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Abstract

While still relatively “new”, the quantum-dot cellular
automata (QCA) appears to be able to provide many of the
properties and functionalities that have made CMOS suc-
cessful over the past several decades. Early experiments
have demonstrated and realized most, if not all, of the “fun-
damentals” needed for a computational circuit – devices,
logic gates, wires, etc. This study introduces the beginning
of a next step in experimental work: designing a compu-
tationally useful – yet simple and fabricatable circuit for
QCA. The design target is a QCA Field Programmable Gate
Array.

1. Introduction

One alternative to silicon/CMOS is an approach to com-
puting with quantum dots called the quantum-dot cellular
automata (QCA). First proposed in 1993 by Lent, et. al
and fabricated in 1997, an idealized QCA cell/device can
be viewed as a set of four change containers or “dots”, po-
sitioned at the corners of a square [7], [8]. The cells contain
two extra mobile electrons which can quantum mechani-
cally tunnel between dots but, by design, cannot tunnel be-
tween cells. The dots can be realized in several different
ways – electrostatically formed quantum dots in a semi-
conductor, small metallic islands connected by tunnel junc-
tions, or redox centers in a molecule. The barriers between
dots should be high enough so that charge can move only
by tunneling and is therefore localized in the dots and not in
the connectors. The configuration of charge within the cell
is quantified by cell polarization, which can vary between P
= -1, representing a binary “0”, and P = +1, representing a
binary “1”. This is illustrated in Figure 1.

Unlike conventional logic in which information is trans-
ferred from one place to another by means of electrical cur-
rent, QCA is at its base self-latching where information is
stored at each device by the positions of single electrons
and logic functions are performed not by electron flow, but
rather by Coulombic interactions between cells. The result

P = +1
(Binary 1)

P = -1
(Binary 0)
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Figure 1. QCA cell polarizations.

is a technology where even the interconnect is made out of
the same self-latching devices as the logic functions, bring-
ing “pipelining” down well below the level of even a simple
logic gate [15].

While other work [10] has addressed “custom” designs
in QCA regarding the complexity of a complete micropro-
cessor, in the near term it is appropriate to focus on a design
that is not the fastest or densest circuit with respect to “cus-
tom” designs, but rather one which would allow for early
implementation experiments. The target discussed in this
paper is a QCA Field Programmable Gate Array (FPGA),
where simplicity and regularity, coupled with the potential
for self-assembly, are at the heart of the design. Because
of the inherent differences in models between CMOS and
QCA, such a design target represents a fertile source of de-
sign problems including the choice of logic complexity to
provide in an individual logic block node, interconnection
topology and mechanization, and programming.

These topics will all be discussed within this paper but
we will begin with a discussion in Section 2 of what has
been accomplished experimentally with QCAs. Next, in
Section 3 some basic and necessary properties of FPGAs
and how they relate to QCA will be introduced. Then, in
Section 4 specific obstacles to generating a QCA FPGA will
be discussed. In Section 5 the basic logic block for the QCA
FPGA will be described, in Section 6 the interconnection
scheme for the QCA FPGA will be explained, and in Sec-
tion 7 resulting schematics will be presented. Finally, we
will conclude in Section 8.



2. Experimental QCA

In the introduction we indicated that the goal of this work
was to develop a QCA circuit for near term implementa-
tion experiments. Thus, we feel it is important to stress that
QCA has moved beyond the realm of theory and to detail
what actual devices and circuits have been constructed and
what experiments have been conducted. Generically speak-
ing, experimental QCA work can fall under one of two cat-
egories – work with prototype metal dot systems and work
with molecules targeted for a QCA implementation.

Researchers at the University of Notre Dame have
demonstrated the first QCA cell, showing that the position
of a single electron can control the position of a second sin-
gle electron [11]. This demonstrated the basic feature of
the QCA paradigm – that information can be coded in the
configuration of charge. In these experiments, aluminum
islands act as the dots, coupled by aluminum oxide tunnel
junctions [1]. Using this metal tunnel-junction technology,
a majority gate – the basic logical device in QCA – was
experimentally demonstrated. In a majority gate, three in-
puts are applied to a four-dot QCA cell, and the majority
vote of the inputs determines the polarization of an output
cell. This demonstrates the fundamental QCA logic func-
tion which is actually the logic equation:AB + BC + AC
with A, B, andC being inputs. (A functionally complete
logic set can be derived from this device by permanently
keeping one of the inputs to the majority gate in a binary 0
or a binary 1 polarization – which results in AND/OR gate
equivalents, and because the means to invert a QCA sig-
nal exists.) A QCA binary wire has also been fabricated
with this technology and essentially consists of a linear ar-
ray of QCA cells [14]. Coulombic interaction between cells
makes nearby cells align in the same state/polarization.

Finally, clocked QCA cells have been investigated.
Clocking groups of QCA cells enables complete control
of the direction of information flow and as was eluded to
earlier, QCA shift registers become the paradigm for mov-
ing information from one place to another. Most recently,
clocked QCA switching has been demonstrated in a three-
dot cell [12]. In these clocked metal-dot cells, the dots
are completely isolated electrically from any source of cur-
rent. Unlike single electron transistors, these cells function
with no current flowing through them, even in the switch-
ing phase. They are therefore particularly appropriate pro-
totypes for molecular QCA cells.

Before discussing experimental work with molecular
QCA cells, it is important to briefly enumerate two other
important benefits of clocked QCA cells. First, the binary
information stored in a QCA cell can be held by the clock
signal and copied to neighboring cells. Addressable mem-
ory cell arrays have been designed and simulated and a sin-
gle bit QCA memory has been demonstrated experimen-
tally. Second, when one device causes another to switch,

there is inevitable loss of energy to the environment through
irreversible processes (phonons, plasmons, molecular vibra-
tions, etc.). For signals to continue to propagate, this lost
signal energy must be restored. In conventional transistors,
this energy comes from the power supply. In clocked QCA
circuits, this energy comes from the clock itself. QCA cir-
cuits can therefore exhibit true signal power gain. This has
been shown theoretically and has recently been observed
experimentally [13]. Much more will be said about the
specifics of the QCA clock – particularly how it relates to
circuit and system design – later on in this paper.

However, we will first conclude this section with a short
discussion on molecular QCA. Creating QCA cells com-
posed of single molecules holds enormous promise for re-
alizing the ultimate limits of electronic device miniaturiza-
tion and integration [6]. In contrast to present metal-dot
cells, the small size of molecules means that Coulomb en-
ergies are much larger, so room temperature operation is
possible. In addition, the power requirements and heat dis-
sipation of QCA are low enough that high-density molec-
ular logic circuits and memory are feasible. In contrast to
lithographic device fabrication techniques which always in-
troduce variations in device characteristics, each molecular
cell can be made exactly identical using chemical synthe-
sis. Combining molecular QCA with nanoelectronics and
molecular/biomolecular sensors opens new possibilities for
an integrated molecular technology. Currently, work is un-
derway to develop target models and substrates [3], [2], [5].

Thus, the basic building blocks for computational de-
vices have all been theoretically studied and in most cases
experimentally verified. The next logical step is to combine
computational building blocks into a realizable computa-
tional circuit. The best match between useful computation
and design simplicity is a QCA FPGA.

3. An FPGA Design Target

Generically, an FPGA is a collection of functionally
complete logic elements that are arranged in some inter-
connection framework. A typical CMOS interconnection
scheme involves signals entering an FPGA circuit via some
input buffers which are then transferred to horizontal wires.
These horizontal wires cross with vertical wires throughout
the FPGA and programmable connections can usually be
made at crossings to facilitate data routing. Another com-
mon interconnection scheme isdirect interconnection. For
example, often in FPGAs, paths exist for connections from a
logic block to any or some of its North, South, East or West
neighboring logic blocks [4]. Duplicating such a scheme in
QCA would obviously be quite simple – QCA cells could
just be used to hard-wire these connections. However, di-
rect interconnect is only effective if it is feasible to make
appropriate function assignments to adjacent logic cells. As
designs become more complex, this becomes more difficult



to do. One common solution to this problem are dedicated
long-line interconnect wires (i.e. wires that could bypass
logic blocks to move a signal to another part of the FPGA).
How these techniques might map to a QCA FPGA will be
the major focus of the next section.

4. FPGAs in QCA

While long wires work well in CMOS, the nature of the
clock makes them a much more difficult task in QCA. Un-
like the standard CMOS clock, the QCA clock is not a sig-
nal with a high or low phase. Rather, the clock changes
phases when potential barriers that affect a group of QCA
cells (a clocking zone) pass through four clock phases:
switch(unpolarized QCA cells are driven by some input and
change state),hold (QCA cells are held in some definite po-
larization – i.e. some binary state),release(QCA cells lose
their polarization), andrelax (QCA cells remain unpolar-
ized). One clock cycle occurs when a given clocking zone
has cycled through all four clock phases and the potential
barriers that implement the clock could actually be gener-
ated by CMOS circuitry. The net effect of this scheme is
that even on a simple wire, data is latched as it moves from
one clocking zone to the next (analogous to a shift register).
An example of a 1-bit value propagating down a five cell
QCA wire is illustrated in Figure 2.

It is this inherent self-latching that forms the heart of
the problem for creating dedicated long-line interconnect
wires in a QCA FPGA. Information being transmitted on
the longer wire will be “pipelined” and its transmission will
not be instantaneous (unlike electron flow in a metal wire
in CMOS). Thus, coordinating the arrival times for input
signals to a given function block becomes a much more dif-
ficult task. The obvious alternative to this problem would
simply be placing all of the cells for a long-line intercon-
nect wire in fewer or just a single clocking zone. However,
this introduces problems of signal reliability (as a QCA wire
grows in length the probability that all cells will switch suc-
cessfully decreases) [9], and introduces design irregularity.
Nevertheless, while these problems should be solvable, oth-
ers loom.

Perhaps the most useful feature in a CMOS FPGA is
the mechanism for general purpose interconnect. One com-
mon/generic means for this is a grid of metal lines that re-
sides between function blocks. These form a switching ma-
trix which permits several distinct interconnection options.
The junction where a horizontal and vertical wire cross usu-
ally consists of a network of pass transistors (see Figure 3).
For example, one common configuration would let a sig-
nal entering the junction from any given direction make a
left turn, right turn, or continue straight ahead. To accom-
plish this, six pass transistors are required [4]. The unique
feature of a pass transistor is that it essentially allows cur-
rent (i.e. information) to flow betweena and b in either
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Figure 2. Part (a.) shows a physical 5-cell
wire while part (b.) shows a value propagat-
ing down the wire.

direction. However, in QCA information is not moved by
electronflow but rather by Coulombic interaction between
electrons in the quantum dots. Becausenearnessbetween
QCA cells is required to move information froma to b there
is no obvious way to create the equivalent of a pass transis-
tor (either bi- or uni-directional) using only QCA devices.
This makes generating a switching matrix for a QCA FPGA
much more difficult (although not impossible).

To understand how the equivalent of at least a uni-
directional QCA pass transistor or switch might be imple-
mented, its worthwhile to consider the exact purpose of the
relaxclock phase. Without it, QCA cells in theswitchphase
could be driven from two different directions (i.e. from cells
with a definite polarization in the adjacenthold phase and
cells with an initial polization in the adjacentreleasephase).
Therelax phase acts as a buffer to ensure that this does not
occur. Thus, therelax phase has the effect of “removing” a
group of QCA cells from a given design. Using this idea,
routing could be accomplished by using the clock to selec-
tively “turn off” groups of QCA cells to create switches.
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Figure 3. An example of a “CMOS” switch-
ing matrix and the pass transistors needed to
create it (dashed lines).

A similar mechanism could be used to program logic or
routing cells. However, instead of “turning off” groups of
QCA cells by keeping them in therelax phase, binary val-
ues could be stored by keeping clocking zones in thehold
phase.

This technique will be used to develop an intercon-
nection mechanism for a QCA FPGA array. A complete
schematic and programming examples will be developed in
the next 3 sections.

5. The Basic Logic Block

When studying what elements should make up the logic
block of a QCA FPGA, 3 things were considered: what
functionality was absolutely needed, how would logic el-
ements in the block be programmed, and was it simple
enough to potentially fabricate. Logic block designs that
were considered included a single NAND or NOR gate, a
majority gate that could be programmed to act as an AND
or OR gate, and a logic block with some form of memory.

The latter two options – a sea of programmable AND or
OR gates or a logic block with some simple combinational
logic and storage capacity – would easily result in the most
“functional and useful” FPGA. For instance, a sea of 2-
input AND and OR gates would be ideal for implementing
sum-of-products or product-of-sums logic equations. And,
FPGA logic-blocks with some kind of built-in storage el-
ements would obviously assist in implementing a simple
microprocessor or finite state machine. However, both of
these techniques also have disadvantages. AND and OR
logic only is not functionally complete as some means for
conditional inversion is also necessary. Things are further
complicated given that AND and OR logic cannot be pro-
grammed to implement an inverter. Adding a specific in-
verter logic block would complicate our supposedly “sim-
ple” design, and using a multiplexor to conditionally select
an inverted input would overwhelm the basic logic block in
terms of complexity (as will be seen in the next section).
Also, additional problems arise as the AND/OR cells and

the memory elements would have to be conditionally pro-
grammed. In this case, the proposeddata routingclock-
ing scheme would have to be extended to route, store, and
refresh a programming signal (for the AND/OR gates and
memory elements).

These issues were deemed too complex for a first attempt
at a fabricatable design and a majority gate configured to act
as a NAND gate was chosen as the logic block. This design
was considered advantageous as it would be simple to build,
data routing would handle all “programming” of the cells,
and circuits composed entirely of NAND gates are function-
ally complete. This scheme also avoids the need to generate
a signal path for configuring majority gates to provide selec-
tive functionality and to store majority gate programming
bits.

6. Interconnect

Interconnection networks for traditional CMOS FP-
GAs utilize SRAM memory to configure the pass transis-
tors which regulate the flow of information between pro-
grammed logic elements. However, in QCA there are no di-
rect counterparts to SRAM or pass transistors, and, as was
just discussed, to keep fabrication complexity to a minimum
the logic elements are static. Fabrication concerns also dic-
tate that routing elements be simple and modular. A number
of designs were analyzed to overcome these limitations.

Perhaps the most direct “translation” of CMOS routing
to QCA would be an array of programmed multiplexors. In
QCA, a simple 2-to-1 multiplexor or 1-to-2 selector can be
built from three majority gates. Combining these basic units
together can form an any-to-any interconnection network of
arbitrary size. However, this network is plagued by a num-
ber of problems. The most pressing concern is that the con-
trol signals for the multiplexors would have to be stored and
carried to the network. The lack of a QCA flip-flop equiva-
lent makes this storage an expensive prospect and points to
another weakness - that of complexity. With a minimal rout-
ing element being comprised of at least 6 majority gates, it
is already several times more complex than the proposed
logic elements. When compared against other routing el-
ements to be discussed, the simple multiplexor performs
poorly with regard to total area measurements (see Figure
4).

It is possible to devise a more efficient routing mecha-
nism by taking advantage of the QCA clock scheme. FPGA
routing networks can be seen as presenting a set of possible
connections. By programming a routing network, we se-
lect a subset of those connections matching the connections
we actually need. As was discussed, in QCA signals are
transmitted via an inherent “pipeline” created by the four
phase clock. If we devise a network of QCA wires which
presents connections between all of our logic elements, we
can program this network by simply not applying clocking
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Figure 4. Multiplexor based designs quickly
“scale out of range”.

fields to the unwanted connections until the only remaining
connections are those which we actually need. Because the
clock fields could be generated by traditional CMOS cir-
cuitry this programming can be easily carried out. As was
mentioned, cells in unclocked zones are left in therelease
phase and remain unpolarized, thus they do not influence
any adjoining cells. An additional benefit of programming
by the clock is that multiple adjacent routing elements (and
clocking zones) can be joined into one “larger” clock zone,
allowing a signal to propagate over several routing elements
in one cycle.

The simplest routing element would be to cross two
QCA wires in a single clock zone (see Figure 5). (In QCA,
with one wire comprised of cells oriented at 90-degrees and
another comprised of cells oriented at 45-degrees, it would
be possible for the wires to cross without interfering with
either signal on either wire and achieve two layer routing.
However, without any mechanism to “jump” from the 45 to
the 90-degree wires, signals in this simple element would
not be able to “turn corners” - making it useless as a routing
element, but a useful basis of comparison.

The problem of “turning corners” can be addressed by
having a routing element comprised of 4 clock regions in a
2 by 2 pattern (see Figure 6(a)). Signals are again carried
by perpendicular 45 and 90-degree wires, and an additional
wire connects the two. This additional wire is placed in the
upper right clock region. If this region is left unclocked,
signals will only propagate along the perpendicular 45 and
90-degree wires (see Figure 6(b)). However, if this region is
clocked, a signal can propagate from one of the perpendicu-
lar wires to the other, allowing a signal to fan out. The draw
back to this configuration is that a signal which is switched
from one perpendicular wire to another continues to prop-
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Figure 5. A simple 1 clock zone routing ele-
ment (a) allows two signals to cross (b), but
is ultimately ineffective as a routing element.
(Also, note that when a 90-degree QCA cells
is placed between 2 45-degree QCA cells, it
serves to act as a “ripper”, transferring a
value to the 45-degree wire).

agate along both wires. If left unchecked, this signal will
interfere with signals traveling in adjacent blocks.

One way to stop signals from “colliding” is to expand
the basic routing element to a 3x3 clock region element
(see Figure 7a). In addition to the benefits of the 2x2 el-
ement, the 3x3 allows us even greater flexibility in routing
(see Figure 7b). Additionally, we avoid a drawback of the
2x2 element; namely regions can remain unclocked to pro-
vide a buffer against adjacent signals from adjacent routing
elements (see Figure 6c). The drawback of the 3x3 design is
the 125% expansion in area. A reasonable compromise is a
3x2 routing element (see Figure 8). It allows a high degree
of density while still providing good flexibility in routing.

The routing elements discussed here are modular and can
be easily connected with logic elements to form the com-
plete FPGA (see Figure 9). Placing and routing for these
FPGAs can be accomplished by a number of mechanisms
already used for traditional CMOS as the organization and
characteristics of the routing elements easily lends itself to a
number of two layer grid routing techniques. The ratio and
pattern by which logic elements are embedded in the inter-
connect fabric can be adjusted for optimal channel depth.

7. A QCA FPGA Schematic

Now that a logic block and interconnection framework
for our QCA FPGA have been established and linked, we
can turn our attention to actually programming it. A funda-
mental part of any microprocessor is an ALU which invari-
ably uses (and needs!) an adder (previous custom designs
and architectural studies for instance used an adder). [10].
With this in mind, the logic for a full adder was converted
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Figure 6. A 2x2 zone routing element (a) al-
lows two layer routing (b), but signals can in-
terfere with adjacent routing elements (c).

to NAND logic (see Figure 10) and was then “placed” in
the QCA NAND-based FPGA (see Figure 11). In Figure 11
circles represent logic blocks and squares represent paths in
different clocking zones. Routing paths are always a mul-
tiple of four squares (or “clocking zones”) to correspond to
the four phases of the QCA clock and the FPGA logic block
routing was performed by hand to achieve an optimal den-
sity. (Note that the numbers on these two schematics “match
up” the gates between these two designs and in these figures
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Figure 7. A 3x3 zone routing element (a) al-
lows flexible routing (b), and provides protec-
tion against interference(c).

only the sum-bit logic is included.)

Finally, it is important to point out one additional place
and routing feature of the NAND-based adder implemented
in the FPGA. Earlier in Section 4 we indicated that as in-
formation is transferred from pointa to pointb in QCA, it
is inherently “pipelined” because of the nature of the QCA
clock. A consequence of this was increased difficulty in co-
ordinating the arrival times for a set of input signals to a
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(a) (b)

Figure 8. A 3x2 zone routing element (a) al-
lows flexible routing (b), at a reasonable size
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Routing Element

Logic Element

FPGA Grid

Figure 9. Routing and logic elements combine
to form the FPGA

Figure 10. The sum logic for an all-NAND-
based adder.

logic gate. Upon examing Figure 11, there are places where
the pipelined paths through the squares/clocking zones are
not equal. However, as alluded to in Section 6, an addi-
tional benefit of programming by the clock is that multiple
adjacent routing elements can be joined into one clock zone,
allowing a signal to propagate over several routing elements

1 4 6

5 8 7

2 11 10 9

3

Figure 11. How the NAND gates would poten-
tially map into a QCA FPGA (sum-bit only).

in one cycle. If these times are coordinated correctly, input
signals will arrive at their respective logic gates simulat-
neously.

8. Conclusions and Future Work

To conclude, we have succeeded in designing the first
QCA-based FPGA. Most importantly, the circuit is simple
and regular and it, or its components, are potential candi-
dates for future experimental work. Additionally, we have
developed schemes to potentially implement switches in
QCA which broadly expands its base of useful applications.
We have also illustrated that even though this FPGA has
primitive logic blocks, it is possible to place, route, and pro-
gram more sophisticated circuits with it.

Now, admittingly, logical completeness is not the only
requirement for an FPGA. To be useful, it must also have the
ability to store state. The lack of a direct QCA equivalent
to a flip-flop makes this difficult (especially with primitive
logic blocks), however, it is possible to store state. Data can
be stored by creating a QCA wire loop. It should be possible
to construct such loops from routing elements, thus turning
extra network capacity into extra storage capacity. Again,
the design itself will remain simple with an eye toward im-
plementation issues.

Finally, the authors would like to acknowledge the Na-
tional Science Foundation, the Notre Dame Center for Na-
noelectronics, and especially Dr. Craig Lent.
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