining.

Hardware designers typically must perform extensive behavioral test-
ing of a new concept before proceeding with an implementation. Due to
the enormous processing time required to simulate a complex image-
processing system, executing a VHDL model with a representative data
set even on a fast workstation is not practical. Days, or even weeks, are
commonly needed to simulate the processing of a single full-sized image.
And since some applications process sequences of images, designers may
need several hundred image simulations to adequately analyze only a few
seconds of data. Because of this, they are often forced into a trade-off
between how much testing can be afforded versus an acceptable risk in
allowing a silicon iteration.

We discuss an alternative, automated approach: transforming the struc-
tural representation (or transforming a behavioral model) into a real-time
implementation. With our system, a designer can proceed from a behav-
ioral description of the image-processing task to a functioning prototype
that can perform the task at full speed (rapid prototyping). Reconfigura-
tion from one image-processing task to another does not require physical
changes but is accomplished by downloading a hardware personalization
database to a novel computing platform. Reconfiguration takes just sec-
onds. A designer with this capability has

* a means for evaluating the performance of an experimental algo-
rithm/architecture, and

* aworking component that can be used in the development and testing
of a much larger system.

We chose an experimental custom computing platform called Splash-2 to
investigate this approach to prototyping real-time image-processing
designs.! Custom computing platforms are emerging as a class of com-
puters that can provide near application-specific computational perfor-
mance. Designers can also configure them for a variety of tasks. Such
platforms let designers customize specific operations for function and size,
and data paths for individual applications.
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We developed a real-time image-pro-
cessing system called VTSplash, based on
the Splash-2 general-purpose platform.
Splash-2is an attached processor featuring
programmable processing elements (PEs)
and communication paths. The Splash-2
system uses arrays of RAM-based field-pro-
grammable gate arrays (FPGAs), crossbar
networks, and distributed memory to
accomplish the needed flexibility and per-
formance. Even though Splash-2 was not
designed specifically for image processing,
its architectural properties are suited for the
computation and data-transfer rates char-
acteristic of this class of problems. The
price/performance ratio of this system also
makes it competitive with conventional real-
time image-processing systems.

In this article, we explore the utility of
custom computing machinery for acceler-
ating the development, testing, and proto-
typing of a diverse set of image-processing
applications. We first summarize architec-
tural aspects of high-speed image process-
ing. We next provide a synopsis of pertinent
architectural features of the Splash-2
processor and describe its development
environment. We then describe several
image-processing tasks implemented on
Splash-2 and conclude with a discussion of
task performance.

ARCHITECTURAL ASPECTS
OF IMAGE PROCESSING

Conventional general-purpose machines
cannot manage the distinctive I/O require-
ments of most image-processing tasks; nei-
ther do they take advantage of the
opportunities for parallel computation pre-
sent in many vision-related applications.
Parallel processing systems such as mesh
computers or pipelined processors have
been successfully applied to some image-
processing tasks. Mesh architectures often
provide very large speedup after an image
is loaded, but overall performance often
suffers severely from 1/0 dimitations.
Pipelined machines can accept image data
inreal time from a camera or other source,
but historically they have proven difficult
to reconfigure for various processing tasks.
(The sidebar “Architectural considerations
forimage processing” further discusses the
unique requirements of image-processing
architectures.)

Image data are typically produced and
conveyed in raster order, that is, pixels are
presented serially, left-to-right for each
image row, beginning with the top row. If
a typical image frame is 512 rows x 512
columns of 8-bit pixels, the total data in a
single frame is 262,144 pixels, or 2

ARCHITECTURAL CONSIDERATIONS
FOR IMAGE PROCESSING

The goal of many image-processing tasks is to transform an input image into
a new, enhanced version of the original. In some cases, each output pixel (or pic-
ture element) can be computed as a function of a small neighborhood of adja-
cent pixels from the input image. Figure A shows an example 3 < 3
neighborhood. Each output pixel depends on a different neighborhood in the
original image. Conceptually, therefore, the output image is produced by slid-
ing a 3 x 3 window over the input image, with an output pixel resulting for
each new location of the window.

The choice of neighbor- oo
hood operation determines i
the appearance of the out-
put image. A weighted sum

Column: 0 1 2 3 4 ¢ oo

of neighborhood pixels, for Row 0
example, could result in Row 1
smoothed (low-pass filtered) .- | Row 2
or edge-enhanced (high-: Row 3
pass filtered) output images. Row 4

Median filtering generates =
the median value of each: |
neighborhood. Many other *
filter types are possible.'3 i
Although the ninepixelsof .« L____________ —
a3x3neighborhood are spa- Figure A. Example image array. Each cell
tially localized in the physicali represents one pixel, which is commonly 8
image, this is not true in the: bits for a monochrome image. The shaded
signals produced by most: area indicates a 3 x 3 neighborhood centered
video sources. For example, a: about pixel (3, 4).
typical video camera produces :
pixels in raster order, which -

means that the pixel values are generated serially beginning with row 0, fci-

lowed by row 1, and so on. Figure B illustrates this process.

For processing purposes, the straightforward approach is to store the entire
input image into local memory and access pixels as needed to produce the out-
put image. However, this approach results in a latency of at least an entire
image frame time before the processor can begin to generate output pixels.
This latency can be reduced to fess than the time of n rows (for an n x n neigh-
borhood) in an architecture carefully designed to interleave memory reads and
writes, effectively utilizing memory as a delay line. We used Splash-2 to imple-
ment both of these processing methods.

i

t >

Figure B. Example image in raster order. Pixels are produced serially in row-
major order. Highlighted pixels represent a single 3 x 3 image
neighborhood.
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Figure 1. The Splash-2 architecture: (a) Each board
contains 16 PEs (and one control processor)
interconnected by neighbors and through a crossbar
switch. Up to 15 processor array boards can be
connected to an interface board; (b) Each PE
consists of an FPGA and an SRAM.

megabits. This not only presents a computational chal-
lenge but also poses storage problems. Some image-
related tasks, such as compression, tracking, and motion
compensation, need information distributed in a single
image (spatially distributed data) and also depend on data
present in previous frames (temporally distributed data).
Because of this, the processor must store and retrieve mul-
tiple frames quickly.

For simplicity, we assume that data represent mono-
chrome light intensity values. Of course, pixel data are not
restricted to represent only quantized brightness infor-
mation. The applications discussed here are also relevant
to other types of image data, such as

color images;

range images, for which each pixel represents a distance
value;

X-ray, ultrasound, or electron-microscope images,
where each pixel depends on object density or other
physical phenomena; and

CT (computer tomography) images, for which each 2D
(two-dimensional) image represents a reconstructed
“slice” of density information within a 3D array.

Computer

CUSTOM COMPUTING HARDWARE

Here we review the properties of custom computing
machines, using the Splash-2 platform as an example. We
then show how the custom computing machine can be
used as a component in a real-time processing system.

The Splash-2 platform

Splash-2 is a second-generation processor designed by
the Supercomputing Research Center in Bowie, Maryland.
It achieves high computational performance by executing
an application in hardware customized to the needs of
individual applications. A Splash-2 system consists of one
to 15 Splash-2 array boards, an interface board, and a Sun
SparcStation-2 host. Each array board contains 16 PEs,
denoted as X1 through X16, arranged linearly and fully
connected through a 16 x 16 crossbar switch. A seven-
teenth control element, X0, regulates the crossbar net-
work. Figure 1a is a system block diagram.

Each PE within the Splash-2 array board (identified as
X1 through X16 in Figure 1a and expanded in Figure 1b)
consists of one FPGA and one fast static memory. The Xilinx
XC4010 FPGA used in each PE consists of a 2D array of con-
figurable logic blocks that can be connected internally with
reconfigurable interconnection resources. Both the logic
blocks and the interconnection resources are programma-
ble through the host computer. Computational operations
are implemented as logic circuits constructed within the
FPGAs by the operation into individual blocks and then
interconnecting them as required with the programmable
switches. A fast 256K x 16 static RAM (SRAM) is attached
to each FPGA, which allows one read or write access per
clock cycle. Each PE has three 36-bit bidirectional data
paths; one each to the left and right neighboring PEs and
one to the crossbar switch. In addition, a 16-bit path exists
between the FPGA and its SRAM. Several 1-bit signals sup-
port broadcasts, handshakes, and other special functions.

The input data stream to the Splash-2 processor array is
provided by the interface board with a 36-bit SIMD bus to
the X0 of each processor array board (and to the X1 of the
first processor array board). The output data stream can be
linked to multiple array boards by extending this stream
from the X16 of one board to the X1 of the next. The out-
put stream produced from the last array board is returned
to the interface board. The control paths between the Sun
SparcStation-2 host and the application program running
on Splash-2 consist of a set of handshake registers (two on
each Splash-2 array board), a global AND/OR mechanism,
abroadcast signal, direct access to on-board memory, and
an interrupt mechanism.

The crossbar network contains 16 36-bit bidirectional
ports for augmenting interprocessor communications.
Splash’s crossbar switches can be used for both static and
dynamic architecture adjustments. Static adjustments
establish the data paths for fixed systolic-like tasks, while
dynamic adjustments accommodate more complex data-
movement paradigms. The control element X0 selects the
interconnection structure used in any given clock cycle. The
crossbar allows point-to-point, multicast, and broadcast
communication between all PEs on each processing board
and can readily change the topology to amesh, linear array,
hypercube, or other custom configuration. (Arnold, Buell,
and Davis’ provide more information on Splash-2.)



The image-processing platform

Figure 2 shows the VTSplash laboratory
system we developed. Avideo camera or a
VCR creates a standard RS-170 video
stream. The signal produced from the
camera is digitized with a custom-built
frame-grabber card. This board not only
captures images but also performs any |
needed sequencing or simple pixel opera-
tions before the data are presented to Host
Splash-2. The frame-grabber card was built
with a parallel interface that can be con-
nected directly to the input data stream of
the Splash-2 processor.

|
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The VTSplash laboratory system uses
two processor array boards. The output
data produced by Splash-2—which can be
areal-time video data stream, image overlay data, or some
other form of information—is first presented to another
custom board for converting the data to an appropriate
format (if necessary). Once formatted, the data are then
presented to a commercial image-acquisition/display card,
which presents the images to a color video monitor. The
SparcStation host configures Splash-2 arrays and sends
runtime commands intermixed with the video stream (if
needed). The laboratory system can be quickly reconfig-
ured from one task to another in just a few seconds by
downloading the hardware personalization database.

As mentioned earlier, Splash-2 is a general-purpose
machine not specifically designed for image processing.
Nonetheless, itis a suitable testbed for implementing a wide
range of computer vision tasks, including those that require
temporal processing. One Splash-2 processing board con-
tains slightly more than 69 megabits of memory—enough
for 32 frames of image data. (This number is based on 17
256K x 16 SRAM devices plus 12,800 bits of storage (max-
imum) in each of the 17 Xilinx 4010 chips.') Not all this stor-
age may be conveniently available to applications.

APPLICATION DEVELOPMENT ON
SPLASH-2

While the programming environment for Splash-2 is one
of the most advanced and automated in its class, numerous
difficulties must be addressed before this type of machine
can become accepted into mainstream computing. Here we
provide a brief summary of the rapid prototype-develop-
ment process from the formulation of task behavior to the
generation of a physical database read for execution. We
then assess some challenges that need to be addressed.

Basic design flow

Figure 3 illustrates the basic design fiow for developing
atypical Splash-2 application. (This simplified figure does
not depict all possible iteration paths in the design
process.) The first step in the process is the definition of
the problem. As in all hardware and software system
design, a sound problem definition will facilitate the
design process.

Step two is the behavioral modeling of the problem.
Typically, a VTSplash programmer models the problem by
using the C programming language or a behavioral VHDL
model. Not only is the model constructed to comply with

Figure 2. Components of the VTSplash laboratory system.

the problem definition, but

Problem definition

sample images are run T
through the model (when
possible) for later compari-

Behavioral modeling ;&

son with the results of the
synthesized implementa-
tion.

The next step, which is
often difficult, consists of
manually partitioning the
model into a form suitable
for final implementation on
Splash-2. The model is first
mapped onto processor
boards and then parti-

Design (VHDL)

Simutation

Synthesis

Problem partitioning }—

tioned more finely into indi- (
vidual PEs. The three main
factors that drive a partition
are time, area, and commu-

Debugging

Integration

nication complexity.

The time and area factors
are familiar problems dis-
cussed in the high-level syn-
thesis and silicon compiler
literature.? Time refers to how much computation is desired
per clock cycle. Area refers to how much of the reconfig-
urable resources should be allocated to a given computa-
tion, to the total available reconfigurable resources within
each processor board, and to each of the 17 PEs on each
board. Even though Splash-2 contains ample hardware
support to aid signal propagation between PEs, not all com-
munications are equal in cost and in bandwidth (commu-
nication complexity). Splash-2 imposes limitations on
available communication resources. Some of these are

Figure 3. The application
design process.

* atotal of 108 signals split equally between the left neigh-
bor, right neighbor, and crossbar network;

* a 16-bit data path between a PE and its 0.5-megabyte
RAM;

* several 1-bit signals for global communications and
broadcasts; and

* a 36-bit data path between processing boards, along
with several 1-bit global signals.

(These numbers are simplified somewhat for the sake of
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Table 1. A representative list of image-processing categories and example tasks.

Class

Example image task

Description

Transformation

Combination

Measurement

Conversion

Convolution
Median filtering

Morphological filtering

Laplacian pyramid generation

Histogram generation

Fast Fourier transform

Hough transform

Region detection and labeling

Linear filtering operation

Nonlinear filter used to eliminate
“salt and pepper” noise

Nonlinear operations that alter
region shapes in an image
Gray-scale erosion and dilation
operations implemented

Produces an image hierarchy of
decreasing image size and spatial
resolution. The image for each
pyramid level formed by taking
the difference of two blurred
versions of the original image.

Statistical operation for computing
intensity distribution of pixels in an
image

Converts an image from the spatial
domain to the frequency domain

A voting scheme that detects the
presence of lines (or parametric
curves) from a set of pointsinan
image

Finds connected regions in an image
and assigns a unique label to each

tion annotation. Actual
propagation delays in the
Xilinx FPGAs are sensitive
to the outcome of the place-
ment and routing process,
and these delays can have a
disturbing effect on appli-
cation behavior. To counter
these problems, and to
cope with the limited func-
tional coverage that can be
achieved with the simula-
tion tools, a powerful de-
bugging tool is available in
the Splash-2 environment.
The T2 interactive debug-
ger! provides the power of
conventional high-level
language debuggers by
allowing such features as
monitoring internal state
variables and tracing.
Debugging a hardware/
software codesign adds
conceptual difficulties not
found in traditional debug-
ging environments. After
the image operations are

this discussion. The actual communication structure is more
intricate. Refer to Arnold, Buell, and Davis! for more detail.)
Although these numbers may appear to be quite generous,
the limits of these data paths will eventually disgruntle
some designers. Not all applications easily map to these lim-
itations, and tough design trade-offs must be considered.
As it stands, few quantitative up-front measures are avail-
able to gauge partitioned alternatives. A designer must
often wait until after the synthesis step before knowing
whether a given problem partition is feasible.

Detailed structural design

After the problem is partitioned, the designer produces
and verifies a detailed structural design. Many alterna-
tives are available to designers for converting the struc-
tural representation into a hardware configuration
database, including FPGA design tools like XBLOX.3
However, the best-supported design environment for
Splash-2 contains the Synopsys VHDL simulation and syn-
thesis tools. The simulations for many of the image-pro-
cessing tasks we discuss consumed several days of CPU
time per run on a SparcStation-10—in many cases, for just
asmall fraction of an image. Because of this, only so much
simulation can occur within a reasonable amount of time.
Therefore, the stimulation input for a simulation run must
be considered judiciously.

Debugging

Because simulations of the applications under development
are based on VHDL models created prior to placement and
routing of the FPGAs, they are barren of signal propaga-

Computer

performing satisfactorily,
they must be integrated
within the body of an
application. A rich C library to facilitate communication
between host programs and attached processors is acces-
sible within the Splash-2 environment.

Reducing development time

Although Splash-2 represents the state-of-the-art in cus-
tom computing processors—both in hardware capabili-
ties and software support—it requires a substantial time
investment to develop an application. To make this class of
machinery more widely accepted and cost-effective, meth-
ods must be developed to reduce application-development
time. Several promising endeavors focus on this issue.*®
Their main emphasis is depicted by the portions
of the gray shaded region previously shown in Figure 3.

IMAGE-PROCESSING TASKS

Image operations have been classified into five generic
classes.” An operation in the combination class takes two
images and produces a new image of the same type. This
is accomplished by combining each pair of elements from
the input images into a new element. The transformation
class accepts an image from a given class and produces a
new image in the same class. The measurement class
reduces an image of a given type into a scalar or vector.
The conversion class refers to those operations that take
an image of a given type and convert it into a new class.
(The generation class, which produces a new image from
scratch, concerns image synthesis rather than image pro-
cessing and so is not considered here.)

To evaluate the agility of the VTSplash system, we mod-
eled examples from each of the first four categories (with



varying degrees of diffi-
culty). Table 1 summarizes
the categories and gives
examples of each evaluated
on VTSplash. (We refer the
interested reader to Jahne’s
text on the subject.®)

Transformations:
Linear and nonlinear
filtering

Two-dimensional filter-
ing techniques are very
common in image process-
ing. The most common
methods process small
neighborhoods in an input
image to generate new
pixels in an output image.
Neighborhood-based filtering is characterized by the
repeated application of identical operations and often
serves as a preprocessing step followed by higher-level
image analysis.

Neighborhood operations typically use a 2D template,
usually rectangular, which is applied at every pixel in the
input image. (The template is often called an operator or
filter.) In the linear case, the hardware applies a template
by centering it at a given pixel of the input image, multi-
plying each template pixel by the associated underlying
image pixel, and summing the resulting products. The sum
becomes the pixel value (for this template position) in the
output image. Each new template position generates a sin-
gle new output pixel value. (Special rules may be needed
for pixels near the image borders.) Algebraically, this is
represented as

TP, = D Iy (r+i, ¢+ ) x ki, )

where I, is the input image, I, is the output image, h is
the filter, and r and c refer to the row and column location
in the images. The summation is typically performed over
a small window, often 3 x 3 or 7 x 7, as determined by h.
Figure 4 shows examples.

Template operations can also be nonlinear. For exam-
ple, designers can implement a median filter by using a
template. For every position of the template, the hardware
system chooses the median value from the image pixels
covered by the template and uses it as the new pixel value
for the output image. In this case, the template simply
serves as a window and has no cell values. Another form
of nonlinear image processing is based on mathematical
morphology.® This algebra uses multiplication, addition
(subtraction), and maximum (minimum) operations to
produce output pixels. The filtering operations, known as
erosion and dilation, can be used to perform such tasks as
low- or high-pass filtering and feature detection. This
approach provides less blurring than linear filtering.

Image-combination operations
After an image has been appropriately low-pass filtered,
it can be subsampled without fear of violating the Nyquist

Figure 4. Example filtering operations: (a) original image; (b) smoothed image
created by applying a low-pass filter to the original image; and (c) edge image
created by applying a simple high-pass filter. All images are processed as 512 x
512 pixels in size. The output images were obtained by using 8 x 8 templates on
VTSplash.

criterion. If an image is recursively filtered and subsam-
pled, the resulting set of images can be considered a sin-
gle unit called a Gaussian pyramid. An image-processing
system can use this data structure to reduce computational
requirements by employing the lower-resolution portion
of the pyramid to guide processing at higher-resolution
levels. For some tasks (such as surveillance and road fol-
lowing), this approach can greatly reduce the overall
amount of processing. (Burt and Adelson* provide a pop-
ular technique for generating these pyramids.)

In addition to low-pass pyramids, a system can gener-
ate band-pass (or Laplacian) pyramids, in which each level
of the pyramid contains information from a single fre-
quency band. VTSplash can process either type of pyra-
mid by dynamically reconfiguring data paths through the
crossbar. Gaussian and Laplacian pyramids are produced
at 30 per second and 15 per second, respectively.

Measurement computations

Unlike the other processing classes, measurement oper-
ations typically do not produce a new output image.
Instead, the goal is to extract descriptive statistics of the
input image. For example, the mean and standard devia-
tion of pixel values in the image are often of interest. These
and similar statistics can be computed by using simple
multiply-accumulate processing, where one such opera-
tion is required for each input pixel.

Real-time histogram generation, another useful opera-
tion, often constitutes an initial step for other applications,
such as region detection and region labeling. In generat-
ing a histogram, the processor must maintain and update
a 1D array that records the number of occurrences of par-
ticular pixel values. Histograms are often further analyzed
and used to adjust parameters for image enhancement.

Image-conversion operations

The 2D discrete Fourier transform (DFT) is a useful
operation in signal-processing applications but is often
avoided because of its large computational requirements.
Although linear, it differs from the neighborhood opera-
tions described above, since every transformed output
pixel depends on every pixel of the input image. The prob-
lem can be simplified somewhat, since the 2D Fourier
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Figure 5. Examples of the communicatioﬁs structure
Splash-2 processor array: (a) median filter, (b) region

and partitioning for four examples that use oTlly one
detection and labeling, (c) FFT (forward transform),

and (d) Hough transform. Solid squares at PE sites denote unused PEs.

transform can be decomposed into multiple 1D fast
Fourier transforms (FFTs). For example, a 512 x 512 DFT
can be implemented as 512 1D FFT computations (one for

+ each row) followed by 512 additional 1D FFTs (one per

column). We have implemented this on VTSplash using
floating-point arithmetic.

The Hough transform, another 2D transformation, can
be used after an edge-detection task to determine if a set
of points lie on a straight line."! (The generalized Hough

Computer

transform can search for other shapes in an image.) Each
boundary point in the original image specifies a curve in
the transform space. The coordinates of high-intensity
points in the transform domain correspond to the position
and orientation of best-fit lines in the original image.
Region detection and labeling is a common operation
for automated visual-inspection tasks. The purpose is to
identify connected regions in an image and assign a unique
label to each region. This is not trivial when objects in the
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PERFORMANCE
RESULTS

Computational properties, communications architec-
tures, and required resources vary significantly from one
application to the next. All the examples described here
operate at the pixel clock rate of 10 MHz with 512 x 512
images. Many of the applications presented here have
been implemented using a pipeline architecture. The
pipeline accepts digitized image data in raster order, often
directly from a camera, and produces output data at the
same rate, with some latency. Many of these applications
can be chained together to form higher level image-pro-
cessing functions.

Prototype architectures

Figure 5 shows simplified block diagrams that illustrate
the partitioning and communication architecture for rep-
resentative tasks. For example, Figure 5a shows the archi-
tecture for the 3 x 3 median filter. This pipelined
implementation produces output pixels at the same rate
that input pixels are received, with a latency of less than
the time required to receive three image rows. This requires
the simultaneous access of nine neighboring pixels (pro-
duced by the gray shaded blocks labeled Row stack), which
are presented to a parallel sorter in the gray shaded block
labeled Parallel sort. The median value of the sorted list is
then presented to the Format output block, which assem-
bles the data for subsequent display on the monitor.

Performance evaluation

Conventional performance-benchmarking techniques
are at best awkward when applied to custom computing
machinery. Figure 6 graphically illustrates the computa-
tional performance of each of these tasks executing on the
VTSplash platform. In this figure, the application name
appears vertically to the left of the graph. The performance
bar assogiated with each task consists of two or three com-
ponents. The first component (arithmetic/logical) is an
appraisal of the number of general-purpose operations per-
formed on average per second. (These operations are likely
to be found in the repertory of common RISC processors,
such as Multiply, Xor, or Compare.) This number, when
divided by the pixel clock frequency of 10 MHz, indicates
the average number of the easily discernible arithmetic and

Figure 6. Approximate performance of image-processing tasks.

logic function units (word parallel) active in each task.

The second component of the performance bar esti-
mates the number of storage references (memory
accesses) performed by the task per second. The third
component represents the number of floating-point oper-
ations per second. All tasks, except for the 2D FFT appli-
cation, use fixed-point operations. The pixel calculations
for the 2D FFT task use custom-designed floating-point
arithmetic. When combined, these three components pro-
vide a basis for quantifying the computational load of each
task, as well as a rough estimate of the number of opera-
tions performed each second.

With VTSplash, the operating speed for an application
is under the designer’s control and depends upon critical
path delays in the implementation. The Splash-2 proces-
sor features a programmable system clock that can be var-
ied under software control from zero to 40 MHz. We
developed the tasks to satisfy the minimum criterion of
operating at the pixel data rate of 10 MHz. The designs
were verified at this rate only, although some of these tasks
may operate well beyond this clock frequency.

Processing rates

In addition to quantifying the number of operations per
second, it is useful to consider how fast computations are
performed relative to the 30-Hz frame rate of the input
image. Some tasks (histogramming, median filtering,
region labeling, Gaussian pyramid generation, and gray-
scale morphological operations) are completed during one
frame time. Others (8 x 8 convolution and Laplacian pyra-
mid generation) require two image frames. The floating-
point FFT implementation can completely process two 512
x 512 images per second. The time necessary to complete
the Hough transform depends on the complexity of the
image; the implementation shown in Figure 5d distributes
equal portions of an input image to separate PEs that
process in parallel.

Comparisons

Another method of benchmarking is to compare
VTSplash operation with that of contemporary machines.
We chose a general-purpose workstation (the Sun
SparcStation-10). VTSplash applications run between 10
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to 100 times faster than the same application written in C
and executed on the SparcStation. Numerous commercial
machines have been designed specifically for image pro-
cessing. The Datacube MaxVideo 200" consists of several
functional units carefully tuned to perform common
image-processing tasks. For applications that are suited
for its specific architecture, the MaxVideo 200 outper-
forms the VTSplash system. For example, the MaxVideo
200 can perform 8 x 8 convolution four times faster than
our current VTSplash design. The motivation of the cus-
tom computing approach, therefore, is not to provide the
fastest possible performance for a given task. As illustrated
by VTSplash, the strength of this approach is a system that
can be rapidly reconfigured to provide high performance
for a wide range of tasks. The performance of application-
specific systems diminishes quickly for tasks not directly
supported in hardware.

RECONFIGURABLE COMPUTING PLATFORMS, such as Splash-
2, can readily adapt to meet the communication and com-
putational requirements of a wide variety of applications.
By adding IO hardware, we have demonstrated that gen-
eral-purpose custom computing machines are well suited
for many meaningful image-processing tasks. Such plat-
forms are excellent testbeds for prototyping high-perfor-
mance algorithms. The custom computing platform can
also serve as

* amedium for hardware/software codesign, and
* aVHDL accelerator.

Our work on VTSplash continues in the area of high-
level-language compilation for custom computing
machines. We are investigating architectural enhance-
ments for broadening the scope of tasks suitable for these
machines and for streamlining automated partitioning
and scheduling. Application development continues for
image processing as well as for other problem domains
including communications. I
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