Pilchard — A Reconfigurable Computing Platform
with Memory Slot Interface

P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, M.Y. Wong, K.H. Lee
{phwl,mpleong,yhcheung,ttung,cmkwok,mywong,khlee } @cse.cuhk.edu.hk
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, NT Hong Kong

Abstract

A reconfigurable computing development environ-
ment called Pilchard, employing a field programmable
gate array (FPGA) which plugs into a standard per-
sonal computer’s (PC) 133 MHz synchronous dynamic
RAM Dual In-line Memory Modules (DIMMs) slot is
presented. Compared with a traditional PCI inter-
faced reconfigurable computing board, the DIMM inter-
face offers higher bandwidth, a simpler interface and
lower latency. A comparison of the transfer rate of
the Pilchard board compared with a standard PCI32
reconfigurable computing board is presented as well as
an tmplementation of the data encryption standard
(DES). Together, the board and interface generator
prouvide an easy to use, low cost and high performance
platform for reconfigurable computing.

1 Introduction

Reconfigurable computing (RC) exploits the repro-
grammable nature of field programmable gate array
(FPGA) devices to perform computing. The hardware
design implemented on the FPGA can usually oper-
ate with a level of parallelism much higher than that
achievable in software. In many cases, the FPGA acts
as a coprocessor for a host personal computer (PC)
which provides data to the FPGA.

RC systems can be implemented with shorter de-
velopment times and lower cost than an equivalent
custom VLSI chip, yet have proved to be the fastest
or most economical way to solve certain problems in
DNA sequence matching, signal processing, emulation
and cryptography [1].

Unfortunately, current bus technology has not kept
pace with improvements in FPGA and microprocessor
technology. Although FPGA systems can operate at

clock frequencies over 100 MHz and microprocessors
operate above 1 GHz, standard PCI bus technology
lags behind. The speed of a coprocessor system is of-
ten limited not by the speed of the FPGA circuit, but
by the interconnecting bus between the processor and
the FPGA board. An example of such a system is our
62 MB/s implementation of the IDEA cipher which
could only achieve 4.9 MB/s without DMA through
a CardBus interface [2]. Other implementations such
as a 1.2 GB/s implementation of DES [3] would also
certainly be bottlenecked by the PCI bus.

Although server class machines employ the higher
speed, higher bandwidth 64-bit, 66 MHz PCI64 bus,
the majority of personal computers still use the origi-
nal 32-bit, 33 MHz PCI32 bus which has a maximum
transfer rate of 132 MB/s. Many manufacturers of
reconfigurable computing hardware have not yet up-
dated their designs to support PCI64. In the future,
machine will use the PCI-X specification which 1s a
64-bit bus operating at 133 MHz and hence has a max-
imum throughput of 1064 MB/s.

In any balanced PC or workstation, the memory
bandwidth is higher and of a lower latency than that
of the peripheral bus. This is because memory accesses
are made much more frequently than input/output
(T/O) requests. As an example, the standard dual in-
line memory modules (DIMM) used even in low-end
PCs operate at either 100 MHz or 133 MHz with 64-bit
data, providing a maximum bandwidth of 1064 MB/s.

To address the PC/FPGA bandwidth issue, a
DIMM based reconfigurable computing platform
called “Pilchard” (not an acronym but named af-
ter the Western Australian Pilchard, Sardinops sagaz
neoptlchardus, a small, cheap and abundant bait-
fish which is an important part of the food chain).
Pilchard was developed with the following design goals

e achieve higher bandwidth and lower latency than
traditional PCI based RC systems

e few components and low cost, facilitating its use
in educational and research applications

e operate on low-end PC motherboards
e support Xilinx Virtex and Virtex-E FPGAs

e allow connection of memory and/or peripherals
via a daughter card

e able to take advantage of Pentium write combin-
ing features for improved throughput

e use a simple register based interface for simple
interfacing

e uses the Linux operating system

e user mode programs can access the board via a
simple yet efficient mmap () based scheme.

In this paper, the Pilchard system’s design is pre-
sented, 1ts performance is compared with that of a
PCI32 reconfigurable computing card and an imple-
mentation of the data encryption standard (DES) on
the Pilchard board is described. The Pilchard card
is similar to the commercial Nuron AcB [4], but was
developed independently. The Nuron product appears
to have 64 MB of onboard SDRAM and a DIMM bus
download capability.

The rest of the paper is organized as follows, in
Section 2, the hardware design is described. Section 3
describes issues dealing with the Linux Operating Sys-
tem interface to the Pilchard system. Experiments
conducted using the Pilchard prototype including a
performance comparison with a PCI32 card and DES
implementation are presented in Section 4. Plans for
future work are discussed in Section 5 and finally, con-
clusions are drawn in Section 6.

2 Pilchard Hardware Design

A Dblock diagram of the Pilchard board is shown
in Figure 1. The main components are the FPGA,
FPGA bitstream download and debug interface, con-
figuration PROM interface and an expansion header
which is used for connection to a logic analyzer or in-
terfacing to other peripheral or memory devices. The
logic for the DIMM memory interface and clock gen-
eration is implemented in the FPGA.

The board can be populated with any Virtex or
Virtex—E device in a PQ240 or HQ240 package. This
currently ranges from the XCV150 to XCV1000E de-

vices.

DOWNLOAD/DEBUG ~ OUTPUT HEADER FOR
CONFIG PROM INTERFACE 1/0 and/or LOGIC
ANALYZER
FPGA
User design

SDRAM controller Clock generator

PC's SDRAM DIMM SLOT

Figure 1: Block diagram of the Pilchard board.

A photograph of the populated Pilchard board is
shown in Figure 2. As can be seen from the picture, a
minimal number of components are used and the only
expensive component is the FPGA.

2.1 DIMM Interface

The Pilchard board was designed to be compati-
ble with the 168 pin 3.3 Volt, 133 MHz, 72-bit, reg-
istered synchronous DRAM in-line memory modules
(SDRAM DIMMs) PC133 standard [5, 6]. Since the
pinouts are the same as the 66/100 MHz DIMM, the
PC100 standard can also be supported. The PC133
standard supports 64 MB, 128 MB, 256 MB, 512 MB
and 1 GB capacities which offers ample space for mem-
ory mapped I/0.

2.1.1 Printed Circuit Board

The nominal dimensions of a standard DIMM card are
133.37 x 38.12 x 1.27 mm. However, a Virtex PQ240
device is 32 x 32 mm in size so it was not possible to
use a standard sized DIMM card. The Pilchard board
18 133.37 x 70.39 x 1.27 mm, roughly double the height
of a standard DIMM card.

The printed circuit board is a 6 layer impedance
controlled FR4 board, designed in-house and manu-

FDIMM 1.0
139,00

Ul

XCU&00

Figure 2: Photograph of the Pilchard board.

factured by a third party. The small number of layers
is a direct consequence of our decision to use FPGAs
in the PQ240 package. An added advantage of using
PQ240 devices is that hand soldering of the board is
possible.

An expansion header connected to 25 general pur-
pose 1/0 pins of the FPGA is supplied. This header
was designed to connect either to a logic analyzer (for
debugging purposes), or to enable daughter boards
with memory or other peripheral chips to be connected

to the Pilchard board.

2.1.2 Serial Presence Detect

The PC133 DIMM standard includes a mandatory se-
rial presence detect (SPD) interface [7] which allows
a DIMM card to describe its configuration to the PC.
The PC’s BIOS interrogates each DIMM slot’s SPD to
determine the presence or absence of a card, its timing
parameters and its size. It then performs a memory
test on all available memory before proceeding with
the rest of the boot process.

The memory test described above provides an ob-
stacle for a non-memory card, particularly if the card
does not have sufficient memory on board to com-
pletely mimic a normal DIMM. A possible solution
would be to modify the BIOS so that it does not per-
form a memory test, however, this is very difficult to

do when the source code to the BIOS is not available.
It is also motherboard and BIOS dependent, hence dif-
ferent machines would need to be patched differently.
Our solution to this problem is to allow the machine
to boot normally. The Pilchard board does not have
SPD so the BIOS identifies the slot as an empty slot.
Once the operating system has been booted, the PC’s
chipset registers are modified via a device driver (see
Section 3) to enable operation of the DIMM slot. Al-
though this technique is also dependent on the PC’s
chipset, it can be easily done for any chipset which
has adequate documentation of its memory controller
registers (see Section 2.4 for motherboard details).

2.1.3 SDRAM Controller

We have developed an interface generator that pro-
duces simple yet efficient interfaces between user de-
signs and the device driver. The generator reads a
simple configuration file and emits VHDL code that
implements the interface.

Commands which can be sent from the moth-
erboard to the DIMM are COMMAND INHIBIT
(NOP), NO OPERATION (NOP), ACTIVE (Select
bank and active row), READ (Select bank and col-
umn, start READ burst), WRITE (Select bank and
column, start WRITE burst), BURST TERMINATE,
PRECHARGE (deactivate row in bank), AUTO

PC/Pilchard interface Pilchard/PC interface

—> Core |—>

DIMM
interface

Data bus

Write

Control
S, RAS, Read

CAS, WE
T

Address bus

Figure 3: Architecture of PC-FPGA interface.

REFRESH, LOAD MODE REGISTER, Write En-
able/Output Enable and Write Inhibit/Output High-
Z [8]. In the context of a memory mapped device,
most of these commands can be ignored. Simplifica-
tions were made to the SDRAM controller to reduce
its complexity without reducing functionality.

The interface to a user’s core design consists of two
parts, namely the PC-to-core interface and the core-
to-PC interface. The architecture of the interface is
illustrated in Figure 3.

A SDRAM multiplexes its address inputs to save
pins and hence addresses are decomposed into banks,
rows and columns. Although a typical SDRAM has
megabytes of address space, memory mapped periph-
erals normally use few registers. Hence in the present
design, the interface interprets only the 8-bit column
addresses. Row and bank select commands are thus ig-
nored by the SDRAM controller. The controller could
be changed to handle row and bank selection com-
mands and latch their values to form a full address
should the need arise.

The interface uses four control signals from the
DIMM interface, namely S (select), RAS (row address
strobe), CAS (column address strobe) and WE (write
enable) to generate the appropriate board read and
write signals. Both the interfaces can be indepen-
dently configured as registers, a BlockRAM or a direct
connection. The register configuration supports up to
28 = 256 64-bit registers. The BlockRAM configura-
tion uses a 256 x 32-bit dual-port BlockRAM. With
dual-port BlockRAMs the internal core can operate at
a different clock rate than the 133 MHz DIMM inter-
face. The direct connection configuration is a simple

bypass between the input and the output of the in-
terface. The advantage of the register configuration is
that the core has simultaneous accesses to all memory
location. The advantage of the BlockRAM configura-
tion is its reduced area overhead. The direct connec-
tion configuration requries minimal area (for example,
only 2 Virtex slices are required if both interfaces are
configured as direct connection), but it requires the
core to decode the address bus by itself.

A minimal 64-bit Pilchard interface requires only
2 Virtex slices to generate the board’s READ and
WRITE signals. Latching of the address and data
buses are performed in the input-output blocks
(TOBs). Registers and BlockRAMs used for interfac-
ing purposes require additional resources. In contrast,
the Xilinx LogiCORE PCI64 interface uses 300-350
slices [12].

2.2 Clock Generation

The only clock input to the FPGA is that sup-
plied by the SDRAM interface. This 133 MHz clock
is deskewed using a high frequency delay locked loop
(CLKDLLHF) within the Virtex chip [9]. Tt can also
be divided down inside the FPGA and multiplied by

another DLL to generate different frequencies.
2.3 Downloading and Debugging

The Pilchard system currently requires connection
to another machine via a Xilinx Xchecker or Multilynx
cable [9] for bitstream download since downloading via
the DIMM bus was not incorporated in the prototype
and we do not have a Linux version of the download
software for use from the same machine. Future ver-
sions will use a second programmable logic device to
enable downloading via the DIMM bus, and we will
also develop a method to download the bitstream from
Linux. Readback and single stepping via the Multil-
ynx cable is also supported.

Optional configuration PROMs are also supported
so that once a design has been completed, it can be
placed in PROMs and automatically downloaded upon
powerup. It is currently not possible to download a
bitstream to the Pilchard system via the DIMM bus
interface.

2.4 PC Motherboard

For all the results described in this paper, an ASUS
CUSL2-C motherboard using the Intel 815EP chipset
was used. Important features of this motherboard are

e it supports 133 MHz SDRAM and 100 MHz
SDRAM

e the Intel 815EP chipset is well documented

e it has 3 DIMM slots and hence supports configu-
rations with one DIMM memory card and either
one or two Pilchard boards

e it supports Intel Pentium IIT Coppermine and In-
tel Celeron processors

e it is a low cost desktop type motherboard.

Note that for Pilchard designs which cannot meet
a 133 MHz interface timing constraint, it is possible
to use the Pilchard board at 100 MHz via dip switch
settings on the motherboard. Unfortunately, this also
limits the speed of memory accesses to 100 MHz.

3 Operating System Interface

A simple Linux device driver was developed which
allows user mode programs to access the Pilchard
hardware. Although this driver was tested only with
Linux kernel 2.2.17, ports to other operating systems
and Linux versions should be trivial.

During initialization, the device driver is responsi-
ble for programming the PC chipset’s memory con-
troller registers to enable the Pilchard’s DIMM slot.
This fools the motherboard into thinking that the slot
is populated with a DIMM memory card and access
cycles directed to this portion of the memory space
will generate appropriate signals in the DIMM slot.

A user interface using the UNIX mmap () system call
has been developed. User programs can access the
Pilchard board’s registers, by performing a mmap()
call which maps virtual addresses in the user space
to the bus address of the Pilchard board. Following
this process, the user can manipulate the registers of
the Pilchard board directly without incurring the over-
head of a system call.

3.1 Memory Cache Control

Central processing unit (CPU) caching of reads and
writes to Pilchard registers could lead to incorrect re-
sults. The Intel Pentium Pro, Pentium II and Pentium
IIT has a Memory Type Range Register (MTRR), ac-
cessible from Linux, which allows different memory
regions to be of different types [10]. MTRRs can be
easily manipulated under Linux via the /proc/mtrr
interface [11].

The “Uncacheable” memory type guarantees that
all reads and writes will appear on the system bus
in the same order as the program. Furthermore,
no speculative memory accesses, page-table talks or
prefetches of speculated branch targets will occur [10].
Although the most conservative, it also leads to the
lowest performance.

The “Write Combining” (WC) memory type allows
32-bit writes to be delayed and later merged together
in write-combining buffers. It is typically used to im-
prove the performance of frame buffers for graphics.
Upon reaching a serializing event such as a read from
an uncacheable location, the write-combining buffer is
flushed in an efficient manner. For example, when a
WC buffer becomes full, the processor will evict the
buffer to system memory in a single burst transaction
of 64-bit writes [10]. As will be seen in the results
section, careful use of the WC memory type can lead
to greatly improved performance. The performance
achieved in these different modes are discussed later
in Section 4. WC was not used on our board for reads
since this mode allows speculative reads which could
interfere with memory mapped read cycles that have
side effects. This was achieved by using different ad-
dress regions for reads and writes with their MTRRs
set to uncacheable and WC respectively.

4 Results

The performance of the Pilchard board using an
XCV300-6 FPGA was compared with a PCI32 board
also using an XCV300-6 device. The PCI board used
the Xilinx REAL 64/66 PCI LogiCORE V3.0 [12] for
its PCI controller. All the experiments presented in
this section were measured on the same machine, an
Asus CUSL2 motherboard (Intel 815EP chipset) with
800 MHz Pentium IIT processor and 32-bit PCI slots
(the 64-bit PCT card was used in a PCI32 slot in back-
wards compatible mode). All tests were conducted
with the DIMM slot operating at 133 MHz.

Unfortunately, since our Linux driver for the PCI
card did not support DMA, its performance in this
mode could not be tested. DMA would certainly offer
better performance for large blocks, however, there
is a large overhead associated with setting up DMA
transactions.

All testing for PCI and Pilchard was performed via
a Linux loadable kernel module device driver which en-
sures that the best performance was achieved. Mem-
ory transfers were performed using the memcpy () ker-
nel function. For all of the measurements below, the
Linux kernel function do_gettimeofday() was used

to perform timing and the results reflect all associated
software overheads.

4.1 Throughput Measurements

A simple design was used to measure the 1/O per-
formance of the Pilchard board. In this design, read
and write cycles cause the lower and upper 32 bits of a
64 bit register on the Pilchard card to be incremented.
Upon completion of the benchmark, the number of
reads and writes are read back to the PC to verify
that all the data were transferred.

4.1.1 Write Benchmark

The write benchmark was conducted by performing
220 = 1048576 32-bit writes to blocks of consecu-
tive memory locations on the respective cards. This
test was conducted with MTRRs set to WC and un-
cacheable on the Pilchard board, and uncacheable for
PCI.

Measurements of throughput for different 32-bit
block sizes are presented in the top half of Table 1 and
are plotted in Figure 6. The PCI32 interface is always
slower than the Pilchard interface with uncacheable
MTRR, particularly for small block sizes. Write com-
bining on Pilchard gives a further three to fourfold
performance gain over uncacheable since it is able to
combine software 32-bit cycles and write them using
64-bit transfers.

Write performance can be further improved by us-
ing the Pentium MMX “movq” instruction to perform
64-bit write transactions. Using assembly language to
access the movq instruction, the results in the lower
half of Table 1 were obtained.

An Agilent Technologies 16700A logic analyzer was
used to capture the waveforms for uncacheable and
write combining writes to the Pilchard board (Fig-
ures 4 and 5). In the uncacheable case shown in Fig-
ure 4, all writes must occur immediately and no write
bursts will occur. The highest performance is achieved
in the write-combining case of Figure 5 where start of
a burst transfer can be identified by the “write” sig-
nal being high. In this particular example, it can be
seen that 16x 64-bit writes are performed in approxi-
mately 300 ns which equates to 426 MB/s, consistent
with the measured results in Table 1. As can be seen
in Figures 4 and 5, even in a tight loop, DIMM board
transfers do not occur on every cycle and this is the
main cause of lost efficiency in our system. Hopefully,
this will improve with newer processors and chipsets.

The measured WC performance is six times that of
the measured PCI bus transfer rate. The maximum

bandwidth of a DIMM interface is 1064 MB/s and our
best measured performance using WC and including
software overheads was 400 MB/s (more than three
times the maximum transfer rate of PCI32).

4.1.2 Read Benchmark

Similar to the write benchmark, the time taken to per-
form 220 = 1048576 reads of uncacheable memory lo-
cations in differently sized blocks of consecutive loca-
tions was measured. The read performances for differ-
ent block sizes are shown in Table 1 and are plotted
in Figure 7.

Read cycles (4x 64-bit) can be seen in Figure 4
when the “read” signal is high, and the throughput
can be seen to be approximately 64 MB/s which is
consistent with a measured value of 52 MB/s in Ta-
ble 1. We have not been able to produce burst 64-bit
read transactions. The read performance is approxi-
mately seven times higher than that of PCI.

4.1.3 Read/Write Benchmark

The read/write benchmark involves alternating writes
and reads of data. Two separate memory regions were
used for this test, reads being made on an uncacheable
region and writes to a WC or UC region. Results
are shown in Table 1 and the corresponding plots are
shown in Figure 8. This mode is even faster than pure
read cycles since writes are faster than reads, thus
improving the overall transfer rate.

As for read and write cycles, using the “movq” in-
struction to achieve 64-bit transfers significantly im-
proves the performance and the results are presented
in Table 1. The 64-bit Pilchard transfer rates were
approximately six to ten times faster than PCI.

4.2 DES Core

A straightforward implementation of a fully paral-
lel, pipelined data encryption standard (DES) [13] in
electronic codebook (ECB) mode but with fixed key
was used to verify the correctness and test the relia-
bility of the Pilchard system. The DES core is capable
of operating at 66 MHz on 64-bit data and thus has
a maximum bandwidth of 528 MB/s. More optimized
DES implementations with 1.2 GB/s throughput have
been reported [3] however, in this application, a faster
core is unnecessary since the Pilchard system cannot
perform data transfers at that rate. The implementa-
tion used a total of 1895 Virtex slices.

As expected, the kernel mode performance was the

same as that for the Pil/UC-RW case of Table 1.

Pemcr—
I \vaveform 1> B
| File MWindow Edit Options Help

[| [&] m | [m[=2] 2 [v[=] |

[Search I Comments I Analysis I Mixed Signal]
|cas ||i|:o |Time "il from |Tr‘igger‘ "i|:3.778 us

[62:]| cas [[E]=0 [Time ||| +rom[c1 || &]=187.500 ns

| [Secondssdiv o | |1oo.ooo ns | m E Delay |3.5oo us | E E
™

Gl G2

evk_a L L L L g
etkare =L | [T LU I UL L U UL LU UL
= all 1 |_| 1 |_| 1 |_| 1 |_| 1 H 1 1 1 :1
ras all 1 j j

L=nis

I

cas all 4]
[E—

we all 1 1 1 1 1
read all | 0] 0 Il 0 M 0 M 0!
o He, |
write all 0 8] 8] 8] 8]

[——

R T S S S S S S R |
K [=

Figure 4: Logic analyzer trace showing 64-bit Pilchard read and write cycles to uncacheable memory regions using
the “movq” instruction. “clk” is a 133 MHz clock; “s”, “ras”, “cas” and “we” are the DIMM interface signals;
and “read” and “write” are the Pilchard decoded read and write signals. The trace shows 4 64-bit reads followed

by 4 64-bit writes.

32-BIT MEMCPY TRANSFERS

Block size Transfer rate (MB/sec)

(words) | Pil/UC Pil/WC Pil/RD Pil/UC-RW Pil/WC-RW PCI/WR PCI/RD PCI/RW

1 72.80 69.83 25.29 29.47 24.34 25.47 6.37 9.62

2 78.22 150.02 28.93 35.93 36.18 42.45 6.53 10.07

4 81.51 297.53 31.67 42.43 46.11 61.74 6.61 10.84

8 81.47 298.28 32.65 42.42 46.11 62.68 6.66 11.71

16 81.46 297.93 32.98 42.41 46.11 63.17 6.67 11.90

32 81.49 298.08 33.28 42.42 46.11 63.42 6.67 11.99

64 81.49 297.80 32.76 42.42 46.11 63.17 6.65 12.01

64-BIT MOVQ TRANSFERS

Block size Transfer rate (MB/sec)
(any) 132.88 409.64 52.80 74.49 120.78

Table 1: Read and write performance of Pilchard and a comparison with the PCT interface. (Pil/UC: Pilchard
write performance (with MTRR set to uncacheable), Pil/WC: Pilchard write performance (with MTRR set to
WCQ), Pil/RD: Pilchard read performance, Pil/UC-RW: Pilchard read/write performance (with MTRR set to
uncacheable), Pil/WC-RW: Pilchard read/write performance (with MTRR set to WC), PCI/WR: PCT interface
write performance, PCI/RD: PCI interface read performance, PCI/RW: PCI interface read/write performance.)

Pemcr—
I \vaveform 1> B
File MWindow Edit Options Help

D] w] (] =2] & |« =] |

E— Search d Comments d Analysis d Mixed Signal d
E_omm __W_Ho _.:q__m __W_ from _.:.mmmm«. _ ﬁ_nw.wbm ms m
—1

[62:]| cas [[E]=0 [Time ||| +rom[c1 [[&]=259.622 ns

_ [Secondssdiv o | _mo.ooo ns _ E E Delay _N.waw ns _ ﬁ E

T _ _ _ Gl , _ _ _ G2
etk a1 | JLLULUUUU U UULU UL B UUU U UL LU TUUU Ui L] (S
= all 1 _.r_ 1 L] 1 L] 1 _|_" 1
ras all ! 11 !
cas all i 8] |
we all 1 _I_ 1 _I_ 1 E 1 E b
read all | 4] :
write all 0 Tl 0] 0 il 0 [1 o
addr all FO [00] FO [O4] oo Fo [0= [[04] FO [OC[[DE] FO_[Co[DC] FO
data all 0 ' [TT1 o [@TTT1 o [B]TT] o [E{TT
— i i
| L

i<l I [>]

Figure 5: Logic analyzer trace showing bursting behaviour for 64-bit write cycles to consecutive addresses in a
write combining memory region. “clk” is a 133 MHz clock; “s”, “ras”, “cas” and “we” are the DIMM interface
signals; “read” and “write” are the Pilchard decoded read and write signals; and “addr” and “data” show the
Pilchard address and data buses. The trace shows 16 64-bit writes which have been merged in the write combining
buffer into 4 burst transactions.

Figure 6: Write performance of Pilchard and PCI in-

terface for different block sizes.
450 . .

O= === === oi--— o= === B-i-= -0
400
350
300 P o *
2 ’
K ’
E 250 . == Pilchard (uncachable)
=2 ’ —+= Pilchard (WC)
E ’ - @ Pilchard (uncachable, movq)
; ’ B Pilchard (WC, movq)
g 200 ’ -©- PCl interface
]
&

g
T
*,

g
:
N

|

|

0 n 5
10 10 10
Block size (words)

Figure 7: Read performance of Pilchard and PCI in-
terface for different block sizes.

S5

50

45

=
3
T

Transfer rate (MB/sec)
© w
2 2
\

20

5 i i
10° 10' 10°
Block size (words)

Figure 8: Read/write performance of Pilchard and
PCI interface for different block sizes.

140 -

1201 O- === Bomimim= o= = o= il =0

== Pilchard (uncachable)

== Pilchard (WC)

- @ Pilchard (uncachable, movq)
B Pilchard (WC, movg)

-©- PClinterface

g

®
g
T

)
g @ @ @ ® i @i .
Py
g
Z oo
&
P - - -
-
401 - =
=
=
~ -
+
20
————o———&——©
0 L i
10° 10' 10°

Block size (words)

However, the encryption rate is half the transfer rate
since one encryption involves two transfers (sending
the plaintext data and receiving the encrypted data).
Hence the resulting kernel mode encryption rate was
over 35 MB/s. A user mode version using the mmap ()
interface described in Section 3 has the same perfor-
mance.

5 Future Work

The availability of a low cost, high speed RC plat-
form opens many opportunities for computer engineer-
ing research and education. In this section, some of
our future plans are discussed.

The current Pilchard board is limited by the choice
of the PQ240 package to XCV1000E devices and 158
I/O pins. Future versions of the Pilchard board may
use the BG560 packaged Virtex FPGAs with 404 1/0
pins. This has the advantages of more pins being avail-
able for the expansion header as well as enabling the
use of devices up to the XCV3200E. A ball grid array
packaged FPGA will probably increase the number of
layers required in the printed circuit board.

Manufacturers such as IBM, VIA, Iwill, Asus and
Acer have recently started shipping Pentium III,
Athlon and Pentium IV motherboards which support
Double Data Rate (DDR) SDRAM. This new technol-
ogy achieves double the data rate of SDRAM by sup-
porting data transfer on both rising and falling edges
of a 133 MHz clock [14] and has a maximum transfer
rate of 2128 MB/s. We are planning to use the DDR,
SDRAM interface in future versions of the Pilchard
board.

The Pilchard system was originally developed for
applications in FPGA based cryptographic hardware.
In such applications, processor/FPGA bandwidth is
important since for encryption or decryption, data
must be first written to the RC board, processed and
read back from the RC board. Since the speed of
write transactions is signficantly faster than that of
read transactions, the Pilchard system would be par-
ticularly effective for computing cryptographic hash
functions which do not require large amounts of data
to be read back from the RC board.

We feel the best way to develop larger RC systems
is not by making cards with large arrays of FPGAs,
but by interconnected Pilchard equipped PCs. This
has the advantage that the PC’s CPU as well as the
Pilchard card can be used for processing. The avail-
ability of low cost PCs and so-called Beowulf software
[15] to support massively parallel clusters of Linux ma-

chines provides the software infrastructure to develop
powerful applications.

To explore opportunities in this direction, we aim to
use the Pilchard system described earlier as a platform
for testing parallel applications. Apart from straight-
forward applications which utilize Pilchard cards as
accelerators in Beowulf clusters, we also hope to ex-
periment with using the Pilchard cards as an alter-
native to high speed interconnect networks (such as
Myrinet) for Beowulf style cluster computing. Using
the SelectLink communications channels, very high
bandwidths (200 Mb/s/pin) can be achieved [16].
We expect that using the Pilchard card as parallel
point-to-point computer interconnect, it is possible to
achieve higher bandwidth and lower latency than cur-
rent Myrinet and Gigabit Ethernet technologies. Us-
ing this idea, we hope to develop low cost, high speed
systolic arrays.

We aim to equip networked Linux PC’s with
Pilchard cards, in the Department’s undergraduate
digital systems laboratory. The availability of a low
cost, high speed, high capacity RC platform will en-
able our Department to outfit an undergraduate digi-
tal systems laboratory with Virtex FPGAs. Students
will be able to use this platform for courses in digi-
tal systems, computer architecture, device drivers and
reconfigurable computing. Although we considered
using commercial RC platforms, we found that the
cost prohibitively high. We also hope to collaborate
with other Universities to introduce Pilchard cards
into their teaching programs.

6 Conclusion

The PC/FPGA interface is a major bottleneck for
current reconfigurable computing systems. A solu-
tion to this problem was developed in the form of the
Pilchard system which demonstrates the feasibility of
utilizing the DIMM slots of a standard PC as a bus for
attaching a reconfigurable computing card. This was
shown to offer greatly improved bandwidth and la-
tency over the ubiquitous PCI bus. The Pilchard sys-
tem is simpler, uses less resources than conventional
systems and may enable the development of reconfig-
urable systems with lower cost and signficantly im-
proved performance.

References

[1] A. DeHon, “The density advantage of config-
urable computing,” IEEFE Computer, pp. 41-R49,

April 2000.

M. P. Leong, O. Y. H. Cheung, K. H. Tsoi,
and P. H. W. Leong, “Bit-serial implementation
of the international data encryption algorithm
IDEA,” in Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 122-131, 2000.

C. Patterson, “High Performance DES Encryp-
tion in Virtex FPGAs using JBits,” in Pro-
ceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines

(FCCM), pp. 113121, 2000.

Nuron.
http://www.nuron.com/pdf/nuronacb.pdf.

Intel Corp., PC SDRAM Registered DIMM De-
sign Support Document Revision 1.2, 1998.

IBM and Reliance Computer Corp., PC133
SDRAM Registered DIMM Revision 1.1, August
1999.

JEDEC, Configurations for Solid State Memo-
ries, Release Tr8r9.

Micron MT4S8LCI6M8A2 Synchronous DRAM
Datasheet, November 1999.

Xilinx Inc., Xuinz Databook, 2000.

IA-32 Intel Architecture Software Developer’s
Manual, Volume 3: System Programming Guide,
2000.

Linuz v2.2 documentation .
http://www.linuxhq.com/kernel/v2.2/doc/mtrr .-
txt.html.

Xilinx 1Inc., PCI64 Virtexr Interface V3.0
Datasheet, 2000.

B. Schneier, Applied Cryptography. Wiley,
2nd ed., 1996.

Xilinx Inc., Applications Note XAPP200: Syn-

thesizable 1.6Gbytes/s DDR SDRAM controller,
2000.

Scyld Computing Corp., The Beowulf Project,
2000. http://www.beowulf.org.

Xilinx Inc., Applications Note XAPP23}: Virtex
SelectLink Communications Channel, 2000.

